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Abstract— For compelling human-robot interaction, social
gestures are widely believed to be important. This paper
investigates the effects of adding gestures to a physical game
between a human and a humanoid robot. Human participants
repeatedly threw a ball to the robot, which attempted to catch
it. If the catch was successful, the robot threw the ball back to
the human. For half of the cases in which the catch was unsuc-
cessful, the robot made a physical gesture, such as shrugging
its shoulders, shaking its head, or throwing up its hands. In
the other half of cases, no gestures were produced. We used
questionnaires and smile detection to compare participants’
feelings about the robot when it made gestures after failure
versus when it did not. Participants smiled more and rated the
robot as more engaging, responsive, and humanlike when it
gestured. We conclude that social gesturing of a robot enhances
physical interactions between humans and robots.

I. INTRODUCTION

As robots become more integrated into daily life, it is
increasingly imperative for them to be able to interact
with humans socially as well as physically. Specifically,
robots that provide entertainment and household support will
need to go beyond physically performing tasks (e.g., doing
laundry, baking cookies) and provide social feedback to the
users to increase the convenience of their interactions and
ensure the robots’ use [9]. In this paper, we describe research
that investigates how the addition of social gestures to a
physically based task affects people’s opinions of a humanoid
robot used for entertainment.

We elected to have the robot play a game of catch with
humans because it is a multi-step, interactive behavior that
requires observable realtime processing and builds upon the
robot’s humanoid characteristics. Additionally, it is a form of
interaction that provides a physical connection with the robot
yet keeps participants at a safe distance. In our paradigm, the
human participant threw a ball to the robot, which was able
move its left hand to catch the ball if the ball intersected
a particular volume of space near the arm. Upon catching
the ball, the robot would toss it back in the direction of the
human. Because of inconsistencies in the humans’ throws,
the robot had to constantly adapt its hand location in an
effort to catch the ball. Even the most skilled humans could
not consistently throw within the robot’s working range on
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every trial. Thus, it was clear to the users that the robot was
assessing the ball position and making decisions in realtime
in direct response to the environment.

Previous research has examined catching and throwing in
human-robot pairs [30], [20], but it has focused on attaining
ideal physical interactions without significant examination of
how the addition of social behaviors, such as gestures, might
change the humans’ subjective experience of the interaction.
Therefore, we created head motions that followed the trajec-
tory of the ball in the air and various large-scale movements
that occurred contingently in the case of catching failure,
including shoulder shrugging, head shaking, and throwing
up hands in despair. We assessed how the addition of these
social actions affected the overall interaction experience in
two ways. We surveyed participants about the interactive
qualities of the robot, such as engagement, responsiveness,
and friendliness. We also examined participants’ facial ex-
pressions during the interaction for smiles and laughs.

II. RELATED WORK

Robots have been playing catch with humans for years:
it is a dynamic, physical interaction that does not require
physical contact with the human while also a technologically
complex task. The robots have relied upon computer vision
to predict trajectories [17] or visual servoing techniques
[26], [10]. Catching can avoid [3], [30] or involve grasping
movements [32]. We recently described our own catching
robot system for human-to-robot partner juggling [20], which
we have modified for the present work. We sought to make
people’s interactions with the robot more positive through the
addition of head and arm gestures to the robot’s behavior.

Bodily gestures can be used for communication in place
of or in conjunction with speech (for a review, see [13]).
Emblematic gestures convey information without the need
for concurrent speaking; cultures have agreed-upon meanings
for these specific motions [18]. Common emblems include
head nods, hand waves, and shoulder shrugs. Conversational
gestures are synchronized with speech and can relate to its
meaning, but do not occur in its absence. These can include
beat gestures as well as more complex movements. Finally,
adapters include manipulation of the self, another, or an
object without communicative intent during speech.

Previous research has investigated how physical move-
ments, including gestures, change viewer perception of syn-
thetic agents. Humans tend to respond socially to non-human
objects like computers [28], and this can be generalized
to robots. Moreover, the level of social response can be



manipulated by agent characteristics. One goal of human-
robot and human-computer interaction is to determine how
to design robots and agents that respond to humans in a
social way, assuming it is appropriate given the context [9],
[12]. Prior research suggests that gestures can provide social
cues that assist in improving humans’ perception of robots.

Some robots have relied upon head motion to support
interactions. Sidner and colleagues [33] found that using
head movement to track the participant during a demon-
strative conversation with a penguin robot elicited more
attention to the robot, and participants found the movements
appropriate. In another study [21], a humanoid robot took
turns drumming with a participant with or without head
movements. Participants believed that they performed better
in the absence of the head motion; however, they enjoyed the
interaction that had head motion more. Other research [14]
examined the use of head nods, eye blinks, and gaze shifts
in various combinations by a robotic head and determined
that robots that exhibited head nods were perceived as more
engaged and likable.

Additional research has examined the use of head and
arm movements in combination to convey gestural infor-
mation. Prior research has demonstrated that head and arm
movements of a humanoid robot can affect user impressions
of the personality dimensions of that robot, including in-
troversion/extraversion and thinking/feeling [19]. Moreover,
the motion affected ratings of other characteristics, such as
excitement, pleasantness, likability, and interestingness. In
another study, adding head and arm movements to a small
telepresence robot increased users’ feelings of engagement,
enjoyment, and cooperation with the robot [1]. In a video
simulation study, Takayama and colleagues [34] found that
an animated robot that changed its body and arm postures
to acknowledge failure at a task were viewed as more smart
and confident than those that did not physically acknowledge
the failure. More recently, Salem and colleagues [31] had
participants follow instructions given by a small, humanoid
robot to unpack a box and put away its contents. The robot
gave verbal instructions either without referential gestures,
with correct gestures, or with partly incorrect gestures.
Gestures, whether correct or incorrect, increased ratings of
humanlikeness, shared reality, and likability. The highest
ratings were assigned to the robot when some gestures were
incorrect, suggesting that errors can make robots seem more
human.

These studies suggest that adding nonverbal behaviors,
including gestures, to a robot can improve the users’ in-
teraction experiences with that robot. Our study explores
how the incorporation of gestures during a game of catch
affects the users’ ratings of the robot. Our study expands
on current research by manipulating gestures in a more
natural, physically interactive task and having the participants
evaluate the robot’s traits and interaction as a whole, as
opposed to explicitly having them evaluate the gestures.

Fig. 1. The human participant stands approximately 1.5m in front of the
humanoid robot. The human and robot throw a ball back and forth. The
ball is tracked using two ceiling-mounted cameras. A camera mounted on
the base of the robot monitors participants’ faces.

A. Hypotheses

We created two experimental conditions for our research:
the robot either did or did not give gestural feedback af-
ter catching failures. Our first research question (Q1) was
whether the introduction of social gestures into the robot’s
behavior would improve participants’ ratings of the charac-
teristics of the robot. We collected ratings of how humanlike,
engaging, competent, responsive, friendly, and attractive the
robot was after games with and without gestures. We hy-
pothesized (H1) that gestures would improve these ratings,
particularly for humanlikeness, engagement, responsiveness,
and friendliness. For our second question (Q2), we examined
users’ facial expressions while they played catch with the
robot to determine whether the robot’s social displays could
elicit increased social displays from the users. We expected
(H2) that the participants would show more social displays
(in this case, smiles) when the robot was also making social
displays.

III. APPARATUS

Our experimental setup includes a human participant, a
humanoid robot, and a computer vision system (Fig 1).

A. Robot Hardware

Our catching robot is a Walt Disney Imagineering A100
Audio-Animatronics figure (Fig. 4). This platform is com-
monly employed in theme parks and other entertainment
venues. The robot is 1.8m tall and stands with feet fixed
on a 0.6m base. The robot contains a total of 38 hydrauli-
cally actuated degrees-of-freedom (DOF). For throwing and
catching, we use the left arm (seven DOF plus one DOF for
each of the five fingers) and the torso (two DOF for bending
forward and twisting). For social gestures (including head
turning to follow the ball), we additionally use the right arm,
shoulder, neck and eyes. We augmented the left hand of the
robot with a plate to cover and protect the finger actuators



Fig. 2. Detail of the robot’s catching hand. Black foam has been placed
on the back and side of the palm to form a basket shape for catching. The
palm is approximately 10cm square.

Fig. 3. Each camera performs ball detection (red circle) independently. The
3D coordinate of the ball (blue curve) is then triangulated from the pair of
2D image locations. When a throw is detected, a Kalman filter (green curve)
processes the raw 3D positions and predicts a 3D catching location (pink
square) and time to impact.

and a foam rim to provide a more cup-like shape suitable
for catching (Fig. 2). The fingers of the hand do not have
the range of motion or capability for grasping the ball and
instead are used to form a basket shape while catching and to
extend during throwing. Further information about the robot
and its control system is described in previous work [20].

B. Computer Vision

Previously, we used a Asus Xtion PRO LIVE color/depth
camera for ball tracking [20]. However, we found the la-
tency too high for the present work. Thus, we replaced the
Asus camera with two GigE machine vision cameras for
tracking the ball in 3D space. The entire process (image
processing, network communication and triangulation) took
approximately 33ms to complete.

A Kalman filter was used to predict the catching location
for the robot and anticipated time to impact (Fig 3). The
filter was reinitialized whenever the system detected the
ball moving with a sufficient upwards and forwards velocity
and originating reasonably close to the participant’s location.
With each new observed 3D location, the filter would update
its anticipated catching location and time to impact, and
examine the tracking residual. If the tracking residual was

significant after the time of impact, our residual system
would determine whether the ball was caught or had bounced
off the hand. In our previous vision system [20], due to
latency, we were only able to determine a missed ball by
checking if the ball position fell below the catching plane.
However, by examining the tracking residual, we were able
to obtain an instantaneous estimate of whether or not a ball
was “almost” caught (i.e., hitting the hand but bouncing off,
as opposed to missing the hand completely). Thus we were
able to cue an appropriate gesture that acknowledged a near
catch versus complete miss.

A third GigE machine vision camera was used to monitor
the facial expressions of the participant. Images of the
participant were captured at 30 frames per second and
recorded to disk. The video recordings of the participants’
facial expressions were manually annotated to identify the
release point of each throw. The participants’ faces were
automatically detected and analyzed for smiles over the next
5 seconds (150 frames) of video using the Fraunhofer face
detector and analysis engine [22].

IV. METHOD

For the ‘Gestures’ condition, we integrated multiple mo-
tion features into the robot’s behavior. First, the robot fol-
lowed the ball with his head, watching the ball as it was
tossed back and forth. Three gestures were created for when
the robot missed catching the ball. In the case of a near miss,
the robot would either throw its hands up in the air for the
“Raise Arms” gesture or move his shoulders up and down
for the “Shrug Shoulders” gesture. If the throw went far out
of the catching range of the robot, it would shake its head
back and forth, the “Shake Head” gesture. We selected these
gestures because they are emblematic and can be understood
in the absence of speech, i.e., throwing up one’s hands as a
symbol of despair, shrugging when one doesn’t know what
to do, and shaking one’s head to say no. Moreover, gestures
that acknowledge a robot’s failure have been demonstrated
previously to affect user experience in a non-interactive task
[34], and this subset of failure gestures could be performed
by our robot in a comprehensible, efficient manner.

A. Human Interaction Study

1) Participants: Thirty adults (18 male, 12 female) aged
19 to 64 years (average 27.83, standard deviation 10.75)
participated in this research. Participant recruitment was
performed via an online participation pool open to the local
community. We required that the participants have normal or
corrected-to-normal vision and be able to throw and catch.
The research was approved by the Institutional Review Board
and participants were compensated for their time.

2) Procedure: This experiment was performed in a
‘within-subjects’ design so that each participant played with
the robot both with and without gestures. The order of the
conditions (henceforth referred to as ‘Gestures’ and ‘No
Gestures’) was randomized such that half of the participants
had ‘Gestures’ first and the other half had ‘No Gestures’
first. Two experimenters were present at all times to assist



Raise Arms Shake Head Shrug Shoulders
Fig. 4. If the robot was unable to catch the ball, it optionally played one of three gestures: raising arms, shaking head or shrugging shoulders.

with the study, one of whom was responsible for ensuring
that the robot was performing properly. At the onset of the
study, the second experimenter explained to each participant
that the robot was a left-handed catcher and responded best
to underhand tosses. Then, the participant threw a minimum
of twenty times to the robot. (In some cases, the robot
miscounted and took an additional turn.) In either condition,
if the robot succeeded in catching, the robot would toss the
ball back. In the ‘No Gestures’ condition, if the robot failed
to catch the ball, the robot simply returned to its starting
ready-to-catch pose, and the experimenter returned the ball
to the participant. In the ‘Gestures’ condition, if the toss was
a near miss (the ball deviated from its parabolic trajectory
because it hit the robot’s hand), the robot performed either
the ‘Raise Arms’ or ‘Shrug Shoulders’ gesture with equal
probability (Fig 4). If the toss was a complete miss,
the robot performed the ‘Shake Head’ gesture. After the
gesture was complete, the robot returned to its ready-to-
catch pose, and the experimenter returned the ball to the
participant. After each set of throws, the participant filled
out a brief survey (a modified, shortened adaptation of the
GODSPEED questionnaire [2]) and the gesture condition
was switched. The participant then threw the ball to the robot
for another set and filled out the same survey again. Finally,
the participant answered a few additional questions about his
or her background and experience to ensure that he or she did
not need to be excluded from analyses for high familiarity
with robots. No participants were excluded.

3) Measures: After each block of throws, participants
responded to the following questions on a 5-point scale:

This time the robot was...
• very humanlike (1) to very unhumanlike (5)
• very engaging (1) to very unengaging (5)
• very competent (1) to very incompetent (5)
• very responsive (1) to very unresponsive (5)
• very friendly (1) to very unfriendly (5)
• very attractive (1) to very unattractive (5)

B. Analysis
We performed a repeated-measures, multivariate analysis

of variance (MANOVA) with one independent variable (con-
dition: ‘Gestures’ and ‘No Gestures’) and six dependent vari-
ables (humanlike, engaging, competent, responsive, friendly,

and attractive ratings) in order to assess the effect of gestures
on participant opinions of the robot. One participant was not
included in this analysis because she did not complete all
questions of the survey.

Faces were detected with 91.7% recall, and when a face
was detected, the smile score ranged from 0 to 100. The smile
data exhibited bimodality and was not normally distributed:
the majority of the time, participants had a neutral, non-
smiling expression, but occasionally the smile score would
be significant.

We formulated the null hypothesis that the smiles scores
in ‘Gestures’ and ‘No Gestures’ come from the same un-
known distribution. Because the global smile scores were
not normally distributed, we used the Wilcoxon signed-rank
test to determine whether the smile scores during ‘almost’
and ‘unsuccessful’ catches with and without gestures came
from the same distribution (recall that no gesture was played
for a successful catch).

V. RESULTS

In all, there were 1199 throwing trials. As mentioned
previously, the robot’s catching performance was automati-
cally classified by the vision system’s Kalman filter tracking
error into three categories: (1) a successful catch, (2) an
almost successful catch (where the ball deviated from its
parabolic trajectory because it hit the robot’s hand), and (3)
an unsuccessful catch (because the ball did not deviate from
its expected trajectory). The breakdown of the 1199 throws
is listed in Table I. There was no significant difference in the
number of successful throws between the ‘Gestures’ and ‘No
Gestures’ condition, t = 0.41, p = 0.68. Performance ranged
from 0 to 16 successful throws per condition.

A. Questionnaires

Mean ratings and standard deviations for each of the six
questions by condition are presented in Table II. For all
questions combined, there was not a significant effect of con-
dition, F(6,23) = 1.77, p = 0.15. However, some individual
questions had significantly different results for the ‘Gestures’
and ‘No Gestures’ conditions. With gestures, the robot was
rated as significantly more humanlike than without gestures
(F = 6.947, p = 0.01, observed power = 0.72). Gestures also
significantly improved ratings of responsiveness (F = 3.88,



TABLE I
THROWING OUTCOMES

Per Participant
Condition Count Mean St. Dev.
Successful 525 17.5 6.3

No Gestures 267 8.9 3.4
Gestures 258 8.6 4.0

Almost 169 5.6 3.0
No Gestures 77 2.6 1.7
Gestures 92 3.1 2.0

Unsuccessful 505 16.8 6.9
No Gestures 256 8.5 4.1
Gestures 249 8.3 4.0

TABLE II
MEANS AND STANDARD DEVIATIONS OF QUESTIONNAIRE RESPONSES

BY CONDITION. ASTERISKS INDICATE SIGNIFICANCE AT P < 0.05.

Question No Gestures Gestures
Mean St. Dev. Mean St. Dev.

Humanlike* 2.55 0.74 3.03 0.82
Engaging* 2.59 1.09 3.07 1.03
Competent 2.93 0.96 3.14 0.88
Responsive* 2.34 0.90 2.86 0.88
Friendly 2.41 1.15 2.72 0.96
Attractive 2.59 1.02 2.76 0.99

p = 0.01, power = 0.75) and how engaging the robot was (F
= 3.38, p = 0.05, power = 0.51). A trend was identified such
that ratings of friendliness were improved by gestures (F =
2.77, p = 0.11, power = 0.36); however, further research is
needed to examine this dimension. There were no significant
differences across conditions for ratings of how competent
or attractive the robot was (F = 1.00, p = 0.33 and F =
1.33, p = 0.26). We believe that these results arise from the
consistency across conditions in the robot’s ability to catch
successfully and his appearance.

B. Facial Expressions

The histograms of the smile scores with and without
gestures are shown in Figure 5. Enabling gestures resulted
in a noticeable decrease of weak smile scores (≈ 5) and
increase in strong smile scores (≈ 95). The histograms in
Figure 5 are biased towards participants with fewer success-
ful catches—i.e., participants with more ‘almost’ and ‘unsuc-
cessful’ catches contributed more data points for smile scores
with and without gestures. However, equivalent histograms
that normalize the number of samples from each participant
show the same trend, but with slightly larger magnitude:
the decrease in weak smiles is more pronounced, as is the
increase in strong smiles. Due to the high performance of
a small subset of participants at throwing, we eliminated
5 participants who had 12 or more successful throws per
condition from the statistical analysis. These participants did
not have the opportunity to see the full range of gestures.
Smile scores were created for each ‘almost’ and ‘unsuc-
cessful’ catching trial by averaging the scores across the
subsequent 150 frames of video, as this gave participants
an adequate period of time to view the gesture (if displayed)
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Fig. 5. The histograms of smile scores for gestures disabled and enabled
during ‘almost’ and ‘unsuccessful’ catches exhibit similar distributions.
However, when gestures are enabled, there is a noticeable and significant
decrease in weak smiles and an increase in strong smile scores.

and react before the next trial. We performed a Wilcoxon
signed-rank test (p=0.02) and found that the smile scores
in the ‘Gestures’ condition are significantly different (at a
95 percent confidence level) compared to smiles in the ‘No
Gestures’ condition.

VI. DISCUSSION

In cooperative tasks involving humans, gestures are a
natural way for robots to exhibit their understanding of the
world. For instance, in our scenario, the A100 robot turns its
head to follow the ball (demonstrating awareness of the ball’s
location in the world). Similarly, when the robot was unable
to catch the ball in the Gestures condition, it acknowledged
its failure through well-understood human body gestures. Our
study demonstrated how the incorporation of these gestures
made the throwing and catching interaction more positive
for the human participants. The survey results indicated that
gestures made the robot seem more humanlike, engaging and
responsive, presumably because it demonstrated awareness
of failure. The gestures also elicited increased smile scores
from the participants, implying that the gestures successfully
conveyed an appropriate and somewhat humorous acknowl-
edgment of failure by the robot.

Our current study showed how gestures made the throwing
and catching interaction more enjoyable for the human par-
ticipants. In future work, we plan to explore whether gestures
can be used to improve the performance of a cooperative task
(such as maximizing the number of consecutive successful
throws and catches between the human and robot). If a robot
fails to perform a particular task, but is cognizant of why the
failure occurred, the robot can acknowledge this through a
gesture. Because our vision system can also determine if the
toss was a complete miss, or if the ball was nearly caught
before bouncing out of the hand, the robot can perform a
gesture that directs blame appropriately.

Different gestures indicate different levels of awareness.
For example, one participant commented that the robot
should look at him more often instead of only looking at
the ball during the ‘Gestures’ condition. Having the robot
look at the participant while waiting for the ball to be



thrown and then follow the ball while it is traveling through
the air demonstrates a more complete understanding of the
task. With reliable realtime face tracking, we should be able
to modify the robot’s behavior to include attention to the
participant’s face and apparent eye contact. It would be
interesting to see whether these changes in head gesture make
the robot seem more competent.

In the current study, the robot only made gestures after
failing to catch the ball. However, we would also like
to explore whether excited and/or happy gestures after a
successful catch have similar or even more profound effects
on the human participants’ opinions of the interaction if we
could prevent the ball from dropping out of the hand. If
smile detection could be performed in realtime, the robot
could adapt its repertoire of gestures to suit each partici-
pant. Additionally, future work should address how the use
of random or inappropriate gestures would affect people’s
experience of their interactions with the robot. Such research
would clarify whether movement alone can make robots
seem more humanlike, engaging, and responsive during this
type of exchange.

Finally, other modes could be added, such as speech
responses. With these additional capabilities, the robot could
be equipped with behaviors to help coach participants in
throwing the ball. These feedback cues should result in ball
trajectories that pass through the robot’s working volume
more often and result in an improved catching success rate.
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[7] O. Birbach, U. Frese, and B. Bäuml. Realtime perception for catching
a flying ball with a mobile humanoid. In Proc. Int. Conf. on Robotics
and Automation, 2011.

[8] G. Collier and D. DiCarlo. Emotional expression. Lawrence Erlbaum
Associates, Inc, 1985.

[9] K. Dautenhahn. Socially intelligent robots: Dimensions of human–
robot interaction. Phil. Trans. Royal Society B: Biol. Sci.,
362(1480):679–704, 2007.

[10] K. Deguchi, H. Sakurai, and S. Ushida. A goal oriented just-in-time
visual servoing for ball catching robot arm. In Proc. Int. Conf. on
Intelligent Robots and Systems, 2008.
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