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Figure 1: Our filtering results obtained for frame #320 of the SPACELAND sequence. This scene showcases a non-linear camera motion, an
animated directional light, and various shading effects including shadows and reflections. This scene has been rendered with Unreal Engine
4 [Epi] using 1 sample per pixel (Non-AA). The presence of fine geometric details and detailed textures produces lots of temporal aliasing and
flickering artifacts. Our filtering method effectively reduces flickering without creating ghosting artifacts (please watch the supplementary
video). Moreover, our approach produces less visual overblur (see insets) than the current state-of-the-art solutions for real-time temporal
antialiasing, e.g., 1.33 dB better PSNR on average than Unreal Engine temporal filter (UE4-TAA).

Abstract

We propose a new real-time temporal filtering and antialiasing (AA) method for rasterization graphics pipelines. Our method
is based on Pixel History Linear Models (PHLM), a new concept for modeling the history of pixel shading values over time
using linear models. Based on PHLM, our method can predict per-pixel variations of the shading function between consecutive
frames. This combines temporal reprojection with per-pixel shading predictions in order to provide temporally coherent shading,
even in the presence of very noisy input images. Our method can address both spatial and temporal aliasing problems under
a unique filtering framework that minimizes filtering error through a recursive least squares algorithm. We demonstrate our
method working with a commercial deferred shading engine for rasterization and with our own OpenGL deferred shading
renderer. We have implemented our method in GPU and it has shown significant reduction of temporal flicker in very challenging
scenarios including foliage rendering, complex non-linear camera motions, dynamic lighting, reflections, shadows and fine
geometric details. Our approach, based on PHLM, avoids the creation of visible ghosting artifacts and it reduces the filtering
overblur characteristic of temporal deflickering methods. At the same time, the results are comparable to state-of-the-art real-
time filters in terms of temporal coherence.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Enhancement—Filtering
I.3.3 [Computer Graphics]: Picture/Image Generation—Antialiasing;
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1. Introduction

The demand for higher quality content generated in real-time
continuously pushes the rasterization graphics hardware to the
limit, systematically uncovering fundamental problems. The in-
creasing sophistication and complexity of shading computations
create a compromise between available computational resources
and achievable spatial and temporal resolutions. As a consequence,
spatial and temporal resolutions are often the first candidates to
bow to the performance constraints [SYM∗12]. Given the limited
amount of samples per pixel (spp) that can be used in real-time ren-
dering, undersampling problems easily arise when rendering com-
plex scenarios. For instance, when rendering dense foliage scenes,
many geometric details of different leaves, each having a different
shading value, may contribute to the same final pixel color. This
situation easily derives into very noisy changes of pixel values over
time, creating a distracting visual effect, commonly known as tem-
poral aliasing or flicker.

The two main sources of aliasing in rasterization are spatial (e.g.
visibility and shading) and temporal (e.g. geometric and specular
aliasing). Supersampling is a widely adopted solution to allevi-
ate these problems based on computing higher resolution images
and downsampling them to obtain the final filtered result. In ras-
terization, supersampling usually refers to the spatial and tempo-
ral dimensions. On the spatial side, multisampling [Ake93] can
be combined with decoupled shading architectures that separate
visibility samples from shading in order to minimize rendering
costs [RKLC∗11]. However, increasing spatial resolution is often
not enough to solve temporal flickering problems. In those scenar-
ios, temporal coherence should be exploited to reduce flickering
by reusing samples across multiple frames [SYM∗12]. Amortizing
samples across time, poses the problem of representing history of
a pixel value over time. In order to avoid excessive memory re-
quirements, the idea of using exponential history buffers has been
widely explored in the literature [HEMS10], even with subpixel ac-
curacy [YNS∗09]. These methods typically address temporal flick-
ering by blending the pixel history value with the most updated
value produced at the current frame. This blending process is usu-
ally driven by heuristic rules and parameter thresholds, often based
on comparing pixels depth and motion information for source and
target pixel samples. The heuristic nature of this blending process
exposes these methods to fundamental problems when dealing with
object occlusion and disocclusion situations. For instance, depths
may be quite similar, resulting in incorrect color blending of ob-
jects in different depth layers and may lead to smearing artifacts
known as ghosting artifacts, because of the successive repetition of
contours with decreasing intensity. Therefore, effectively reducing
temporal flickering without creating such visual artifacts is still an
open research challenge.

In this paper, we propose a new real-time temporal filtering
and antialiasing method for rasterization graphics pipelines. Our
method is based on Pixel History Linear Models (PHLM), a new
online approach to track shading changes. The key difference be-
tween our and previous methods is that PHLM expresses pixel
shading history as a linear model instead of using a single color
value. By using linear models we can better approximate pixel
shading changes over time. In fact, our method drastically reduces

the creation of ghosting artifacts and reduces the characteristic
overblur of current temporal deflickering filters (See Fig. 1). Our
filtering framework is orthogonal in operation to other existing
techniques (e.g. mipmaps and MSAA) and can be coupled with
them to increase the quality of reconstructed pixel values. Specifi-
cally, our major technical contributions are:

• A new real-time temporal filtering and antialiasing method for
rasterization graphics pipelines. We propose a general spatio-
temporal filtering framework based on Recursive Least Squares
(RLS) that tracks temporal shading changes based on linear
models in an online manner. Our method predicts per-pixel vari-
ations of the shading function between consecutive frames and
combines temporal reprojection with spatial predictions in order
to reconstruct temporally coherent pixel shading.

• We propose Pixel History Linear Models (PHLM), a new idea
to model pixel history of shading values over time using lin-
ear models. By tracking pixel shading values produced by the
rasterization hardware in real-time, PHLM drastically reduce
ghosting artifacts and significantly alleviate overblur produced
by previous real-time temporal deflickering methods. In addi-
tion, we propose a robust temporal feature based on lower fre-
quency components as an input predictor for our linear models.

Our method can work even with an input rendered with a small
number of samples or in the presence of very noisy shading values.
Our approach addresses different sources of potential undersam-
pling artifacts, i.e. spatial and temporal undersamplings. We have
demonstrated our method working in real-time in conjunction with
a deferred rendering rasterization pipeline, generating higher qual-
ity results than state-of-the-art techniques [Lot11,Kar14]. We eval-
uated temporal flickering based on visual comparisons and we also
compared the techniques using peak-signal-to-noise-ratio (PSNR).

2. Related Work

Supersampling and multisampling algorithms. To prevent alias-
ing caused by undersampling, prefiltering before sampling is theo-
retically the preferred approach [Pra78]. In practice, texture alias-
ing in real-time is addressed with mipmaps [Wil83] which con-
tain prefiltered versions of the original texture at different resolu-
tions. Efficient prefiltering techniques can accelerate shading and
are therefore a very promising research direction [BN12]. The main
adopted solution in the rasterization world to address geometric
aliasing is to utilize more samples. Multisampling has been coupled
with image feature analysis resulting in many different techniques
reviewed in more detail by Jimenez et al. [JGY∗11]. These tech-
niques such as Intel MLAA [Res09] and NVidia FXAA [Lot11]
have been successfully applied to the antialiasing problem. While
these approaches can reduce spatial aliasing artifacts, temporal
aliasing still poses a challenge for real-time rendering.

A complementary approach to multisampling is to decouple
shading samples from visibility samples [RKLC∗11,LD12], reduc-
ing over-shading costs by shading only fragments after computing
visibility. Wang et al. [WWHS15] further decoupled coverage from
visibility in order to achieve better geometric antialiasing. Salvi
and Vidimče [SV12] proposed a novel way for decoupling visi-
bility from shading that significantly reduces the number of sam-
ples stored and shaded per pixel. A recent example of successful
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prefiltering and decoupled shading is the aggregate antialiasing by
Crassin et al. [CMFL15], where new hardware capabilities of mod-
ern GPUs were used to prefilter visibility samples using a clustering
stage before shading. In the context of stochastic rendering, Clar-
berg et al. [CTM13] proposed a new sort-based architecture for de-
coupling sampling in deferred shading architectures, ensuring that
only non-occluded samples are shaded.

Temporal reprojection techniques. Reprojecting sample infor-
mation from previous frames is a classic approach, adopted to im-
prove rendering efficiency and increase the number of samples in
the temporal dimension. For a complete discussion on existing tem-
poral coherence techniques we refer to the survey by Scherzer et
al. [SYM∗12]. As an early work, Walter et al. introduced the render
cache [WDP99, WDG02], a system that displays images at a faster
rate than the one that a renderer can generate complete frames,
improving the visual feedback at the cost of producing approxi-
mate images during camera and object motions. Reverse repro-
jection caching by Nehab et al. [NSL∗07] is a reprojection frame-
work to reutilize shaded samples from previous frames in the cur-
rent frame, and thus can avoid expensive shading computations.
The amortized supersampling presented by Yang et al. [YNS∗09]
is a temporal reprojection caching framework, which controls the
exponential smoothing factor that determines the decay of previ-
ously computed samples over time, in order to account for the tem-
poral changes of shaded values. Spatio-temporal upsampling by
Herzog et al. [HEMS10] utilized a regular sampling grid pattern
in consecutive frames and feeds these partial results into a bilat-
eral upsampling framework which locally adapts the filtering ker-
nel to the image content. Bowles et al. proposed an iterative image
warping algorithm for reprojection [BMS∗12] that improves per-
formance under different scenarios, like e.g. real-time stereo ren-
dering for videogames. Yang et al. proposed bidirectional reprojec-
tion [YTS∗11] that reprojects pixel colors from a future frame as
well as previous frames, improving forward reprojection methods
especially for disoccluded image regions. Andersson et al. [AH-
TAM14] focused on optimizing distributed rendering effects such
as motion blur and defocus blur. Recently, Karis [Kar14] presented
high-quality temporal supersampling, which turned into the main
antialiasing solution of Unreal Engine [Epi]. Similarly NVidia pre-
sented TXAA and MFAA, based on similar concepts for reusing
samples over time [FKS16]. To have a more detailed overview on
recent hybrid reconstruction techniques we refer the reader to the
recent publication by Drobot [Dro15].

In this paper, we propose a new real-time temporal filter based
on a novel representation for pixel history. Our method exploits
temporal coherence in pixel history and samples over time, rely-
ing on previous techniques for temporal reprojection. The method
is output sensitive, meaning that its performance depends only on
the number of output pixels. This is a key difference with respect
to approaches decoupling visibility and shading, for which perfor-
mance is directly affected by the number of samples per pixel. With
respect to existing methods based on history buffers, we drastically
reduce the creation of ghosting artifacts thanks to our online RLS
error minimization algorithm. Next, we will provide a detailed de-
scription of our framework and of our novel representation for pixel
history.

3. Pixel History Representation

Most effective techniques working on flicker reduction are based
on the idea of reusing pixel shading and sample information over
time. Hence, it becomes critical to have accurate and efficient repre-
sentations of pixel samples and shading history values. To address
this issue, exponential history buffers are often coupled with image-
based reprojection techniques. Next, we will briefly refresh expo-
nential history buffers and outline some of their major limitations
and why we propose a different representation for pixel history.

Exponential history buffers. State-of-the-art techniques exploit
temporal coherence among frames, by averaging coherent pixels in
consecutive images over time. The shading values are commonly
maintained in history buffers. Given an input color y(t) at frame t a
corresponding history value h(t) is updated in an online manner:

h(t) = αh(t−1)+(1−α)y(t), (1)

where α is an exponential convergence factor that controls the
blending between history and current input colors. Finding an op-
timal value of α for each pixel is a well-known research challenge
for interactive applications. To avoid overblurring artifacts caused
by mixing incoherent pixel colors, history buffers are often coupled
with image-based reprojection techniques [Dro15], as a means to
account for the movement of objects or cameras.

A recurring issue when working with temporal reprojection is
the side effect of mixing occluded and foreground object colors in
the history buffer. This can produce ghosting artifacts, with objects
and textures smearing. Most techniques use heuristic rules to deal
with the problem, for example by comparing depths or velocities
of the original and reprojected samples. However, these heuris-
tic methods still produce visible artifacts that decrease the im-
age quality. Some methods reduce the input variance by clamping
the history color against the axis-aligned bounding-box for neigh-
bor color information. This solution, named neighborhood clamp-
ing [Mal12, Kar14], demonstrates to be very efficient in removing
flicker, however it is known to produce overblurred results. A com-
mon assumption of these techniques, that may decrease their sharp-
ness, is the fact that exponential history buffers represent the his-
tory of a pixel using a constant value. This kind of flat representa-
tion may become insufficient when the input values are particularly
noisy, as a constant approximation can easily fail to predict the fu-
ture pixel shading trend, and furthermore, it can be easily corrupted
by input noise.

Advanced pixel history representations. For very noisy input
shading, as for example when rendering dense foliage scenes, it is
preferable to have more versatile but somehow compressed repre-
sentations for pixels history, which ultimately are better represen-
tations than simply using constant approximations. We got inspired
by recent work in Monte Carlo ray tracing denoising, where noisy
input images, rendered with a low number of samples, can be de-
noised a posteriori thanks to statistical models fitting the local dis-
tribution of the input samples [MIGYM15]. Even if we would like
to use a RLS based temporal filtering, as proposed in the previous
approach, we could not use the G-buffer data as features, because
data could be noisy (e.g., 1 spp) and temporally unstable. Our idea,
instead, will be based on having a more stable feature, e.g., using
low-frequency color information (more details in Sec. 5). Hence,
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we propose to build a statistical model of pixel history, and we
have identified the following characteristics that a desirable model
for interactive applications should fulfill:

• Accuracy. The history of a pixel should be based on shaded sam-
ples that affect exactly the projected area covered by that pixel.
• Up-to-date. The model should continuously assimilate new input

samples and incorporate them as part of its history.
• Temporal Stability. The model should produce temporally more

stable shading values than the provided input. The produced im-
ages should balance between bias and variance errors.

The candidate pixel history model is expected to be reasonably fast
to evaluate and compact to store, as this would facilitate its inte-
gration with existing rendering systems. Current deflickering filters
may create ghosts (as result of the lack of accuracy) in exchange
for removing flicker. On the other hand, spatial AA filters do not
create any ghost or noticeable overblur (good accuracy), but they
are not temporally stable enough. After these observations, we pro-
pose to use statistical models for several reasons. First, they can
exploit additional features that can help in reducing ghosting and
flickering. Second, these models can predict future shading values
by simply using input measurements and the current state of those
models. Third, a simple model can accurately track shading values,
approximating non-linear changes by piecewise linear approxima-
tions, often better than constant approximations provided by classic
history buffers. Our framework, described next in Sec. 4, and our
new method, described in Sec. 5, have been designed to fulfill the
three aforementioned basic properties.

Table 1: Notation used throughout this paper

Symbol Description
y rasterization input image
y(t) rasterization input image at frame t
yi shading value for pixel i
yi(t) shading value for pixel i at frame t
f ground truth image
f (t) ground truth image at frame t
f̂ (t) filtered output image at frame t
h(t) pixel history shading value at frame t
ξ(t) L2 error with respect to ground truth at frame t
ξ̂(t) estimate of L2 error with the ground truth at frame t
êi(t) predicted error vector for pixel i at frame t
βi(t) linear model coefficients for pixel i at frame t
Pi(t) inverse covariance matrix for pixel i at frame t
xi(t) input predictor variable (feature) for pixel i at frame t
Ω image coordinates space
vi(t) velocity vector for pixel i at frame t
πi(t) reprojection coordinates for pixel i at frame t
rayori ray origin
raydir ray direction
rayhit first intersection point for ray

4. Temporal Filtering Framework

The final purpose of our filtering framework would be to restore the
ground truth image f , an aliasing free image that would be gener-
ated by using an ideal rasterization system with an infinite number

of samples per pixel (spp). The ground truth image can not be com-
puted in practice, therefore it is approximated by another image,
called reference, that is generated using a very high but finite num-
ber of spp (e.g. 16 or 128). Generating this image is generally not
affordable in real-time but serves for comparison purposes. Our fil-
tering framework will use instead an input image y, generated in
real-time with a small number of spp, and susceptible of being af-
fected by moderate or severe undersampling artifacts, i.e., variance
and flickering.

We first define the basic notation used throughout this paper in
Table 1. To represent the value of image functions for a specific
pixel, we will use a subscript index. For instance, fi and yi would re-
fer respectively to the ground truth and input values at pixel i. Our
filtering method will use y(t) as input to produce the filtered out-
put f̂ (t), which aims to approximate the ground truth image f (t).
When the sampling density used to generate y(t) reveals insuffi-
cient, either in space or time, undersampling artifacts easily appear
in our filtered image f̂ (t) in the form of variance and flickering
errors. These errors can be expressed as the L2 error between the
ground truth and the output filtered value as ξ(t) =

∥∥ f (t)− f̂ (t)
∥∥

2.

Pixel history representation using linear models. We propose
a real-time antialiasing filter using linear models. We extend
previous work in image denoising [MIGYM15] with a real-time
linear model estimation that considers pixel history to reduce tem-
poral flicker. Next, we define pixel history linear models (PHLM),
how they represent the history of a pixel, and how they are used
to reduce flickering in the final shading values. We define the pixel
history for a given input pixel yi, as the linear model located at a
pixel i in the current frame, and we approximate its shading value
using the following linear regression:

f̂i = β
T
i xi, i = 1, . . . ,d (2)

where βi are the linear model coefficients, and xi are the input pre-
dictor variables (i.e., some function of the input color yi). The di-
mension d ≡ |β|, will correspond with the number of additional
features selected as input for the linear models. In our framework,
we store the two main components of these linear models: βi, a vec-
tor of d coefficients, βi ∈ R; and the inverse covariance matrix for
those coefficients Pi ∈ Rd×d . With PHLM the history of a pixel at
a given frame t will be represented by βi(t) and Pi(t).

Pixel shading prediction. At each pixel i in the image, we approx-
imate temporal shading changes over time with a linear function.
As we previously outlined in Sec. 3, linear models result interest-
ing not only because they can compactly represent pixel history, but
more importantly, they can predict the output shading values given
the right input predictor variables. We define the input predictor
variables xi of our linear models as:

xi = [1,zi] , (3)

where 1 and zi are, respectively, estimates of the intercept term and
the linear model slopes (i.e., first derivatives). The predicted output
shading for a pixel i at frame t, is obtained using the following
simplified linear model equation:

fi ≈ f̂i = β
T
i xi. (4)

To increase the quality of these predictions, additional features
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zi can be introduced as part of the predictor variables. In our case,
given the constrained real-time scenario, we need to balance the
number of additional features to keep small our model representa-
tion footprint. While our models can use any arbitrary feature, we
can not use G-buffer features directly (e.g., depth or normals) as
they may contain lots of flickering noise given the small number of
samples. Therefore, we propose a different feature to remove tem-
poral flicker, based on the low frequency components of the input
images (See Sec. 5.1).

Pixel history update. An important aspect of working with history
linear models is how to update the linear model representation us-
ing current signal measurements y(t), i.e. the image resulting from
rasterization rendering. When updating a linear model, one of the
complex problems resides in how to weight the amount of input
signal to use. This is somehow similar to the problem of setting
the convergence factor α when working with exponential history
buffers. When updating a linear model at a frame t, the key idea is
to use the residual error of our predictions as the amount of update
to do using the current image y(t). Ideally, for a given pixel i, we
would compute that error by using the values of the ground truth
image fi, and denote the error by ξi(t) =

∥∥ fi(t)− f̂i(t)
∥∥

2. Because
the ground truth image is not available, we need to estimate this
error as ξ̂i(t), the error that our model is doing, prior to its update,
when predicting the image at frame t. We estimate this error by us-
ing the pixel shading value yi(t) as the most updated measurement
available in the place of the ground truth:

ξ̂i(t) =
∥∥∥yi(t)−β

T
i (t−1)xi(t)

∥∥∥
2
, (5)

where x(t) can be any arbitrary feature computed after knowing
y(t). Notice that, even if y(t) is already known at frame t, we are in-
terested in knowing how much error there is with our non-updated
model. The main idea behind it is that the new model coefficients
β(t) should minimize the predicted error. By using the predicted
error vector, êi(t) = yi(t)−β

T
i (t− 1)xi(t), as residual in the up-

date stage, we expect to reduce predicted errors in the future. More
formally, what we propose is to use a recursive least squares (RLS)
fitting algorithm [LS87,MIGYM15] to update the linear model co-
efficients as follows:

Qi(t) =
Pi(t−1)xi(t)

λ+xT
i (t)Pi(t−1)xi(t)

,

βi(t) = βi(t−1)+Qi(t)êi(t), (6)

where λ is a weight to decrease the importance of previous frames
values. This is typically fixed to a value near one, we used λ =
0.998 as widely used in real-time tracking systems [DLHSV08].
The inverse covariance matrix P can be incrementally updated by
RLS using the following recursive equation:

Pi(t) = λ
−1

(
Pi(t−1)−Qi(t)xT

i (t)Pi(t−1)
)
, (7)

which fortunately avoids any costly matrix inversion operation.

5. Our Temporal Filtering Method

In this section we introduce a novel filtering algorithm to increase
the temporal coherence of image sequences rendered in real-time
by rasterization graphics hardware. The key idea is to produce fi-

nal filtered images from linear model predictions as introduced in
Eq. 4. The same equation can be rewritten for a specific frame t as:

fi(t)≈ f̂i(t) = β
T
i (t)xi(t). (8)

First, we will explain how to provide a robust feature xi for tem-
poral denoising (See Sec. 5.1). Next, we will introduce our filtering
algorithm based on reprojecting PHLM over time and their selec-
tive update according to a given input image at the current frame t
(See Sec. 5.2). Our algorithm uses the updated state of PHLM to
predict the final output image f̂ (t).

5.1. Designing a Robust Temporal Feature

As we already introduced in Sec.4, we need to design a robust tem-
poral feature z as part of our input predictor x. The chosen feature
will determine the behavior of our PHLM. There are two basic
properties that a good feature for denoising should have: first, being
free of noise, particularly the type of noise that we want to remove,
i.e. temporal variance in our case; second, having a high correlation
with the current input image. We propose to use an image feature
resulting from the online accumulation, supported by an exponen-
tial buffer (Eq. 1), of the low frequency color components in the
input images. This is an effective way of removing flicker from an
image sequence at the cost of creating some bias error. Note that we
will use this feature buffer just to drive the predictions of our linear
models, and not to create the final output images by itself. There-
fore, we can accept some degree of overblur in this feature buffer,
as the main objective at this point is to just reduce the temporal
variance introduced by the flickering effect. Later on, the online
RLS will be in charge of correcting the introduced bias error by
automatically adjusting PHLM predictions using the given input.

For the online temporal feature accumulation, we use a per-pixel
convergence factor α (See Eq. 1) that takes its values from a heuris-
tic rule based on reported sensitivity of the human visual system to
luminance variations [Bar99]. Normally, our method operates in
RGB colorspace for error estimation purposes. However, there is
an exception when accumulating our temporal feature over time.
To compute convergence factors based on contrast sensitivity, we
transform RGB samples into luminance values, using the YCgCo
colorspace. Perceptual heuristics based on luminance values have
been successfully employed to reduce temporal flicker in previous
antialiasing methods [Mal12,Kar14]. However, as this feature acts
simply as guidance for our linear models, alternative accumulation
strategies could be employed interchangeably. In practice, for a
given pixel i, we compute αi = φ(vi, li)/(li +∆i(Y )) , where vi is
the velocity in screenspace and ∆i(Y ) is the magnitude of lumi-
nance variation in the neighborhood of pixel i. The variable li is
the minimum distance between the luminance value for the pixel i
in the accumulated feature image and the range of luminance de-
scribed by ∆i(Y ). The function φ is defined as φ(vi, li) = al2

i +bvil3
i ,

where a and b are constant parameters. In all our tests, we have used
a = 0.125 and b = 0.25, as they proved to work well for all our
tested scenarios and were provided in the existing code by authors.
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5.2. Main Filtering Algorithm

This section describes our temporal filtering algorithm for which
we provide pseudocode in Alg. 1. The algorithm uses the defined
temporal feature z and the velocity information v, required to ob-
tain new pixel coordinates q, resulting from an image-based tempo-
ral reprojection method, q = π(v). Our filtering framework is gen-
eral and, therefore, it can use different temporal reprojection tech-
niques [SYM∗12].

Algorithm 1 Our Temporal Filter.
1: procedure TEMPORAL-FILTERING(y(t), z(t), v(t))
2: for all i ∈Ω do
3: vi←Velocity at pixel i
4: zi←Feature at pixel i
5: xi← [1,zi]
6: q← π(vi)
7: if q /∈Ω then
8: q← i
9: Reset(βi,Pi)← yi

10: else
11: βi← βq;Pi← Pq

12: f̂i← β
T
i xi

13: Conv(Ωi)← Convex Hull in Ω
3×3
i

14: rayori← f̂i;raydir← (yi− f̂i)
15: rayhit ← ray.intersect(Conv(Ωi))
16: if f̂i /∈Conv(Ωi) then
17: f̂i← rayori + rayhit × raydir
18: Reset(βi,Pi)← f̂i
19: f̂i← β

T
i xi

20: êi← (yi− f̂i)
21: Update(βi,Pi, êi)
22: f̂i← β

T
i xi

Pixel history reprojection. For a given position i ∈ Ω, our algo-
rithm will obtain the pixel coordinates q resulting from the repro-
jection method using the information in vi, that is q = π(vi). As a
special case, when our reprojection falls outside the image coordi-
nates space q /∈ Ω, the linear model is reset to the input shading
value yi(t). When q ∈ Ω, we can reuse the linear model placed at
pixel q in frame t− 1, and reproject it to pixel i at frame t. In both
cases our method will be ready to predict an initial guess of the
output color. First, we need to update the input predictor variable
by multiplying the current feature xi = [1,zi] with the linear model
coefficients: f̂i(t)← β

T
i (t)xi(t). Note that βi contains initial values

from t−1 until the model will be updated to the final state for t.

Pixel history correction. Next, our method performs a safety
check for our initial prediction f̂i(t). Intuitively, we would like to
know if our initial prediction is close enough to the input values
distributed around yi(t). In general, this can be known by testing
whether f̂i(t) ∈Conv(Ωi), where Conv(Ωi) is the convex hull in a
given colorspace (e.g. RGB or YCgCo) of the input shading values
around their local neighborhood. Computing an accurate convex
hull for each pixel i can be extremely costly, and thus we use an
axis aligned bounding box as its approximation in Ω

3×3
i .

At this stage, if our prediction f̂i(t) is inside this colorspace hull

Conv(Ωi), our algorithm will consider our prediction valid. In this
case, our method will simply estimate the predicted error vector
êi, and use it to update our linear model with values from frame
(t− 1). Finally, the method predicts the final output using the new
model coefficients β

T
i (t).

On the other hand, when our initial prediction is not considered a
good guess, i.e. f̂i(t) /∈Conv(Ωi), our algorithm needs to refine this
prediction. In this case, we propose to apply a neighborhood clamp-
ing [Mal12, FKS16], adapted to our linear models. For the linear
model approach, replacing the history color would correspond to
resetting a linear model with a specific color value. After this, we
can proceed normally, estimating the new predicted error vector
êi, using that estimate to update our linear models, and predicting
the final output value f̂i(t). Challenging cases appear for zoom-in
camera movements, where linear models covering subpixel details
can be reprojected into wider pixel areas. Thanks to our error es-
timation, linear model predictions are immediately corrected using
the current rasterized input y, reducing excessive blur introduced in
the reprojection.

Special case with static scenes. In this scenario v = ∅, therefore
our reprojection function π(v) is an identity function which gives
as result exactly the same pixel coordinates π(vi) = i. Inspired by
previous temporal reprojection techniques [YNS∗09], our method
uses a jittered sampling pattern and weighted moving average ac-
cumulation algorithm to converge towards infinite supersampling.

6. Implementation Details

We have implemented our temporal filtering method using CUDA
and used one linear model per pixel for all the tested benchmarks.
As temporal reprojection technique, we have implemented the re-
verse reprojection scheme as described in Nehab et al. [NSL∗07].

Reset of a linear model to specific values. When the reprojection
π(v) falls out of the screen or when our linear model predictions f̂
are far from the current input y, we need to reset the models to some
specific values, either using the input signal y or some result of the
neighborhood clamping (See Sec. 5.2). Resetting linear models at
pixels in the screen border has a minor visual impact. Potential tem-
poral artifacts reintroduced can be minimized, since our temporal
feature stabilizes linear models using neighbor pixel information.

Initialization of the temporal filter. Our filter is initialized in
the first frame using the input image information y(t). For a linear
model at pixel i, we set all coefficients multiplying the interceptor
term to βi(t) = yi(t) and the rest are cleared to zeroes. For the in-
verse covariance matrix P, we set all elements to zeroes except the
diagonal terms which are initialized with a relatively high value,
e.g. 1000. Such value indicates the linear model to weight more the
current input signal with respect to the pixel history. Our temporal
feature z is initialized with the input image, z(0) = y(0).

Linear models storage. Our linear models input predictor xi uses
a constant intercept term in addition to the temporal feature z (See
Eq. 3). Because in practice our temporal feature can be encoded
to separate RGB channels, the final dimension d needed for the
input predictor variables is 4. Specifically, one dimension is for the
interceptor term and other three are for the temporal feature. The
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Method Spp Time Avg. PSNR (dB)
(ms) OPENWORLD SPACELAND

NON-AA 1 - 23.45 25.98
FXAA 1 0.23 23.61 26.98
UE4-TAA 1 0.40 21.46 24.78
PHLM (ours) 1 7 23.29 26.11
REFERENCE 16 >1000 - -

Table 2: Numerical comparison of different methods in addition to
the visual results (1920×1080p). Image quality is measured across
the whole sequences as average PSNR (dB). Execution times in ms
are reported for a commercial implementation (FXAA and UE4-
TAA) and our GPU implementation of PHLM.

number of coefficients per pixel for β is 3× d = 12, and for the
inverse covariance matrix P, d×d = 16 elements.

Our GPU implementation. We have implemented a GPU version
of our general filtering framework using NVidia CUDA 7.5. After
computing our temporal feature z in one kernel, our main kernel
uses it to produce the final output f̂ by using one thread for each
pixel in the output buffer. Our linear models are stored in GPU
texture memory, and thus we can exploit texture cache and hard-
ware bilinear interpolation. We have exploited shared memory to
facilitate access to pixel neighbors.

7. Results and Discussion

Flicker is a temporal artifact, perceived as an abrupt change in
the reconstructed pixel shading for the same area in consecutive
frames. It is observed subjectively based on the temporal con-
trast sensitivity function of each individual [Bar99]. Visual com-
parisons have shown so far, that the temporal flicker is more no-
ticeable than spatial aliasing artifacts, and therefore, small amounts
of overblurring are often perceived as more acceptable than the
flickering effect [YBS08]. Perceptual metrics like SSIM or MS-
SSIM are focused on a per-frame analysis, not covering changes
over time which are essential for a flicker measurement. Some tem-
poral metrics have been proposed, mostly in the context of block-
based video encoding [AČMS10,YBS08] and some covering video
with depth [ZY10], however there is not a well established metric
for temporal coherence in rendering. Therefore, we have preferred
to rely on visual comparisons to assess the level of flickering. We
accompany this paper with a supplementary video to show differ-
ences between the compared methods. Moreover, we provide per-
frame PSNR with respect to the reference as a quantitative measure,
especially for cases where visual quality may appear similar. It is
important to note that temporal filters always produce some degree
of PSNR drop in exchange for removing flicker. We have used the
same GPU implementation of our method for all experiments, run-
ning on a 3.40 GHz i7 Intel processor and an NVidia GTX 980
GPU with 4 GB of dedicated video memory.

7.1. Comparison to State-of-the-art Antialiasing Filters

We compare our method with state-of-the-art techniques for real-
time antialiasing. We choose high quality temporal supersam-

pling [Kar14], which is the current Unreal Engine 4 temporal an-
tialising (UE4-TAA), because the code is publicly available and
it implements similar concepts to state-of-the-art temporal filters
(e.g. NVidia TXAA or MFAA). Also for a reference, we pro-
vide comparisons with a spatial filter FXAA, which is a GPU
optimized implementation of morphological antialiasing known
for producing similar results to 4XMSAA supersampling algo-
rithms [Lot11]. We demonstrate our filtering results using UE4
rendering system [Epi]. We create two different scenes, OPEN-
WORLD and SPACELAND (See Fig. 2), both rendered at full HD
resolution (1920× 1080p). All our camera animations use non-
linear motions, instead of simple panning or rotation. The corre-
sponding reference images have been rendered using 16 spp at
4-times HD resolution (7680× 4320p) and downsampled using a
Lanczos resampling filter.

In the OPENWORLD scene, we present a complex foliage sce-
nario that creates challenging temporal aliasing artifacts. As it
can be seen in the supplementary video, both UE4-TAA and
our PHLM, provide better temporal coherence when compared to
FXAA. This result serves also as an example of the low correlation
of PSNR with the visual quality perceived over time (See Fig. 2). A
detailed inspection of this sequence also reveals that UE4-TAA has
often problems with disoccluded objects, creating the aforemen-
tioned ghosting artifacts. This mostly happens whenever an object
with similar depth or color, e.g. leaves and branches, are disoc-
cluded (See ghost contours in Fig. 2 OPENWORLD UE4-TAA).
The reader may also notice at close examination, that UE4-TAA
produces a bit blurrier results when compared to our method. This
observation is supported by higher PSNR values, 1.8 dB in average,
obtained by our method with respect to UE4-TAA in this sequence
(See Fig. 3).

The SPACELAND scene contains fine geometric details, an-
imated lighting, reflections and shadows. We have observed a
similar trend to OPENWORLD in terms of temporal coherence
(FXAA with high PSNR but visually strong flicker), ghosting arti-
facts (See Fig. 1 and Fig. 2 UE4-TAA) and PSNR drop for UE4-
TAA (See Fig. 4). Our method does not need to maintain separate
reflection or shadow rendering layers, instead, all the shading ef-
fects are integrated as part of the input shading to denoise. This
general behavior makes possible to automatically denoise many
different effects at once and it suits particularly well for effects po-
tentially creating temporal artifacts (e.g. ambient occlusion). For
dynamic shading over time, e.g. reflections, our method showed
almost noise free results (See Fig. 6). We also report in Table 2 av-
erage PSNR across the whole sequences and execution times for
the different methods. The average execution time for PHLM is
near 7 ms, of which 2.4 ms are used to compute the temporal fea-
ture, 4.2 ms to run the main filtering algorithm and the remaining
time is spent in thread synchronization and memory copies. In our
supplementary video, we show equal time comparisons between
FXAA with approximately 2 spp and our method with 1 spp. The
results of FXAA still show more flickering than our results. More-
over, our method can be coupled with existing AA methods to pro-
duce better results.
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(a) Non-AA 
26.67 dB

(c) UE4-TAA
24.72 dB

(d) Ours
26.94 dB

SpaceLand Scene (Ours, 1 spp) (e) Reference
16 spp

(b) FXAA
28.31 dB

(a) Non-AA 
23.15 dB

(c) UE4-TAA
21.31 dB

(d) Ours
22.94 dB

OpenWorld Scene (Ours, 1 spp) (e) Reference
16 spp

(b) FXAA
23.32 dB

Figure 2: Visual comparison of different antialiasing methods on the OPENWORLD and SPACELAND scenes using UE4 rendering frame-
work. Full frames #356 for OPENWORLD and #487 for SPACELAND are shown together with insets zoomed on details. PSNR for the whole
image is reported for all methods which take Non-AA as the input.
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Figure 3: Per-frame PSNR across the OPENWORLD sequence for
different antialiasing methods. Vertical line at the frame #356 de-
notes Fig. 2 (top row).

7.2. Qualitative Evaluation for Different Rendering Strategies

In this section, we study the behavior of our filtering method
with different strategies for rendering the input image sequences.
We have used a custom OpenGL deferred rendering framework
with two different sequences, named SANMIGUEL-BALCONY and
SANMIGUEL-CHAIRS. These scenes present challenging geomet-
ric details on balcony and chairs, specular aliasing on tree leaves
and plants, and high-frequency texture detail on floor and walls.
Both sequences have been rendered at 1024×576p. Reference im-

15
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27
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33

1 50 99 148 197 246 295 344 393 442 491 540 589

Non-AA Input FXAA [Lottes 2011]PSNR (dB) UE4-TAA [Karis 2014] Ours (PHLM)

Frame Number

Figure 4: Per-frame PSNR across the SPACELAND sequence
for different antialiasing methods. Vertical lines at the frames
#320,487 denote Fig. 1 and Fig. 2 (bottom row) respectively.

ages have been computed using 128 spp. Our goal is to observe how
the results are affected by increasing flicker in the input data. We
demonstrate our method with conventional hardware texture filter-
ing (×16 high-quality anisotropic mipmaps), as this is a widely
adopted configuration for rasterization frameworks. Anisotropic
mipmaps are very efficient in removing texture aliasing, however
their use may produce sightly overblurred results (e.g. doorway
stone texture in Fig. 5 SANMIGUEL-BALCONY insets). While us-
ing a lower level of the mipmap texture may solve the issue, it may
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Figure 5: Visual comparison for images generated with different rendering strategies on the SANMIGUEL-BALCONY and SANMIGUEL-
CHAIRS scenes with an OpenGL rendering framework. We recommend the supplementary video to observe flicker reduction.

(c) Ours(a) FXAA (d) Reference(b) UE4-TAASpaceLand

Figure 6: Visual comparison for dynamic shading effects. We show
results for a reflection effect on the spaceship surface.

also reintroduce flicker as a side effect. We have also tested our
method in the presence of severe undersampling by altering the
texture sampling mode (e.g. no mipmaps). Moreover, we provide
further comparisons for increasing numbers of samples (1 and 4
spp) for all cases. Our experiments show that PHLM consistently
improves temporal coherence for all input sequences, using 1 or 4
spp, with or without hardware texture mipmaps (See Fig. 5). In fact,
a good behavior is observed even when filtering very noisy input (4
spp using no mipmaps). As it can be seen in Fig. 5 SANMIGUEL-
BALCONY, our method produces slightly sharper results without
anisotropic mipmaps. For this configuration, the output is tempo-
rally quite coherent while the complete lack of texture prefiltering is
not noticeable in the image quality (See the supplementary video).
We believe this is an interesting result showing the robustness of
our method against flicker.

8. Conclusions and Future Work

In this paper, we have proposed a new real-time temporal filter-
ing and antialiasing method for rasterization graphics pipelines. We
have proposed a general spatio-temporal filtering framework based
on a fast RLS algorithm to track temporal shading changes using
linear models. Our method predicts per-pixel variations of the shad-
ing function between consecutive frames and combines temporal
reprojection with spatial predictions in order to reconstruct tempo-
rally coherent pixel shading. Our approach consistently increases
the temporal coherence of input images and naturally addresses
different sources of potential aliasing artifacts, i.e. spatial and tem-
poral undersamplings. We have also proposed Pixel History Linear
Models (PHLM), a new concept for modeling, storing and tracking
the history of pixel shading values using linear models. By tracking
pixel shading values produced by the rasterization hardware in real-
time, PHLM drastically reduces ghosting artifacts and significantly
decreases the overblur produced by previous real-time temporal de-
flickering filters.

As a future work, we would like to further optimize our imple-
mentation with better G-buffer layouts, better use of GPU memory
hierarchy and exploring strategies for linear model data compres-
sion or frameless model updates [IGGM10]. A second research
direction for future work is to study the potential benefits of cou-
pling PHLM with different strategies for sampling and rendering
to further reduce the levels of overblur. Finally, another interesting
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direction will be to extend PHLM with temporal jittering during
camera motions.
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