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Abstract. Object detection and pose estimation are interdependent
problems in computer vision. Many past works decouple these problems,
either by discretizing the continuous pose and training pose-specific ob-
ject detectors, or by building pose estimators on top of detector outputs.
In this paper, we propose a structured kernel machine approach to treat
object detection and pose estimation jointly in a mutually benificial way.
In our formulation, a unified, continuously parameterized, discriminative
appearance model is learned over the entire pose space. We propose a
cascaded discrete-continuous algorithm for efficient inference, and give
effective online constraint generation strategies for learning our model
using structural SVMs. On three standard benchmarks, our method per-
forms better than, or on par with, state-of-the-art methods in the com-
bined task of object detection and pose estimation.
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1 Introduction

Fig. 1: Three examples of joint object detection and pose estimation.

We focus on the combined problems of object detection and pose estimation.
Given an image x containing some object, we seek to localize the object in x,
while estimating its pose at the same time. We can encode the prediction output
as y = (B, θ), where B is a structured output indicating the object’s location,
and θ is a real-valued vector indicating the object’s pose. Fig. 1 shows three
examples; in these examples, B is a rectangular bounding box for the detected
object, while θ gives 1D or 2D angles specifying the object’s orientation.

Object detection and pose estimation are interdependent problems, and it is
challenging to simultaneously infer both the object’s location and pose in un-
controlled images. Many past works have broken this problem into two stages
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to simplify the situation. Some approaches, e.g. [1–3], discretize the pose space
and then learn pose-specific detectors. While having considerable success, the
complexity of such approaches scales with the granularity of the discretization
of the pose space, and generalization to continuous pose estimation is difficult.
On the other hand, regression methods, e.g. [4–6], produce continuous pose esti-
mates given detection results as input. However, the outputs from actual object
detectors in practice are often not optimized for successive stages, resulting in
suboptimal pose estimation performance.

In contrast, we argue that object detection and pose estimation should be
solved jointly in a mutually beneficial way. We also argue that object pose should
not be treated as a discrete variable: the continuous pose space usually has a
smooth underlying structure that can be lost in discretization. We thus solve
the combined problem within a unified structured prediction framework, simul-
taneously estimating the object’s location and pose.

We take a kernel machine approach, where localization and pose are jointly
modeled using a product of two kernels: a structural kernel for localization, and
a pose kernel for continuous parameterization. In order to solve the associated
nonconvex inference problem, we devise a cascaded inference algorithm that ef-
ficiently generates diverse proposals to explore the search space. For learning
our model using the structural SVM, we propose a mini-batch online learning
algorithm with simple but effective constraint generation strategies, which sig-
nificantly decreases training time. To summarize, our contributions are:

1. We formulate object detection and continuous pose estimation jointly as
a structured prediction problem. Our method learns a single, continuously
parameterized, object appearance model over the entire pose space.

2. We design a cascaded discrete-continuous inference algorithm to effectively
optimize a nonconvex objective involving a complicated search space.

3. We give an online mini-batch constraint generation strategy that can signif-
icantly speed up the training of structural SVMs.

In experiments with three standard benchmarks in the combined task of
object detection and pose estimation, our method performs better than, or on
par with, state-of-the-art methods that are typically more complicated.

2 Related Work

Multi-view object detection is an extensively studied problem. Representative
works include [1, 7, 8]. These works predominantly treat the object pose or view-
point estimation problem as a multiclass classification problem, by discretizing
the viewsphere and learning view-specific object detectors.

More recently, in light of the success of the Deformable Part Model (DPM)
[9] in generic object detection, view-based DPM mixture models have been in-
troduced [2, 3, 10] to train a collection of view-specific DPMs, or even provide
limited 3D reasoning [8, 11–13]. The learning of different view-specific DPMs in
such works is loosely coupled by either implicit latent variable assignments [2, 3]
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or explicit part sharing [10–12]. However, all these models inherently deal with
discretized views, and strongly coupling part appearance across views is difficult
(e.g. via expensive part selection mechanisms). While both [11] and [12] claim to
learn object models on a continuous viewsphere (in [12] leveraging high-quality
3D CAD models), both works in practice resort to fine discretizations of the
pose space. In contrast, our approach continuously models the pose space by
means of continuous parameterization of object detectors, and tightly couples
the learning across the entire space.

For the standalone problem of object pose estimation, various regression
methods [4–6], also including methods relying on statistical manifold modeling
[14, 15], have been proposed. While these methods are able to perform continuous
pose estimation, they assume that the object localization is given. In practice,
clean object foreground masks are hard to come by, and outputs from actual
object detectors are rarely optimized for the subsequent regression stage. This
mismatch ultimately degrades the pose estimation performance of regression
methods. In contrast, we avoid this mismatch by learning a unified model that
performs detection and pose estimation jointly.

A closely related work to ours is Yuan et al. [16], who learn “parameter sensi-
tive detectors” for binary classification. Pose parameterization in [16] is achieved
by multiplying a pose kernel Kθ(θ, θ

′) with the original kernel, and inference is
performed by discretizing the pose and testing pose-specific classifiers. While
we also use a multiplicative decomposition of the joint kernel, we formulate the
problem in the structured-output domain, and produce continuous solutions for
pose during inference.

Ionescu et al. [17] propose a structural SVM approach for joint object local-
ization and continuous state estimation, also using a multiplicative joint kernel.
Inference is performed in an alternating fashion where localization is initialized
using a generic object detector. However, single initialization is suboptimal for
our nonconvex objective; instead, our cascaded inference efficiently generates di-
verse initializations to better explore the search space. Also, we propose novel
online constraint generation strategies for structural SVMs. The resulting online
algorithm significantly outperforms the cutting plane method used in [17].

3 Mathematical Formulation

Suppose we are given a training set of n pairs {(xi, yi)}ni=1 where each example
xi ∈ X is a training image, and each label yi belongs to a structured output
space Y. We focus on predicting bounding boxes and viewing angles, and take
the structured output space Y to be <4× [0, 2π)d, where d ≤ 3 is the number of
angles (a complete parameterization of the viewsphere needs 3 angles).

Our goal is to learn a scoring function f : X × Y → < such that the label
y assigned to x maximizes f(x, y). We parameterize f as f(x, y) = 〈w, Ψ(x, y)〉,
where w is a parameter vector, and Ψ(x, y) is a joint feature map. The inner
product 〈·, ·〉 is defined in a reproducing kernel Hilbert space (RKHS), instanti-
ated by a joint kernel function K: K(x, y, x′, y′) = 〈Ψ(x, y), Ψ(x′, y′)〉.



4 Kun He, Leonid Sigal, Stan Sclaroff

We intend to learn the scoring function f via regularized loss minimization.
Assuming that the conditions of the Representer Theorem [18] are met, f has the
following implicit representation, where V is the index set of “support vectors”
{(xj , yj)}, and αj are scalars:

f(x, y) = 〈w, Ψ(x, y)〉 =
∑
j∈V

αjK(x, y, xj , yj). (1)

It is key to design the joint kernel K for our task. Given two input-output
pairs (x, (B, θ)) and (x′, (B′, θ′)), we define K to be the product of two valid
Mercer kernels Ks and Kp:

K(x, y, x′, y′) = Ks(φ(x,B), φ(x′, B′)) ·Kp(θ, θ
′). (2)

Here, φ(x,B) represents the feature vector extracted from the image region inside
bounding box B in image x. The structural kernel Ks measures the similarity
between two such feature vectors. The pose kernel Kp measures the similarity
between poses θ and θ′. The joint kernel achieves a high value only for input-
output pairs with similar inputs and similar outputs.

In this work, we are interested in the case where Ks is linear, i.e. Ks(φ, φ
′) =

φTφ′, for efficiency considerations. On the other hand, in order forKp to smoothly
capture the complex effects of varying pose, we choose to use a nonlinear RBF
kernel:Kp(θ, θ

′) = exp
(
−γ d(θ, θ′)2

)
where d(θ, θ′) is a distance measure, e.g. Eu-

clidean distance or geodesic distance. Then, given image x and model w, the
inference problem in our model becomes:

max
y∈Y
〈w, Ψ(x, y)〉 = max

(B,θ)∈Y

∑
j∈V

αjφ(x,B)Tφ(xi, Bj) exp
(
−γ d(θ, θj)

2
)
. (3)

This is a complicated nonconvex optimization problem. In the next section, we
will describe a cascaded solution to optimizing Eq.(3).

4 Cascaded Inference

Solving Eq.(3) is difficult: there are a large number of bounding boxes B in an
image, and the objective is nonconvex in θ whenever there is a negative αj .
However, if either B or θ is fixed, the problem becomes significantly simplified
and better studied: given B, θ can be estimated by regression; given θ, B can be
obtained by a θ-specific detector. Both can be seen as extreme cases of a general
cascaded scheme: first prune the search space, and then refine the answer.

Inspired by the reasoning above, we also propose to use a two-step cascade
consisting of a pruning step and a refining step. However, we shall take the
middle ground and keep multiple candidates for both B and θ after the first
step, in order to avoid problems associated with the two extreme approaches, as
discussed in Section 2.

Specifically, the pruning step returns a reduced search space Ỹ = {(Bk, Θk)}Kk=1,
where each pair consists of a candidate bounding box Bk and an associated range
Θk of plausible poses, e.g. Θk = {θ | d(θ, θk) < δ} for some θk and δ. The refining
step performs further optimization and returns a final solution pair (B∗, θ∗).



Parameterizing Object Detectors in the Continuous Pose Space 5

4.1 Refining step

Barring a somewhat unconventional ordering, we shall first study the problem
of refinement, in order to highlight desired properties for the pruning step.
Assume for now that Ỹ is given, and for ∀k ∈ {1, . . . ,K},∀j ∈ V, denote
ηjk = αjφ(xj , Bk)Tφ(x,Bj). Then, the problem of refinement can be cast as:

max
k

max
θ∈Θk

∑
j∈V

ηjk exp
(
−γ d(θ, θj)

2
)
. (4)

We employ a gradient ascent approach for optimizing Eq.(4) with respect to
θ, as the use of a smoothly differentiable pose kernel permits the use of gradient
algorithms, e.g. L-BFGS. For each Bk, we optimize over θ ∈ Θk to find its
matching pose θk, and finally maximize over k to pick the best-scoring pair
(B∗, θ∗).

However, as Eq.(4) still is nonconvex in general, Θk’s should be restricted
in size so that there are few local optima. Also, the candidate bounding boxes
{Bk} should contain diverse elements so as to explore the search space. Lastly, K
necessarily needs to be small since continuous optimization is a relatively costly
operation. To summarize, the pruning step should:

– efficiently generate diverse Bk’s to explore the solution space,
– produce small Θk’s to reduce the number of local optima, and
– produce a small K to reduce the number of continuous refinements.

4.2 Pruning step

Now we are ready to propose our pruning strategy: uniformly divide the θ space
into M intervals {Θ1, . . . , ΘM}, specify a “seed pose” {θ1, . . . , θM} within each
interval (e.g. the geometric centers), and sample pose-specific detectors from the
model to generate proposals for B.

Since our method learns a continuously parameterized object appearance
model Eq.(1) over the entire pose space, we can efficiently sample pose-specific
detectors from the unified model. For any fixed θ, our model reduces to a single
linear classifier wθ (this observation is also made by [16]):

wθ =
∑
j∈V

αj exp
(
−γ d(θ, θj)

2
)
φ(xj , Bj), m = 1, . . . ,M. (5)

Our strategy satisfies all the desired properties: we can control the size of
the intervals to limit the number of local optima within them; we can leverage
existing techniques to efficiently evaluate the classifiers and generate bounding
box proposals; and it is easy to control the number of generated proposals.

Given detectors {w1, . . . ,wM}, we reuse existing techniques, for example
sliding windows, to generate diverse bounding box proposals. Then, the refining
step performs gradient-based continuous optimization using the seed poses as
starting points. If the intervals are relatively small, single stage refinement is
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sufficient (we observe this to be the case in practice); coarse sampling can be
handled by cascades where the solution is refined in a hierarchical fashion: first
refining Θ to a smaller interval, constructing a better tuned detector specific to
Θ, refining localization using this new detector, etc.

We emphasize that the pose-specific detectors are sampled from the original
unified model by fixing θ; thus, their scores are directly comparable, since the
scores are essentially given by the unified model. This contrasts with many 1-vs-
all methods, where the classifier scores for different classes may be uncalibrated.

4.3 Generating Diverse Proposals: Branch-and-Bound

With the M pose-specific detectors sampled from our model, bouding box pro-
posals can be generated typically in time that is linear in M . We further speed
this up via a branch-and-bound algorithm that is capable of generating diverse
proposals in sublinear time. Our algorithm generalizes the Efficient Subwindow
Search (ESS) [19] by Lampert et al. and operates on an augmented state space,
encoding both object location and pose.

The input to our algorithm are the pose-specific detectors {w1,w2, . . . ,wM}
sampled from our unified model. Sets of candidate solutions, or states, are sorted
in a priority queue Q according to a merit function indicating their promising-
ness. The algorithm iterates by splitting the most promising state in Q and
inserting the resulting states back into Q, until it gets a singleton state. The
amortized time complexity for branch-and-bound is on the order of O(log2M).

State representation: A state is parameterized as s = (w, h, x0, x1, y0, y1, θ),
where w and h encode the bounding box size, x0 and x1 bound the x coordinate
of its upper-left corner, and y0 and y1 bound the y coordinate. θ is one of
{θ1, . . . , θM}. For each combination of the first six parameters, there are M
unique states containing different values of θ.

Bounding classifier scores: If state s contains pose θm, then the corre-
sponding classifier wm is used to generate bounds for the set of bounding boxes
contained in s. Once wm is chosen, the scenario reduces to that of bounding the
score of a single linear classifier over a set of rectangular regions. In this case,
Lampert et al. [19] showed that tight bounds can be constructed for Bag-of-
Words (BOW) features. We refer interested readers to [19] for the full derivation
of the bounding techniques.

Diverse solutions: Instead of terminating the algorithm after obtaining the
first singleton state, we store the state in an output buffer and continue the
algorithm, until K singleton states have been returned (obtaining top-K solu-
tions) or until the score is below a threshold (obtaining all “good” solutions).
Non-maximum suppression is used to enforce diversity.

5 Learning

For learning our unified model for joint object detection and continuous pose
estimation within a kernel machine framework, we use the structural SVM [20]
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to learn a large-margin model w. The structural SVM is formulated as:

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (6)

s.t. 〈w, Ψ(xi, yi)〉−〈w, Ψ(xi, ȳi)〉 ≥ ∆(yi, ȳi)− ξi, ∀i,∀ȳi ∈ Y, (7)

where the loss term ∆(yi, ȳi) encodes the penalty of predicting ȳi instead of yi.
To jointly handle object localization and pose, we use a combined loss:

∆(yi, y) = ∆((Bi, θi), (B, θ)) = β∆loc(Bi, B) + (1− β)∆pose(θi, θ). (8)

The localization loss is based on bounding box overlap [21]: ∆loc(B,B
′) = 1 −

Area(B∩B′)
Area(B∪B′) , and pose loss is proportional to angular difference: ∆pose ∝ ∠(θ, θ′).

The structural SVM usually is solved by constraint generation algorithms
such as the cutting plane algorithm [20] or its one-slack reformulation [22]. To
find a violated constraint for training pair (xi, yi), the following loss-augmented
inference problem is solved:

ȳi = arg max
y∈Y

∆(yi, y) + 〈w, Ψ(xi, y)〉 (9)

≈ arg max
B,θm

β∆loc(Bi, B) + (1− β)∆pose(θi, θm) + wT
mφ(x,B). (10)

Eq.(9) has the same structure as the test-time inference problem Eq.(3) and
can also be solved by the two-step cascade. The pruning step Eq.(10) samples
seed poses {θm|m = 1, . . . ,M} and performs branch-and-bound, and then con-
tinuous refinement can be applied. However, we found that fine-sampling poses
(e.g. 16 equally spaced poses for the 1D case) without doing refinement actually
works well in practice.

We briefly describe how to bound the loss term here. Firstly, given state s
and the set B(s) of bounding boxes it contains, ∆loc can be bounded as

∆loc(Bi, B) = 1− Area(Bi ∩B)

Area(Bi ∪B)
≤ 1−

minB∈B(s)Area(Bi ∩B)

maxB∈B(s)Area(Bi ∪B)
, (11)

which can be computed by considering the intersection and union regions of the
set B(s). Secondly, (1−β)∆pose(θi, θm) is in fact a constant in any state, since θm
is fixed. We add this constant to the upper and lower bounds for the localization
loss to get bounds for the overall loss term.

We also generate multiple diverse solutions for the loss-augmented inference,
as this speeds up empirical convergence for structural SVM learning, as shown
in [23]. With branch-and-bound, this can be done in the same fashion as gener-
ating multiple solutions for test-time inference; the diversity of solutions can be
enforced by performing non-maximum suppression on the loss values.

5.1 Online Mini-Batch Algorithm

In learning a continuously parameterized model over the pose space, all train-
ing examples are tightly coupled into a single learning problem. Efficient struc-
tural SVM learning algorithms are needed to keep the complexity of learning



8 Kun He, Leonid Sigal, Stan Sclaroff

manageable. However, cutting plane methods [20, 22], which typically perform
constraint generation over the training set multiple times, are usually slow to
converge in practice. Instead of traversing the training set multiple times and
revisiting examples for which constraints are likely to be satisfied already, we
focus on learning from subsets of “important” examples and generating multiple
diverse constraints per iteration.

We cast the learning problem into an online version by considering mini-
batches of training examples. In iteration t, a subset St is sampled from the
training set, and new constraints are generated only for examples in St. Model
updates can be done using SMO-style dual updates [24, 25]. We then seek ap-
propriate sampling strategies for finding “important” subsets that contribute to
improving the current model. In practice, we consider two strategies: 1) sample
according to the slack variables ξi, and 2) randomly permute the training set
and take sequential mini-batches.

The rationale behind the first strategy is that a large ξi indicates severe
constraint violation and an important example for improving the model. The
second strategy deems the next subset of unseen examples as important. Despite
their simplicity, in our experiments, both strategies enable the online algorithm
to provide a speedup of an order of magnitude over cutting plane methods, while
achieving comparable or better prediction performance.

6 Experiments

We evaluated our method on three publicly available datasets: EPFL Cars [7],
Pointing’04 [26], and 3D Objects [1].

We intend to keep our object appearance models simple so as to cleanly
demonstrate the effects of continuous pose parameterization. Therefore, all of our
appearance models are single rectangular templates, using the linear kernel asKs,
without any notion of mixture components or parts. For pose parameterization,
we use Gaussian RBF kernels as Kp. The RBF bandwidth γ and SVM’s trade-off
parameter C are determined via cross validation. During learning, we weight the
localization and pose losses equally (β = 0.5).

To assess detection performance, we follow the Pascal VOC protocol [21] to
compute the Average Precision (AP) for predicted bounding boxes. For contin-
uous pose estimation, we report the Mean Angular Error (MAE). For complete-
ness, we also quantize our continuous pose estimates into M bins and report the
Mean Precision of Pose Estimation (MPPE), defined as the average along the
diagonal of the M -way confusion matrix in [3].

In all experiments, in addition to comparing with leading methods, we com-
pare to a baseline that learns 1-vs-all SVM classifiers for discretized poses with
the same feature. Each SVM is initially trained using ground truth bounding
boxes associated with the target pose as positive examples, and ground truth
bounding boxes with other poses as negatives. Then hard negative mining is
applied on the training set to iteratively add negative examples and retrain the
SVM until convergence.
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Table 1: Performance comparison on the EPFL Cars dataset [7]. Multi-view methods
using 16 viewpoint bins [3, 12, 27] are listed. Regression methods [4–6] use ground truth
bounding boxes (GT) as input. AP and MPPE: higher is better. MAE: lower is better.
Top two results for each category in bold.

Method Baseline BnB Refined [3] [12]b [27] [6] [5] [4] [15]

AP (%) 88.0 100 100 97 97.5 89.5 GT GT GT GT

MAE◦ 36.7 17.0 15.8 27.2a – – 24.2 31.2 33.1 24.0

Median AE◦ 12.2 8.0 6.2 – 6.9 24.8 – – – –

MPPE (%) 46.8 63.8 64.0 66.1 69.0 – – 66.1c 70.3c 87.8c

a Obtained from direct correspondence with [3]’s authors.
b We cite [12]’s “3D2PM-C Lin” variant with 16 viewpoint bins.
c [4, 5, 15] report percentages of AE < 22.5◦, or 8-bin MPPEs.

(a) (b)

Fig. 2: EPFL Cars results: (a) typical success cases; (b) example errors. Ground truth:
yellow. Detection/pose estimation: green (correct), red (incorrect).

6.1 EPFL Cars Dataset

The EPFL Cars dataset [7] contains 20 different cars with views captured roughly
2◦-3◦ apart on rotating platforms. This dataset has been studied in many pre-
vious works, e.g. [3, 12, 27], and is suitable for studying continuous pose estima-
tion due to its relatively fine-grained and accurate pose annotations. A major
challenge in this dataset is handling the near-180◦ confusions (e.g. front-back,
left-right) or flipping errors, as noted in [7].

Setup. We first extract dense SIFT features from training images and cluster
them into a codebook of 500 visual words using K-means, and construct our
image feature as a 3-level spatial pyramid of visual words, with dimensionality
10500. The LLC encoding scheme of [28] is used, and L2 normalization is applied
to the feature vectors [29].

Following the standard test protocol in [7], we train on the first 10 car in-
stances and test on the remaining 10. At test time, the initial solutions for each
image are obtained using branch-and-bound with M=16 equally spaced seed
poses. We then perform continuous pose refinement and pick the top-scoring
solution, since each image contains exactly one car in EPFL Cars.

Results. Example results are shown in Fig. 2. We report our results both with
respect to initial solutions (BnB) and continuously refined solutions (Refined)
in Table 1, and compare them to competing methods.
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Fig. 3: Results on EPFL Cars. Left: closeup of overlap-recall curves for our method, the
baseline, and a pose-agnostic detector learned with bounding box annotations. Right:
histograms of angular errors for our method, the baseline, and Lopez-Sastre et al. [3].

Our method achieves 100% AP and 15.8◦ MAE, and outperforms all previ-
ous methods that report AP and MAE by a large margin, including regression
methods [4–6] that use ground truth bounding boxes as input. We also achieve
6.2◦ Median Angular Error, which is significantly better than [27]’s 24.8◦ and
comparable to [12]’s 6.9◦ (16 viewpoint bins) and 4.7◦ (36 viewpoint bins). Note
that [12] builds a much richer model by learning 3D part-based models directly
from high-quality CAD models; in contrast, our model is a single part-free 2D
object template, parameterized by pose, and learned on the original training
set. When we quantize our continuous pose estimates into 16 bins, we obtain a
64.0% MPPE, which is comparable to the 69.0% and 66.1% reported by [12] and
[3]. To our knowledge, our method gives the current state-of-the-art results in
detection and continuous pose estimation on EPFL Cars.

To analyze detection results, in Fig. 3 we plot the overlap-recall curve [29].
The lowest overlap with ground truth for our detections is 53%, giving 100%
AP when using the 50% overlap threshold. The 1-vs-all baseline produces a
significantly worse overlap-recall curve, with the lowest overlap being just 14%.
We also compare to a pose-agnostic detector trained using only bounding box
annotations; its learning can be achieved in our formulation by only considering
the localization loss, or setting β = 1 in Eq.(8). This improves the lowest overlap
with ground truth to 23%, but still produces a noticeably worse overlap-recall
curve compared to ours. We thus conclude that incorporating pose information
into the detector helps improve detection performance.

Next, in Fig. 3 we plot the histograms of angular errors for our method, the
1-vs-all baseline, and Lopez-Sastre et al. [3], who learn a mixture of view-specific
DPMs. We report [3]’s result since it gives the previous best performance with
the original training set. The numbers of flipping errors (angular errors of more
than 150◦) for the three methods are: 52 (Ours), 129 (baseline), and 123 ([3]).
We reduce the number of flipping errors in both methods by more than half.
This confirms the benefit of learning a unified model over the pose space.

Online mini-batch learning. We also compared our mini-batch online algo-
rithm against the one-slack cutting plane algorithm [22] in learning our structural
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Fig. 4: Example learning curves from our online algorithm and the one-slack cut-
ting plane algorithm [22] for learning the structural SVM model on EPFL Cars. Left:
detection performance in AP. Right: pose estimation performance in MAE.

SVM model on EPFL Cars. We use the sequential mini-batch sampling strategy
due to its simplicity. The time complexity is measured in passes over training
set, or the average number of loss-augmented inference operations per training
example. Learning curves for both methods are shown in Fig. 4.

Our online algorithm converges after two passes over training set, while the
cutting plane algorithm typically requires 20–30 passes to converge, and to a
worse solution (identical AP, higher MAE). We attribute the fast convergence
of the online algorithm to the more frequent model updates and the ability to
focus on “important” examples. The cutting plane algorithm emphasizes con-
sistently improving the model with respect to the whole training set, but this
may result in 1) increased computational efforts, and 2) the loss of emphasis on
important examples, since their effects can be “averaged out”. Our observations
are consistent with those in the online learning community, e.g. [25].

6.2 Pointing’04 Dataset

Next, we turn to the problem of head pose estimation in the Pointing’04 dataset
[26]. This dataset contains 2790 face images of 15 human subjects, captured
from a total of 93 distinct poses parameterized by two angles (pitch, yaw). The
images all have clean backgrounds and are not challenging for the detection task;
therefore, we only evaluate pose estimation performance by making use of ground
truth bounding boxes, as also done in [5, 6]. The approximately annotated poses
are at least 15◦ apart in Pointing’04

Setup. We use the same features as Hara et al. [6] by cropping out the face
regions from the images and extracting HOG descriptors from three scales, re-
sulting in a 2124 dimensional feature vector. We follow the standard protocol in
[26] and report five-fold cross validation MAEs for pitch and yaw. However, with
five folds the randomness in splitting data was found to be statistically signifi-
cant. We thus tried 10 random five-fold splits, and report the mean and standard
deviation for five-fold MAEs from the 10 trials. The best five-fold MAEs (having
the lowest average) are also reported.

Results. Table 2 summarizes the results. Our method consistently outperforms
the baseline by an average of 2.07◦ and 1.78◦ in pitch and yaw respectively,
which again speaks to the benefit of learning a unified parameterized model.
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Table 2: Head pose estimation performances on the Pointing’04 dataset. Results for
our method (BnB and Refined) are reported from 10 random trials of five-fold cross
validation, in the format of mean±std/best. Top two results for each category in bold.

MAE◦
Baseline BnB Refined KRF[6] [5] kPLS[30] [26]

pitch 6.37±.17 4.30±.16/4.01 5.25±.15/4.95 2.51 6.73 6.61 15.9

yaw 7.14±.16 5.36±.15/5.20 5.91±.14/5.71 5.29 5.94 6.56 10.1

average 6.76±.16 4.83±.13/4.61 5.58±.13/5.33 3.90 6.34 6.59 13.0

yaw
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Fig. 5: Left: four training examples annotated with (30◦, 30◦) in the Pointing’04
dataset. Approximate annotations affect the quality of our continuous model. Left:
a test example (yellow box) annotated with (−30◦, 0◦) and its three neighbors over-
layed on top of the score map produced by our model. Although the scoring function
does not peak exactly at (−30◦, 0◦), it remains the top-scoring discrete pose.

A seemingly surprising fact is that the continuous refinement step yields
higher MAEs. We note that this has to do with annotation quality. As illustrated
in Fig. 5, pose annotations in Pointing’04 are at least 15◦ apart, and also carry
noticeable label noise. Compared to the case of EPFL Cars (2◦-3◦ apart and less
noisy), this more significantly affects the quality of continuous parameterization.
As a result, the scoring function in general does not peak exactly at discretized
poses, which can result in nonzero angular errors even for poses already correctly
estimated by discrete initialization. However, continuous refinement is highly
consistent with discrete initialization, altering nearest-neighbor assignments to
discrete poses only 0.36% of the time. Despite the coarse parameterization, we
still significantly improve upon the discretized 1-vs-all baseline.

We also compare to previous methods [5, 6, 26, 30] in Table 2. Our method
significantly outperforms Fenzi et al. [5], Haj et al. [30] and Gourier et al. [26]
despite the use of more complex models in all three methods (1-NN classifier,
kernel Partial Least Squares, and facial structure detection, respectively). Our
best average MAE of 4.61◦ is slightly higher than [6]’s 3.90◦, but note that our
result is achieved by linear classifiers, while [6] employs a highly nonlinear kernel
regression forest that also performs feature selection. We would also like to point
out that [6], as well as [5, 30], is a regression method that requires clean input,
whereas our method is fully capable of doing joint object detection and pose
estimation, as we demonstrate in the other two experiments.
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Table 3: 3D Objects: performance comparison for classes bicycle and car. Results
for our method (BnB) are from 10 random trials, in the format of mean±std/best. Top
two results for each category in bold.

Method Baseline BnB [12] [3] [11] [27] [2]

bicycle
AP (%) 78.2±5.2 95.1±1.4/96.8 97.6 91 87.0 – –

MPPE (%) 98.7±2.1 94.0±3.3/97.6 98.9 90 87.7 – 96.2

car
AP (%) 85.4±8.8 98.2±3.9/97.8 99.9 96 94.9 99.2 –

MPPE (%) 97.7±3.2 87.9±3.4/93.0 97.9 89 82.6 84.9 92.0

(a) (b) (c)

Fig. 6: Example results on car images in the 3D Objects dataset [1]: (a) typical success
cases; (b) correct detections, wrong poses; (c) complete failure. Note the variation in
actual poses in images having the same pose annotation (first four images).

6.3 3D Objects Dataset

We also evaluate our method in object detection and discrete pose classification
on the 3D Objects dataset [1]. The dataset contains 8 object classes each having
10 instances, roughly annotated with 8 discrete viewpoints spaced at 45◦ apart.
With such sparse views, object appearances tend to form discrete clusters rather
than vary smoothly, making discrete classification methods more suitable. In
fact, previous methods relying on mixtures of view-specific DPMs [3, 12] have
obtained very competitive results on the 3D Objects dataset.

We shall only evaluate our branch-and-bound algorithm with discrete poses
on the 3D Objects dataset, since its granularity of pose samples and accuracy
of annotation are both insufficient for learning our continuously parameterized
detector. Nevertheless, we are still interested in evaluating whether or not coarse
parameterization and feature sharing can improve detector performance.

Setup. We use the same feature representation that we used with EPFL Cars:
3-level spatial pyramid of 500 SIFT visual words, with LLC encoding and L2

normalization. We focus on the bicycle and car classes, as they are the most
representative and they have been extensively studied in the literature.

As noted in [11], despite the large number of studies on 3D Objects, different
test configurations have been reported, making a fully comprehensive comparison
difficult. As in experiments with Pointing’04, we tried 10 different splits of the
dataset, each time using images from 7 object instances for training, and the rest
for testing. For viewpoint classification, we compute MPPE on the set of correct
detections. We report from the 10 trials both the average and best performance
(having the highest average of AP and MPPE).
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Results. Table 3 reports results obtained by our method (BnB). We achieve
significant improvements in AP over the baseline for both bicycle and car, on
average by 16.9% and 12.8%, respectively. This again shows the benefit of pose
parameterization for object detectors. However, the baseline does have higher
MPPEs than BnB. Since the MPPE is computed on correct detections, this means
that the 1-vs-all SVMs learned by the baseline are highly specific to their cor-
reponding views. However, collectively they produce many more misdetections
for which pose estimates are hardly useful. The 1-vs-all SVMs are independently
learned, and give essentially uncalibrated scores; this can lead to mutual confu-
sions and degradation of collected detection performance.

We show example detection and pose estimation results for the car class in
Fig. 6. Many of our pose classification errors are next-bin errors (by 45◦) due to
approximate annotations (see Fig. 6(b) for an example).

As can be seen in Table 3, our best results (96.8% AP and 97.6% MPPE
for bicycle, 97.8% AP and 93.0% MPPE for car) are collectively better than
those from all competing methods only except [12], while our average perfor-
mance is also competitive. Again, we note that [12] learns rich 3D part-based
models directly from high-quality CAD models, while our method learns a single
parameterized 2D object template from roughly annotated images. Remarkably,
our method consistently outperforms another more complicated system by Schels
et al. [11], who also learn from CAD models and construct a dense part-based
object representation over the viewsphere by fine-sampling viewpoints.

7 Conclusion

We propose a structured formulation to jointly perform object detection and
pose estimation, by learning a single, continuously parameterized, discrimina-
tive object appearance model over the entire pose space. To solve the associated
nonconvex inference problem, we design a cascaded algorithm with an efficient
pruning step to generate diverse proposals, and a refining step that performs con-
tinuous optimization. For efficient model learning, we give simple but effective
costraint generation strategies for a mini-batch online structural SVM learning
algorithm, which converges significantly faster than batch algorithms. On three
standard benchmarks in the combined task of object detection and pose estima-
tion, our method performs better than, or on par with, state-of-the-art systems
that are usually of higher complexity.

We focus on 1D and 2D viewing angles in this paper as this provides a
very common parameterization of object appearance, appropriate for nearly any
object and imaging scenario. Nevertheless, our formulation is general and can
work with other continuous or even discrete factors that parameterize object
appearance, such as articulated pose, directional lighting, phenotypes, and object
subcategories. We are interested in exploring these factors in future work.
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