
Human Motion Tracking Control with Strict Contact Force Constraints
for Floating-Base Humanoid Robots

Yu Zheng, Katsu Yamane

Abstract— This paper presents a tracking controller con-
sidering contact force constraints for floating-base humanoid
robots. The goal of the tracking controller is to compute the
joint torques such that the robot can imitate given reference
motions obtained from, for example, human motion capture
data. The technical challenge is that the robot motion depends
not only on joint torques but also on contact forces from the
environment, which depend on the joint torques and are subject
to constraints on friction forces. Therefore, computing the joint
torques and associated contact forces typically results in a
nonlinear optimization problem with complex constraints. We
solve this issue by taking advantage of the property that the
motion of the floating base is only affected by contact forces.
We can then compute the contact forces and joint torques
separately by solving two simple sequential optimization prob-
lems. Through dynamics simulations, we demonstrate that the
proposed tracking controller successfully enables a humanoid
robot to reproduce different human motions, including those
with contact state changes.

I. INTRODUCTION

Humanoid robots are expected to work with humans in
home and office environments. It would be more desirable
for such robots to have human-like motions so that human
co-workers can easily infer their intention and predict future
movements for safe and smooth interactions.

However, programming humanoid robots is not straight-
forward because they tend to have complex structures con-
sisting of many joints. A possible solution is to teach the
motions through human demonstration as often referred to
as learning from demonstration [1] or imitation learning [2].
This approach allows a programmer to simply demonstrate
the motion while the robot observes the motion. A learning
algorithm then makes adjustments to the motion so that the
robot can achieve the task using its own body.

Unfortunately, most of the work based on this approach
only considers the kinematics of motions and therefore
cannot be directly applied to robots and motions that re-
quire balancing, such as standing and walking motions of
floating-base humanoid robots. Considering the dynamics
in such motions is essential because the six degrees of
freedom (DOF) of the translation and rotation of the floating
base are not directly actuated. Instead, the corresponding
generalized force is provided by contact forces that are
subject to inequality constraints on the friction.

Yu Zheng is with the Department of Computer Science, University
of North Carolina at Chapel Hill, NC 27599, USA. This work was
done when he was with Disney Research Pittsburgh, PA 15213, USA.
yuzheng001@gmail.com

Katsu Yamane is with Disney Research Pittsburgh, PA 15213, USA.
kyamane@disneyresearch.com

(a) (b)

Fig. 1. Example of (a) the original human motion and (b) the simulated
robot motion.

In this paper, we present a controller for floating-base
humanoid robots that can track motion capture data while
maintaining balance (Fig. 1). Unlike previous work with
similar goals, our controller does not include a balance
controller based on simplified models.

Our controller consists of two components. The first
component is a standard proportional-derivative (PD) con-
troller that computes the desired acceleration to track the
given reference trajectory at every DOF, including the six
unactuated ones of the floating base.

The second component, which is the main contribution of
this paper, computes the optimal joint torques and contact
forces to realize the desired accelerations given by the
first component, considering the full-body dynamics of the
robot and the constraints on contact forces. The desired
acclerations may not be feasible for the robot due to the
limits in normal contact forces and friction. We decouple
the optimization problem into two simple sub-problems by
taking advantage of the property that the joint torques do
not contribute to the six DOF of the floating base, which
allows us to solve the optimization with strict contact force
constraints in real time.

We demonstrate the usefulness of our tracking controller in
full-body dynamics simulation with two settings. In the first
setting, we require a humanoid robot to track choreographic
human motions while maintaining both feet on the ground,
while the feet in the motion capture data are not perfectly still
due to errors in motion capturing and differences between the
kinematics of the human subject and the robot. In the second,
the robot is required to follow human stepping motions where
the two feet lift up and touch down alternately. In all these

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 IEEE 34

cases, the robot can successfully track the motion capture
data by using the proposed tracking controller.

The rest of this paper is organized as follows. Section
II reviews the previous work. Section III gives the basic
equations of the full-body dynamics of floating-base robots.
The proposed tracking controller is discussed in detail in
Section IV. Section V shows the simulation results, followed
by concluding remarks and future work in Section VI.

II. RELATED WORK

One of the popular methods for generating humanoid robot
motions, especially locomotion, is to first determine a zero
moment point (ZMP) trajectory based on given footprints and
then compute a physically consistent center of mass (COM)
trajectory using a simplified dynamics model, typically an
inverted pendulum [3], [4], [5]. The joint trajectories can
then be computed by inverse kinematics using the footprints
and COM trajectory. However, motions generated by this
approach usually do not look human-like, though some work
tried to mimic human walking motion by adding single
toe support phase and characterized swing leg motions [6].
Another issue is that the ZMP feasibility criterion is only
applicable to horizontal terrains. Hirukawa et al. [7] and Ott
et al. [8] used a more general criterion based on feasible
contact forces for a walking pattern generator and a balance
controller, respectively.

As humanoid robots have similar structures to humans,
using human motion capture data to program humanoid
robots seems to be an effective way to generate human-like
motions. The work [9], [10] mapped human motions to fixed-
base humanoid robots considering the kinematic constraints
of the robot. Adapting human motion data to the dynamics
of floating-base humanoid robots was discussed in [11], [12].
Methods for generating humanoid locomotion based on mo-
tion capture data were developed in [13], [14], which modify
the extracted joint trajectories according to a replanned ZMP
trajectory that ensures the dynamic consistency. Nakaoka
et al. [15] proposed a method to convert human dancing
motions to physically feasible motions for humanoid robots
by manually segmenting a motion into motion primitives
and designing a controller for each of them. However, these
approaches are aimed at offline planning. Some methods can
realize online tracking of upper-body motions in the double-
support phase while using the lower body for balancing [16],
[17]. Yamane and Hodgins [18], [19] presented controllers
for humanoid robots to simultaneously track motion capture
data and maintain balance.

Using human motion data to generate motion for hu-
manoid characters has also been studied in computer graph-
ics [20], [21], [22], [23], [24]. Nevertheless, those approaches
usually employ an extensive optimization process and cannot
be applied to realtime control of humanoid robots.

Similarly to the previous work [7], [8], we compute
feasible contact forces without using the ZMP criterion for
realizing motions on humanoid robots, but our goal is to track
human motion capture data rather than walking pattern gen-
eration [7] or balance control [8]. Compared to the methods

for mapping human motion data to humanoid robots [18],
[19], the contribution of this paper is that we can enforce
strict constraints on contact forces while achieving real time
computation required for controlling robot hardware.

III. BASIC EQUATIONS

If the robot has NJ actuated joints, the total DOF of the
robot is NG = NJ + 6 including the six unactuated DOF
of the translation and rotation of the floating base. We let
q ∈ RNG denote the generalized coordinate that defines the
robot configuration and assume that its first six components
correspond to the translation and rotation of the floating base.
Also let NC denote the number of links in contact with the
environment and wi ∈ R6 (i = 1, 2, . . . , NC) the contact
wrench (force and moment) applied to the i-th contact link
by the environment.

The equation of motion of the robot can be written as

Mq̈ + c =NT τ + JTw (1)

where M ∈ RNG×NG is the joint-space inertia matrix of
the robot, c ∈ RNG is the sum of Coriolis, centrifugal and
gravity forces, and w =

[
wT

1 wT
2 . . . wT

NC

]T ∈ R6NC .
Matrix N ∈ RNJ×NG maps the joint torques into the
generalized forces. Since the floating base is unactuated, N
has the form

N = [0NJ×6 INJ×NJ
] . (2)

Matrix J ∈ R6NC×NG is the contact Jacobian matrix whose
transpose maps the contact wrenches into the generalized
forces and has the form

J =
[
JT1 JT2 . . . JTNC

]T
(3)

where Ji ∈ R6×NG is the Jacobian matrix of the i-th
contact link’s position and orientation with respect to the
generalized coordinates. Let ṙi ∈ R6 denote the linear
and angular velocities of the i-th contact link and r̈i the
accelerations. Then, the relationship between ṙi and the
generalized velocity q̇ can be written as

ṙi = Jiq̇. (4)

Differentiating (4), we obtain the relationship between the
joint and Cartesian accelerations as

r̈i = Jiq̈ + J̇iq̇. (5)

IV. MOTION TRACKING CONTROL

A. Overview
Figure 2 shows an overview of our motion tracking con-

troller consisting of two main steps in the dashed box. The
first step computes the contact wrenches via the computation
of contact forces that satisfy the friction constraint and realize
the desired reference motion of the floating base as much
as possible. The contact points are determined using the
desired contact state from the reference motion and the
current contact link positions of the actual robot. Based on
the computed contact wrenches, the second step determines
the joint torques that realize all joint motions and especially
the desired contact link motion.

35

Fig. 2. Overview of the motion tracking controller consisting of two main
steps in the dashed box: 1) computation of the contact wrenches to realize
the desired floating-base motion, and 2) computation of the joint torques to
realize the desired full-body motion. The symbols are defined in the text.

B. Formulation of Contact Wrenches

For a given reference motion, we identify the set of contact
candidate links that includes the links that may be in contact
with the environment during the motion. The set typically
consists of both feet of the robot. At any time during the
motion, a contact candidate link has one of the following
contact states: face contact, edge contact, point contact, or
no contact.

Let pi,j ∈ R3 (j = 1, 2, . . . , Ni) be the vertices of the con-
tact area between the i-th contact link and the environment,
and fi,j ∈ R3 the contact force at the j-th contact vertex, as
depicted in Fig. 3. The number of contact vertices, Nj , is 0,
1, 2, or greater than or equal to 3 in no, point, edge, and face
contact states respectively. We assume that the contacts are
rigid subject to Coulomb friction model. Therefore, fi,j is
a pure force and can be decomposed into three components
fi,j1, fi,j2, fi,j3 along the normal and two tangential vectors
at the contact vertex. The wrench wi applied to the i-th
contact link by the environment is the resultant force and
moment from all contact forces fi,j (j = 1, 2, . . . , Ni) and
can be written as

wi =

Ni∑
j=1

Ri,jfi,j = Rifi (6)

where Ri = [Ri,1 Ri,2 . . . Ri,Ni
] ∈ R6×3Ni , fi =[

fTi,1 fTi,2 . . . fTi,Ni

]T ∈ R3Ni , and Ri,j ∈ R6×3 is the
matrix that maps fi,j into the force and moment around the
local frame of the i-th contact link in which wi is expressed.
Here, we do not consider slipping contact, so each contact
force fi,j must satisfy the friction constraint given by

Fi,j =
{
fi,j ∈ R3 | fi,j1 ≥ 0,

√
f2i,j2 + f2i,j3 ≤ µifi,j1

}
.

(7)
The controller requires the contact vertex positions and

the contact states in order to compute Ri. The actual contact
vertex positions and states may be different from those in the
reference motion. In our implementation, we use the actual
contact vertex positions to compute feasible contact forces
at the current pose, while using the contact states in the

Fig. 3. Illustration of the relationship between the contact wrench applied
to a contact link and the contact forces from the environment.

reference motion for the reason illustrated by the following
example. Consider a case where the right foot is about to
touch down. If we use the actual contact state, the optimized
COP will stay in the left foot and therefore the right foot
may not touch down unless the position tracking is perfect.
If we use the contact state in the reference motion, on the
other hand, the optimized COP will leave the left foot, which
forces the right foot to touch down.

C. Desired Joint and Contact Link Accelerations

The desired accelerations of joints are calculated based on
the reference and current positions and velocities as well as
the reference accelerations as

ˆ̈q = q̈ref + kd(q̇
ref − q̇) + kp(q

ref − q) (8)

where q, q̇ are the current joint angle and velocity, qref ,
q̇ref , q̈ref are the reference joint angle, velocity, and accel-
eration, and kp, kd are proportional and derivative gains.

The desired acceleration of contact candidate link i, ˆ̈ri,
is determined depending on its desired contact state. If the
desired contact state is face contact, ˆ̈ri = 0. If the desired
contact state is no contact, ˆ̈ri is determined using the same
control law as ˆ̈q:

ˆ̈ri = r̈
ref
i + kdc(ṙ

ref
i − ṙi) + kpc(r

ref
i − ri). (9)

where kpc and kdc are the proportional and derivative gains.
If the desired contact state is edge or point contact, we first

compute the temporary desired link acceleration ˆ̈ri0 by (9).
We then project ˆ̈ri0 onto the subspace of link acceleration
that satisfies the kinematic constraints of edge or point
contact to obtain the desired link acceleration ˆ̈ri0. If the
contact link rotates around an edge, r̈i should have the form

r̈i =

[
[pi,1×] (pi,1 − pi,2)

pi,1 − pi,2

]
ω̇ (10)

where [pi,1×] ∈ R3×3 is the skew-symmetric matrix rep-
resenting the cross product of pi,1 with another vector and
ω̇ ∈ R is the angular acceleration of the contact link about
the edge. If the contact link rotates about a vertex, r̈i should
have the form

r̈i =

[
[pi,1×]
I3×3

]
ω̇ (11)

36

where ω̇ ∈ R3 consists of the angular accelerations about
the vertex. We project ˆ̈ri0 onto the subspace represented by
either (10) or (11) depending on whether the desired contact
state is edge or point to obtain ˆ̈ri.

D. Optimizing the Contact Forces and Joint Torques

The role of the tracking controller is to determine the
joint torques such that the robot can replay a given reference
motion that may or may not be physically feasible for the
robot. In floating-base humanoid robots, the motion depends
not only on the joint torques but also the reaction contact
forces from the environment, which are also affected by the
joint torques. Furthermore, contact forces are subject to the
nonlinear friction constraints described by (7). Solving for
the contact forces and joint torques simultaneously is com-
putationally expensive and not suitable for realtime control.

In our tracking controller, we decouple the contact forces
from the joint torques by taking advantage of the property
that joint torques do not affect the motion of the floating
base. The tracking controller therefore consists of two steps:
1) optimize the contact forces considering the friction con-
straints, and 2) optimize the joint torques considering the
contact link acceleration constraint.

1) Step 1—Computing contact forces: The first six equa-
tions in the full-body motion equation (1) describe the motion
of the floating base. From (2) we see that the six equations
do not contain joint torques, which corresponds to the fact
that the total linear and angular momenta are affected only by
external forces. Extracting the first six equations, we obtain

M1q̈ + c1 = JT1 w (12)

where M1 ∈ R6×NG and JT1 ∈ R6×6NC consist of the first
six rows of M and JT , respectively, and c1 comprises the
first six components of c. Substituting (6) into (12) yields

M1q̈ + c1 = Gf (13)

where G = [G1 G2 · · · GNC
] ∈ R6×3

∑NC
i=1Ni with

Gi = JT1iRi ∈ R6×3Ni and f =
[
fT1 fT2 · · · fTNC

]T
=[

fT1,1 . . . fTi,j . . . fTNC ,NNC

]T
∈ R3

∑NC
i=1Ni . The right-

hand side of (13) gives the wrench that is applied to the
floating base by the contact forces.

The desired joint acceleration ˆ̈q given by (8) may not
be feasible due to the limitation of contact forces. In other
words, after replacing q̈ with ˆ̈q in (13), there may not exist
contact forces fi,j ∈ Fi,j that satisfy (13). In order to obtain
joint accelerations that are as close as possible to ˆ̈q, we
formulate an optimization problem to compute the contact
forces fi,j described by{

minimize ‖M1
ˆ̈q + c1 −Gf‖2

subject to fi,j ∈ Fi,j for ∀ i and j (14)

where ‖ · ‖ denotes the Euclidean norm. The problem (14)
has the following geometric meaning. Let V be the set
of all wrenches that can be applied to the floating base
by the contact forces satisfying the friction constraint, i.e.,

V =
{
Gf ∈ R6 | fi,j ∈ Fi,j for ∀ i and j

}
. Geometri-

cally, each friction cone Fi,j given by (7) is a convex cone.
Then, it can be proved that the set V is a convex cone
in R6. The optimization (14) is to compute the minimum
Euclidean distance between V and M1

ˆ̈q + c1 in R6, which
can be calculated by the algorithm described in [25]. Also,
(14) is a quadratic program with conic constraints, for which
some efficient algorithms are available. After solving (14)
for the optimized contact forces f∗, we can compute the
corresponding contact wrenches, w∗, using (6).

2) Step 2—Computing joint torques: After computing and
substituting the optimized contact wrenches w∗ into (1), we
determine the joint torques τ . We formulate this step as the
following quadratic program

 minimize 1
2 (q̈ − ˆ̈q)TWq(q̈ − ˆ̈q) + 1

2τ
TWττ

subject to Mq̈ −NT τ = JTw∗ − c,
Jiq̈ = ˆ̈ri − J̇iq̇ for ∀i

(15)

where q̈ and τ are the NV = NG +NJ unknown variables
that need to be determined. The cost function comprises the
error from the desired joint accelerations and the magnitude
of joint torques. The first constraint is the full-body motion
equation (1) of the robot, from which we obtain NG linear
equality constraints. After considering the full-body dynam-
ics, therefore, NJ variables among q̈ and τ are free, which
leaves us the freedom to choose or optimize the joint torques
for realizing the desired full-body motion. Also, this allows
us to add the second constraint, which requires that joint
accelerations q̈ and the desired contact link accelerations
ˆ̈ri to satisfy the relation (5), as long as 6NC ≤ NJ . If
6NC > NJ , then the problem (15) will be overdetermined
and may not have a feasible solution. In that case, we can
convert the second constraint to a penalty term and add it
to the cost function. Furthermore, when a contact candidate
link is in the air, we may omit the second constraint for the
link because we no longer have to constraint its motion.

We currently deal with the torque limit by adding it as
a penalty term in the cost function of (15) rather than as
inequality constraints, so that (15) is a quadratic optimization
problem with only linear equality constraints and we can
derive a closed-form solution. We give the derivation for the
case of 6NC ≤ NJ as follows, while that for the case of
6NC > NJ is similar.

The cost function of (15) can be rewritten as 1
2 (x −

x̂)TW (x − x̂), where x =
[
q̈T τT

]T ∈ RNV , x̂ =[
ˆ̈qT 0

]T ∈ RNV , and W = diag(Wq,Wτ) ∈ RNV ×NV .
Also, the constraints of (15) can be integrated as the follow-
ing linear equations

Ax = b (16)

where

A =

[
M −N
J 0

]
∈ R(NG+6NC)×NV

37

b =

JTw∗ − c
ˆ̈r1 − J̇1q̇

...
ˆ̈rNC
− J̇NC

q̇

 ∈ RNG+6NC .

Let y = W
1
2 (x − x̂). Then, the cost function of (15) can

be further reduced to 1
2y

Ty and

x =W− 1
2y + x̂. (17)

Substituting (17) into (16) yields

AW− 1
2y = b−Ax̂. (18)

Then, the optimal value of y that satisfies (18) and minimizes
1
2y

Ty can be calculated by

y∗ =W− 1
2AT

(
AW−1AT

)−1
(b−Ax̂). (19)

Substituting (19) into (17), we finally obtain the closed-form
solution to (15) as

x∗ =W−1AT
(
AW−1AT

)−1
(b−Ax̂) + x̂. (20)

V. SIMULATION RESULTS

A. Simulation Setup

We use the dynamics simulator with rigid-contact model
developed by University of Tokyo [26], [27] to conduct our
experiments. The humanoid robot model used in the simu-
lations has 25 joints and 31 DOFs including the translation
and rotation of the floating base. Each leg has 7 joints (pitch,
roll, yaw at both the hip and the ankle and pitch at the knee).
We only consider 4 joints in each arm (pitch, roll, yaw at the
shoulder and pitch at the elbow) and fix wrist joints. There
are 3 joints in the torso. The robot model is about 1.7 meters
tall and 65 kg in weight.

We implemented the controller in C++ on a laptop with
an Intel Core i7 2.67GHz CPU and 3GB RAM. Average
computation times of the whole controller in the following
examples are in the range of 1.48–1.61 msec, which is fast
enough for realtime control at 500 Hz. Contact force and
joint torque optimizations take approximately 24–26% and
31–33% of the time respectively. The rest is spent for com-
puting the other quantities such as the desired accelerations,
mass matrix, and Jacobian matrices.

B. Tracking Human Motion Without Contact State Change

In this example, the robot tracks two motion capture clips
chosen from CMU Motion Capture Data Library [28], where
two actors perform nursery rhyme “I’m a little teapot” while
maintaining their feet on the ground, as displayed in Figs. 4a
and 5a. The simulated motions are shown in Figs. 4b and 5b
and the accompanying video, which demonstrates that the
proposed tracking controller enables the robot to reproduce
the human motions without falling. For the second case
(Fig. 5), we also plot the contact forces and moments on
the left foot computed by the tracking controller and the
simulated values in Fig. 6, where we can observe that the two
values match well in all six components. While not shown,
we see similar match at the right foot.

Fig. 6. Optimized (red) and actual (blue) contact forces and moments on
the left foot.

Fig. 9. Optimized (red) and actual (blue) contact forces in x- and z-directions
and moments in y-direction on the left (left) and right (right) feet for tracking
the stepping motion.

We do note the difference in tracking fidelity between the
two examples due to the different styles of the motions. Be-
cause the first example is slower and smoother, the robot can
track the motion more accurately. In the second example, the
robot’s pose can be significantly different from the subject’s,
especially when the subject makes rapid movements.

C. Tracking Human Motion With Contact State Change

In the second example we let the robot follow human’s
stepping motions. The simulated robot motions are shown in
Figs. 7 and 8 and the accompanying video. By our tracking
controller, the robot can preserve the style of original human
motions. As the side stepping motion is performed in the xz
plane of the global frame, the contact forces in x- and z-
directions and the moment in y-direction on the feet play
a decisive role in the motion, and the optimized and actual
values on both feet are exhibited in Fig. 9.

38

(a)

(b)

Fig. 4. Example of (a) original and (b) simulated motion of “I’m a little teapot” performed by subject 1.

D. Prevent Falling due to Extreme Reference Motions

Only considering the contact force constraints does not
generally guarantee that the robot does not tip over, espe-
cially if the reference motion is extremely difficult to track.
A simple example is trying to maintain a stationary pose
where the COM projection is outside of the contact area.
In this case, our controller will result in a falling motion
with COP in the contact area. This issue is not unique
to our controller but applies to any realtime controller for
interactive floating-base robots because we cannot predict
future reference motion.

A solution to this issue is to switch or interpolate between
two or more reference motions, one being a “safe” reference
such as maintaining a static equilibrium pose. Similar idea
has been used in an online walking pattern generator that
uses joystick input to determine the walking direction [29].

We demonstrate this concept with a simple example using
our tracking controller. The main reference motion is a
static pose that is not a static equilibrium for robot’s mass
distribution, as depicted by the transparent model in Fig. 10a.

Tracking this motion will eventually cause the robot to
fall. We therefore use another reference motion, which is
maintaining a static equilibrium pose shown by the opaque
model in Fig. 10a. It is also the initial pose for the simulation.

In this example, we interpolate the two motions with
weights determined by the time at which the COM is
expected to reach the support area boundary computed based
on the current position and velocity of the COM. The shorter
the time is, the larger the weight for the static equilibrium
motion. If the time is below a threshold, we completely
switch the reference pose to the static equilibrium one to
prevent the robot from falling. In the simulation, the robot
finally reaches and maintains the pose shown in Fig. 10b,
which is between the two reference poses. Figure 10c shows
that the final COP is at the edge of the support area (toe).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a controller for humanoid
robots to track motion capture data. Given the desired
accelerations at all DOF to track the reference motion,
the proposed tracking controller computes the optimal joint

39

(a)

(b)

Fig. 5. Example of (a) original and (b) simulated motion of “I’m a little teapot” performed by subject 2.

Fig. 7. Simulated side stepping motion.

Fig. 8. Simulated forward stepping motion.

torques and contact forces to realize the desired accelerations
considering the full-body dynamics of the robot and the

constraints on the contact forces. The simulation results show
that the tracking controller successfully makes a humanoid

40

(a) (b) (c)

Fig. 10. Example of preventing falling in tracking extreme motions. (a)
Unbalanced reference pose for tracking (transparent) and static equilibrium
pose for falling prevention (opaque). (b) Final pose of the robot, which
is close to but does not reach the tracking reference pose. (c) The contact
forces at the local COP on each foot (white lines) and the total contact force
at the global COP (red line), which reaches the boundary of the support area.

robot track various human motions. We also illustrated a
simple extension for preventing falling when an extreme
motion was given as the reference.

This work can be extended in many directions. A straight-
forward extension is to motions involving contacts at hands
or other links in addition to the feet, which will allow
humanoid robots to track a much larger range of human
motions. Another possible extension is to motions with more
complex contact states and contact link motions. In addition
to the rolling contacts formulated in Section IV-C, we can
potentially extend the formulation to sliding contacts, where
the contact force should be restricted to the boundary of the
friction cone and opposite to the sliding direction.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillman, and S. Schaal, “Robot pro-
gramming by demonstration,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. Springer, 2008, pp. 1371–1394.

[2] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Phylosophical Transactions of the Royal
Society of London B: Biological Sciences, vol. 358, pp. 537–547, 2003.

[3] K. Nagasaka, I. Masayuki, and H. Inoue, “Dynamic walking pattern
generation for a humanoid robot based on optimal gradient method,”
in Proc. IEEE/RSJ Int. Conf. Syst. Man Cyber., Toyko, Japan, 1999,
pp. 908–913.

[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proc. IEEE Int. Conf. Robot.
Automat., Taipei, Taiwan, 2003, pp. 1620–1626.

[5] T. Sugihara, “Simulated regulator to synthesize ZMP manipulation and
foot location for autonomous control of biped robots,” in Proc. IEEE
Int. Conf. Robot. Automat., Pasadena, CA, 2008, pp. 1264–1269.

[6] K. Miura, M. Morisawa, F. Kanehiro, S. Kajita, K. Kaneko, and
K. Yokoi, “Human-like walking with toe supporting for humanoids,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco, CA,
2011, pp. 4428–4435.

[7] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa, “A universal stability criterion of the
foot contact of legged robots - adios zmp,” in Proceedings of the
IEEE International Conference on Robotics and Automation, Orlando,
Florida, 2006, pp. 1976–1983.

[8] C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance control for
biped robots based on contact force optimization,” in Proc. IEEE-RAS
Int. Conf. Humanoid Robots, Bled, Slovenia, 2011, pp. 26–33.

[9] A. Ude, C. Man, M. Riley, and C. Atkeson, “Automatic generation
of kinematic models for the conversion of human motion capture data
into humanoid robot motion,” in Proc. IEEE-RAS Int. Conf. Humanoid
Robots, Cambridge, MA, 2000.

[10] A. Safonova, N. Pollard, and J. Hodgins, “Optimizing human motion
for the control of a humanoid robot,” in Int. Symp. Adaptive Motion
of Animals and Machines, 2003.

[11] Y. Ikemata, K. Yasuhara, A. Sano, and H. Fujimoto, “Making feasible
walking motion of humanoid robots from human motion captured
data,” in Proc. IEEE Int. Conf. Robot. Automat., Detroit, MI, 1999,
pp. 1044–1049.

[12] K. Yamane and Y. Nakamura, “Dynamics filterconcept and implemen-
tation of on-line motion generator for human figures,” IEEE Trans.
Robot. Automat., vol. 19, no. 3, pp. 421–432, 2003.

[13] K. Miura, M. Morisawa, S. Nakaoka, F. Kanehiro, K. Harada,
K. Kaneko, and S. Kajita, “Robot motion remix based on motion
capture data – towards human-like locomotion of humanoid robots,”
in Proc. IEEE-RAS Int. Conf. Humanoid Robots, Paris, France, 2009,
pp. 596–603.

[14] L. Boutin, A. Eon, S. Zeghloul, and P. Lacouture, “An auto-adaptable
algorithm to generate human-like locomotion for different humanoid
robots based on motion capture data,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Taipei, Taiwan, 2010, pp. 634–639.

[15] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi,
“Generating whole body motions for a biped robot from captured
human dances,” in Proc. IEEE Int. Conf. Robot. Automat., Taipei,
Taiwan, 2003, pp. 3905–3910.

[16] V. Zordan and J. Hodgins, “Motion capture-driven simulations that
hit and react,” in Proc. ACM SIGGRAPH Symp. Computer Animation,
San Antonio, TX, 2002, pp. 89–96.

[17] C. Ott, D. Lee, and Y. Nakamura, “Motion capture based human
motion recognition and imitation by direct marker control,” in Proc.
IEEE-RAS Int. Conf. Humanoid Robots, Daejeon, Korea, 2008, pp.
399–405.

[18] K. Yamane and J. Hodgins, “Simultaneous tracking and balancing of
humanoid robots for imitating human motion capture data,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., St. Louis, 2009, pp. 2510–
2517.

[19] ——, “Control-aware mappping of human motion data with stepping
for humanoid robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Taipei, Taiwan, 2010, pp. 726–733.

[20] S. Tak, O. Song, and H. Ko, “Motion blanace filtering,” Eurographics
2000, Computer Graphics Forum, vol. 19, no. 3, pp. 437–446, 2000.

[21] A. Safonova, J. Hodgins, and N. Pollard, “Synthesizing physically
realistic human motion in low-dimensional, behavior-specific spaces,”
ACM Trans. Graphics, vol. 23, no. 3, pp. 514–521, 2004.

[22] K. Sok, M. Kim, and J. Lee, “Simulating biped behaviors from human
motion data,” ACM Trans. Graphics, vol. 26, no. 3, 2007.

[23] M. da Silva, Y. Abe, and J. Popović, “Interactive simulation of stylized
human locomotion,” ACM Trans. Graphics, vol. 27, no. 3, 2008.

[24] U. Muico, Y. Lee, J. Popović, and Z. Popović, “Contact-aware non-
linear control of dynamic characters,” ACM Trans. Graphics, vol. 28,
no. 3, 2009.

[25] Y. Zheng and C.-M. Chew, “Distance between a point and a convex
cone in n-dimensional space: computation and applications,” IEEE
Transactions on Robotics, vol. 25, no. 6, pp. 1397–1412, 2009.

[26] K. Yamane and Y. Nakamura, “A numerical robust LCP solver for
simulating articulated rigid bodies in contact,” in Robotics: Science
and Systems, 2008.

[27] ——, “Dynamics simulation of humanoid robots: forward dynamics,
contact, and experiments,” in The 17th CISM-IFToMM Symposium on
Robot Design, Dynamics, and Control, 2008.

[28] “CMU graphics lab motion capture database,”
http://mocap.cs.cmu.edu/.

[29] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. Inoue,
“Online generation of humanoid walking motion based on a fast
generation method of motion pattern that follows desired zmp,” in
Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems, 2002, pp. 2684–2689.

41

