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Abstract— This paper investigates the optimization and con-
trol of biped walking motion on a rolling cylinder. We design
a balance controller for a simplified linear model of a biped
robot, which comprises a foot connected to a lump mass through
an ankle joint and a translational spring and damper. We also
derive a collision model for the system consisting of the cylinder,
supporting leg, and swing leg. With the balance controller and
collision model, the robot motion is uniquely determined by
the initial state. We can therefore optimize the initial state so
that the robot achieves a cyclic gait with a constraint on the
desired average rolling velocity. Once an optimal initial state is
obtained, we further discuss how to maintain the cyclic motion
under disturbances. More specifically, we present a method for
computing the joint angles and velocities of the swing leg before
it collides with the cylinder. The optimization and control results
are demonstrated in simulation.

I. INTRODUCTION

Building a robot, which not only looks but also behaves
like a human or even becomes more capable than a human, is
one of the ultimate goals in humanoid robotics. Researchers
have developed robots that are capable of normal human
activities such as walking [1] and running [2] as well as
tasks that are difficult for humans such as flipping [3]
and juggling [4]. Most of these robots assume static and
controlled environment or specialized hardware.

In order to deal with disturbances and uncertainties in the
real environment, researchers have also developed techniques
of control and planning under dynamic environments [5], [6],
[7] and external disturbances [8], [9], [10]. However, these
techniques are focused on passive adaptation to dynamic
changes in the environment. Although researchers started to
take advantage of dynamic environments in the context of
object manipulation [11], very few work has been done in
whole-body motion control of biped humanoid robots.

The goal of this research is to realize a generic biped
humanoid robot that actively manipulates the environment to
perform dynamic motions. In this particular piece of work,
we choose walking on a cylinder as an example of such
behaviors. Walking on a cylinder is difficult even for normal
humans. Considering the cylinder movement is mandatory
because the interaction with the environment is limited to
the contact between the cylinder and floor.

We have studied this problem using a simplified model
of the system shown in Fig. 1(a), where the robot dy-
namics is represented by a wheeled inverted pendulum that
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Fig. 1. Different simplified dynamics models of a biped robot on a cylinder
in the sagittal plane. (a) An inverted pendulum with a wheel used in [12].
(b) An inverted pendulum with a foot used in this paper.

is controlled by a state-feedback balance controller. The
motion of the simplified model is mapped to a biped model
by a footstep planner [12]. However, the footstep planner
maps the motion in a geometric way and does not consider
the collision between the swing foot and the cylinder. In
addition, this model corresponds to the case where the feet
can maintain surface contact with the cylinder, which is
difficult unless the robot’s feet are flexible as human feet.

In this paper, in contrast, we present a generic cyclic gait
planner that takes the collision into account together with
other constraints such as the friction constraint and constraint
on the center of pressure (CoP). We also use a new simplified
dynamics model that corresponds to point contact feet, as
shown in Fig. 1(b), and design a state-feedback balance
controller using pole assignment or linear quadratic regulator
as described in [12] after linearizing the model. The model
comprises a foot segment connected to a lump mass via
the ankle joint and translational spring and damper. The
major difference from the model used in [12] is that only
one equilibrium state can be used as the reference state for
the new model, i.e., standing upright on top of the cylinder.
Owing to this, generating a sequence of steps for the new
model would be more difficult. This also motivates us to
develop such a cyclic gait planner. The proposed cyclic gait
planner can also be used for the model in [12].

We develop two new methods for the new model. We
first describe a method for determining an initial state of
the supporting leg that realizes a cyclic gait for given step
duration and average velocity. Because there is only one
equilibrium state that can be used as the reference state of
the balance controller, the motion of the supporting leg is
uniquely determined by its initial state. The method also
requires a collision model that describes the relationship
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between the velocities of the swing leg before and after a
collision. We also analyze the properties of obtained cyclic
gaits, such as energy consumption and robustness.

The state of the supporting leg at the end of a cycle may
differ from a planned gait due to modeling errors and external
disturbances. We therefore develop a method for determining
the state of the swing leg before collision so that the robot
can maintain the planned cyclic gait. The method solves a
collision equation similar to the one used in the first method.

This paper is organized as follows. Section II summarizes
the related work. Section III introduces the balance controller
and collision model. Sections IV and V discuss our methods.
Simulation results are given in Section VI, followed by
conclusions in Section VII.

II. RELATED WORK

A common approach to humanoid locomotion planning
is to generate a pattern in which the zero-moment point
(ZMP) stays in the contact convex hull. For control, this
approach usually assumes that the feet make flat contact with
the ground so that the ZMP can deviate from the planned
position to deal with disturbances. Unfortunately, we cannot
directly apply this approach to our problem because we
would have to modify the foot orientation with respect to
the cylinder in order to adjust the ZMP position.

On the other hand, the problem of finding a cyclic gait for
our system is similar to that of finding a limit cycle gait for
passive and semi-passive walkers. The following subsections
review some of the related work in this area.

A. Walking Cycle of Passive Walking Robots

Limit walking cycle is a fundamental topic in the research
of passive biped robots. McGeer [13] first demonstrated that
a passive biped robot can walk down a slope in a steady
periodic gait without any active control. The only energy
supply to the robot is the potential energy, which compensate
the loss of energy when the swing leg hits the ground. After
McGeer’s pioneering work, many researchers investigated
passive biped walking. Goswami et al. [14] and Garcia
et al. [15] verified the existence and the stability of limit
walking cycles. Osuka and Kirihara [16] first demonstrated
this symmetric motion on a real passive robot. Collins et al.
[17] built the first three-dimensional passive biped robot with
knees. Ikemata et al. [18], [19] studied several factors that
may affect the stability of a limit walking cycle, such as the
support exchange, the stabilization of a fixed point, and the
motion of the swing leg. Freidovich et al. [20] proposed a
faster way to seek both stable and unstable limit cycles than
traditional numerical routines.

B. Walking Cycle of Powered Passive Walkers

Without any actuation or energy input, a passive walking
robot can only walk on a declining slope. However, with
the help of one or more actuators to compensate the energy
loss at heel strike, powered passive walkers are able to walk
on flat, level, or uphill ground and have higher capability
to handle disturbances. One energy-efficient way to add

Fig. 2. Simplified dynamics model of a biped robot on a cylinder in the
sagittal plane. (a) Biped model. (b) θ0 is the rolling angle of the cylinder,
which also indicates the relative position of the ankle joint to the top of
the cylinder if the ankle joint is initially above the top. (c) θ1 is the rolling
angle of the foot relative to the cylinder. (d) θ2 is the angle of the ankle
joint, indicating the center of mass (CoM) position relative to the ankle.

actuation is the use of actuated ankles [21], [22], [23], [24],
[25]. Using the ankle push-off not only decreases the energy
use [21], [22] but also increases limit cycle walkers’ ability
to reject disturbances [23]. The use of ankle actuation also
allows a robot to achieve different walking speed in limit
cycle walking [24]. It has also been shown with simulation
that pushing off before the swing leg hits the ground is
energetically more efficient than pushing off after the heel
strike [25]. Actuation can also be added at the hip joint
[26]. Harada et al. [27] applied the limit cycle based walking
generation to a model of present humanoid robots with more
active joints and flat feet.

III. DYNAMICS AND COLLISION MODELS FOR THE
WALKING CYCLE COMPUTATION

In this section, we introduce the simplified model and the
collision model.

A. Simplified Dynamics Model

Fig. 2 depicts our new simplified dynamics model of a
biped robot on a cylinder. Let r0, m0, and I0 respectively
denote the radius, the mass, and the inertia of the cylinder,
m1 and I1 the mass and the inertia of a foot, m2 and I2 the
mass and inertia of the inverted pendulum, and L = L0+l the
distance between the ankle joint and the lump mass, where
L0 is the distance while the robot is in the rest position and
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l is the change of the distance. Here we assume that the
CoM of each foot is at the ankle. For each leg, three angular
variables θ0, θ1 and θ2 as well as a linear variable l describe
its configuration as indicated in Fig. 2, where θ0 represents
the rolling angle of the cylinder [Fig. 2(b)], θ1 denotes the
rolling angle of the foot relative to the cylinder [Fig. 2(c)],
and θ2 is the angle of the ankle joint [Fig. 2(d)]. Assume
that there is no slip between the foot and the cylinder. The
positive direction of angles is taken to be clockwise.

During the single support, the swing leg dynamics is
ignored and the linearized equation of motion of the model
can be written as

Mθ̈ +Gθ = τ (1)

where θ = [θ0 θ1 θ2 l]T , τ = [0 0 τ2 f ]T , τ2 is
the ankle torque, f is the spring-damper force and

M =


M1 + I M2 + I1 M2 0
M2 + I1 M3 + I1 M3 0
M2 M3 M3 0
0 0 0 m2



G = −


G1 +m2gL0 m2gL0 m2gL0 0
m2gL0 m2gL0 −G1 m2gL0 0
m2gL0 m2gL0 m2gL0 0

0 0 0 0


M1 = m0r

2
0 + 4m1r

2
0 +m2L

2
1, M2 = m2L0L1 + I2

M3 = m2l
2
0 + I2, L1 = 2r0 + L0

I = I0 + I1 + I2, G1 = (m1 +m2)gr0.

We rewrite (1) as a state-space differential equation

ẋ = Ax+Bu (2)

where x = [θT θ̇T ]T is the state, u = [τ2 f ]T is the
input, and the matrices A and B are given by

A =

[
04×4 I4×4
−M−1G 04×4

]
, B =

 04×2

M−1
[
0 0
0 0
1 0
0 1

] .
Following [28], [12], we design a state-feedback balance
controller as

u =K(x∗ − x) (3)

whereK ∈ R2×8 is a feedback gain and x∗ is an equilibrium
state such that Ax∗ = 0. The first row of K consists
of feedback gains for generating τ2, while the second row
contains the spring and damper coefficients for generating f .
Since A here has full rank, x∗ = 0 is the only equilibrium
state. Then substituting (3) into (2) yields

ẋ = (A−BK)x. (4)

Therefore, we can easily solve (4) for x as

x = e(A−BK)tx0 (5)

where x0 is the initial state. The feedback gain K is chosen
so that it ensures that all the eigenvalues of A−BK have
negative real parts and the system asymptotically converges
to the equilibrium state.

Fig. 3. Collision model. The motion of the cylinder is described using
variables xo, yo, θ0, while that of each leg is described using variables
x, y, α, θ2, l. The subscripts c and s represent the colliding (swing) leg and
the supporting leg, respectively.

A real biped robot is usually equipped with several sen-
sors, which may help us measure the actual values of all
state variables. Assume that the cylinder’s cross section is a
perfect circle with known radius. A force-torque sensor at the
ankle can give θ1. With joint angle sensors, we can compute
θ2 and l. Then we can derive θ0 from θ2 and the global
orientation of the feet, which can be acquired by using an
inertial measurement unit at the robot’s root. Finally, we can
estimate the velocities with an observer or a Kalman filter.

B. Collision Model

A collision discontinuously changes the state of the whole
system when the swing leg touches the cylinder. To model
this effect, we describe the motions of the cylinder and two
legs separately using the variables summarized in Fig. 3.
The configuration of the cylinder is represented by (xo, yo)
and θ0, which indicate the position and orientation of the
cylinder, respectively. The configuration of a leg is deter-
mined by another five parameters; that is, (x, y) to represent
the position of the ankle joint, α the angle of the foot with
respect to the horizontal plane, and θ2 and l have the same
meaning as in the simplified dynamics model. Therefore, we
describe the configurations of the cylinder, the swing leg,
and the supporting leg respectively by the following vectors:

qo = [xo yo θ0]
T (6)

qc = [xc yc αc θc2 lc]
T (7)

qs = [xs ys αs θs2 ls]
T . (8)

The subscripts “o”, “c”, and “s” represent the cylinder, the
swing (colliding) leg, and the supporting leg, respectively.

The position of the contact between the cylinder and the
floor can be written in terms of qo as

pF =

[
xo − r0θ0
yo − r0

]
. (9)
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Then the Jacobian matrix of pF with respect to qo is

JFO =
∂pF
∂qo

=

[
1 0 −r0
0 1 0

]
. (10)

The position of the contact between the cylinder and the
swing leg on the cylinder can be expressed as

pCO =

[
xo + r0θ0 cosαc

yo − r0θ0 sinαc

]
. (11)

Then the Jacobian matrix of pCO with respect to qo is

JCO =
∂pCO

∂qo
=

[
1 0 r0 cosαc

0 1 −r0 sinαc

]
. (12)

The position of the contact between the swing leg and the
cylinder on the leg can be expressed in terms of qc as

pOC =

[
xc − λ cosαc

yc + λ sinαc

]
(13)

where λ = (xc−xo) cosαc− (yc− yo) sinαc is treated as a
constant. Then the Jacobian matrix of pOC with respect to
qc can be calculated by

JOC =
∂pOC

∂qc
=

[
1 0 λ sinαc 0 0
0 1 λ cosαc 0 0

]
. (14)

The CoM position can be written in terms of qc as

pMC =

[
xc + Lsc
yc + Lcc

]
(15)

where sc = sin(αc + θc2) and cc = cos(αc + θc2). The
Jacobian matrix of pMC with respect to qc is

JMC =
∂pMC

∂qc
=

[
1 0 Lcc Lcc sc
0 1 −Lsc −Lsc cc

]
. (16)

Similarly, we can compute those Jacobian matrices JSO,
JOS , and JMS for the supporting leg by simply substituting
qs for qc in the above equations.

From now on, we denote by q̇o, q̇c, and q̇s respectively the
velocities of the cylinder, the swing leg, and the supporting
leg, and use superscripts − and + to distinguish quantities
before and after collision. Let F0, F1, F2, and F3 denote
the impulses at three contacts and the hip joint, as depicted
in Fig. 3. From the conservation of momentum we have

MO(q̇
+
o − q̇−o ) = JT

FOF0 − JT
COF1 − JT

SOF2 (17a)

MC(q̇
+
c − q̇−c ) = JT

OCF1 + J
T
MCF3 (17b)

MS(q̇
+
s − q̇−s ) = JT

OSF2 − JT
MSF3 (17c)

where

MO =

m0 0 0
0 m0 0
0 0 I0



MC =


m1 +m2 0 m2Lcc m2Lsc m2sc

0 m1 +m2 −m2Lsc −m2Lsc m2cc
m2Lcc −m2Lsc M3 + I1 M3 0
m2Lcc −m2Lsc M3 M3 0
m2sc m2cc 0 0 m2


and MS has the same form as MC by replacing sc and cc
with ss = sin(αs+θs2) and cs = cos(αs+θs2), respectively.

The contact impulses F0, F1, F2 should also satisfy the
friction constraint, which can be expressed as the following
linear inequality constraints:

NT
0 F0 ≥ 02×1, NT

1 F1 ≥ 02×1, NT
2 F2 ≥ 02×1 (18)

where

NT
0 =

[
1 µ
−1 µ

]
NT

1 =

[
µ sinαc + cosαc µ cosαc − sinαc

µ sinαc + cosαc −µ cosαc + sinαc

]
NT

2 =

[
µ sinαs + cosαs µ cosαs − sinαs

µ sinαs + cosαs −µ cosαs + sinαs

]
and µ is the friction coefficient.

To ensure pure rolling of the cylinder on the floor before
and after collision, we have the following equations

JFOq̇
−
o = 02×1 (19a)

JFOq̇
+
o = 02×1. (19b)

We also require no slip at the contact between the swing leg
and the cylinder after collision, i.e.,

JCOq̇
+
o − JOC q̇

+
c = 02×1. (20)

The supporting leg also maintains a nonslip contact with the
cylinder before and after collision. Thus,

JSOq̇
−
o − JOS q̇

−
s = 02×1 (21a)

JSOq̇
+
o − JOS q̇

+
s = 02×1. (21b)

Moreover, the linear velocities of the hip joint calculated
from the swing and supporting legs must be the same, i.e.,

JMS q̇
−
s − JMC q̇

−
c = 02×1 (22a)

JMS q̇
+
s − JMC q̇

+
c = 02×1. (22b)

IV. COMPUTING A CYCLIC WALKING GAIT

Let T denote a given step duration. We shall determine
an initial state xs0 =

[
θTs0 θ̇Ts0

]T
for the supporting leg

such that after the time T , the swing leg collides with the
cylinder and achieves the same initial state for the next step.
We can reduce this problem into an optimization problem
with respect to xs0 because the motion of the supporting leg
depends only on its initial state, as indicated by (5).

A. Cost Function of the Optimization

The cost function consists of two parts, i.e., the difference
between the initial and final CoM positions in a step and the
difference between the initial states of two successive steps.

Given xs0, from (5) we can obtain the final state of the
supporting leg after the time T , which is written as xsf =[
θTsf θ̇Tsf

]T
. The position of the CoM relative to the center

of the cylinder at a state xs can be calculated by

ps =

[
r0(sin θs01 − θs1 cos θs01) + L sin θs02
r0(cos θs01 + θs1 sin θs01) + L cos θs02

]
(23)

where θs01 = θs0 + θs1 and θs02 = θs01 + θs2. Let ps0 and
psf denote the CoM positions given by (23) at the initial
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state xs0 and the final state xsf , respectively. We expect
psf = ps0 such that θc0 = [θc0 θc1 θc2 lc]

T of the
swing leg before and after collision can equal the initial value
θs0 of the supporting leg. The error between ps0 and psf is
represented as

eCoM =
1

2
(psf − ps0)TWP (psf − ps0). (24)

Assume that θc0 reaches the same value as θs0. Then we
expect that θ̇c0 is also equal to θ̇s0. To determine θ̇c0, we
need to compute the collision model presented in Section III-
B. In computing the matrices MC , N1, JCO, JOC , JMC

in the collision model, we take xo = 0, yo = 0, xc =
r0 sin(θs0 + θs1) − r0θs1 cos(θs0 + θs1), yc = r0 cos(θs0 +
θs1) + r0θs1 sin(θs0 + θs1), αc = θs0 + θs1, and θc2 = θs2,
where θs0, θs1, and θs2 are the components of θs0. The
computation of MS , N2, JSO, JOS , and JMS is similar
except that θs0, θs1, and θs2 are the components of θsf .

In the collision model, the velocities q̇−o , q̇+o , q̇−c , q̇+c , q̇−s ,
q̇+s and the impulses F0, F1, F2, F3 are the quantities to be
determined. Here, q̇−o and q̇−s can be calculated from xsf as

q̇−o =
[
r0θ̇s0 0 θ̇s0

]T
(25)

q̇−s =
[
R11θ̇s0 +R12θ̇s1 R21θ̇s0 +R22θ̇s1 θ̇s01 θ̇s2 l̇s

]T
(26)

where R11 = r0(1 + cos θs01 + θs1 sin θs01), R12 =
r0θs1 sin θs01, R21 = r0(θs1 cos θs01 − sin θs01), R22 =
r0θs1 cos θs01, θs01 = θs0+θs1, θ̇s01 = θ̇s0+θ̇s1 and θs0, θs1,
θs2, θ̇s0, θ̇s1, and θ̇s2 are the components of xsf . It can be
verified that q̇−o and q̇−s satisfy (19a) and (21a), respectively.
The other contact constraints in (19)–(22) together with (17)
can be rewritten in the matrix form

Qq̇ = b (27)

where q̇ = [q̇+o q̇+s q̇+c q̇−c F0 F1 F2 F3]
T ∈ R26,

Q ∈ R23×26, b ∈ R23, and

Q =



MO 03×5 03×5 03×5 −JT
FO JT

CO JT
SO 03×2

05×3 05×5 −MC MC 05×2 JT
OC 05×2 JT

MC

05×3 MS 05×5 05×5 05×2 05×2 −JT
OS JT

MS
JFO 02×5 02×5 02×5 02×2 02×2 02×2 02×2

JCO 02×5 −JCO 02×5 02×2 02×2 02×2 02×2

JSO −JSO 02×5 02×5 02×2 02×2 02×2 02×2

02×3 02×5 02×5 JMC 02×2 02×2 02×2 02×2

02×3 JMS −JMC 02×5 02×2 02×2 02×2 02×2


b =

[(
MO q̇

−
o

)T
01×5

(
Msq̇

−
s

)T
01×2 01×2 01×2 01×2

(
JMS q̇

−
s

)T ]T
.

Equation (27) is underdetermined. The impulses F0, F1, F2

must also satisfy (18). From q̇+o and q̇+c we can derive

θ̇c0 =


0 0 1 0 0 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

[q̇+oq̇+c
]
= P q̇. (28)

We shall minimize the difference between θ̇c0 and θ̇s0, i.e.,

estate = minimize
1

2
‖P q̇ − θ̇s0‖2

subject to (18) and (27).
(29)

The minimum objective value estate of (29) gives the error
between θ̇c0 and θ̇s0 after collision, and it also gives the
error between xc0 and xs0, since θc0 is taken to be θs0.

Therefore, the cost function to be minimized is

E = eCoM + estate. (30)

From the above arguments, E is a function of xs0.

B. Constraints of the Optimization

Now we discuss the constraints on xs0. First, we re-
quire the contact point between the supporting foot and the
cylinder to be within the sole during the entire step. Let lh
and lt denote the distance between the ankle joint and the
heel and toe respectively. Then θ1 should be limited within
[−lh/r0, lt/r0]. From (5) we have θ1 = aT

2 xs0, where aT
2

is the second row of e(A−BK)t. Then we have

−lh/r0 ≤ min
t∈[0,T ]

aT
2 xs0, max

t∈[0,T ]
aT
2 xs0 ≤ lt/r0. (31)

Besides, we require the cylinder to roll at a desired
average rolling velocity θ̇d0 . From (5) this requirement can
be expressed as (

aT
1 − eT1

)
xs0 = θ̇d0T (32)

where aT
1 is the first row of e(A−BK)T and eT1 = [1 01×7].

Equation (32) implies that the initial state xs0 for achieving
a desired average velocity lies on a hyperplane with normal
a1 − e1 in the state space.

Combining the cost function (30) and the constraints (31)
and (32), we formulate the computation of the initial state
xs0 for cyclic walking as the following optimization problem

minimize E

subject to (31) and (32).
(33)

We pursue xs0, for which the minimum value of E is zero.

V. MAINTAINING A CYCLIC WALKING GAIT

Because of modeling errors and external disturbances, the
state of the supporting leg at the end of a walking cycle may
be different from the planned gait. Consequently, the swing
leg may not reach the desired states for a new walking cycle
before and after collision. In this section, we discuss how
to recompute its state so that the robot recovers the planned
cyclic gait.

A. Inverse Kinematics

The final CoM position psf , which can be obtained by
(23) with respect to the final state xsf of a cycle, may
slightly deviate from the initial value ps0. Then θc0 cannot
be the same as θs0 when the swing leg touches the cylinder.
Hence, we compute the inverse kinematics (IK) with respect
to psf and determine θc0. Here we use the pseudoinverse
method for the IK [29]. For higher numerical stability near
singularities, one can use damped least squares methods [30].

Similar to (23), the CoM position pc with respect to θc
can be written as

pc =

[
r0(sin θc01 − θc1 cos θc01) + L sin θc02
r0(cos θc01 + θc1 sin θc01) + L cos θc02

]
(34)
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where θc01 = θc0 + θc1 and θc02 = θc01 + θc2. Starting
with an initial value of θc0, which can be taken to be θs0,
the pseudoinverse method performs the following iteration
to compute θc0 such that pc0 = psf :

θc0 = θc0 + J
†(psf − pc0) (35)

where J = ∂pc/∂θc ∈ R2×4 is the Jacobian matrix of pc
with respect to θc and J† is the pseudoinverse of J ,

J =

[
r0(1 + cos θc01) + J1 J1 L cos θc02 sin θc02
J2 − r0 sin θc01 J2 −L sin θc02 cos θc02

]
J1 = r0θc1 sin θc01 + L cos θc02

J2 = r0θc1 cos θc01 − L sin θc02.

The iteration stops when ‖J†(psf − pc0)‖ is small enough.

B. Initial State for the Next Step

From the IK computation, we have obtained θc0, which
specifies the position of the swing leg touching the cylinder.
Now we determine θ̇c0 after collision to obtain the whole
initial state xc0 for the robot to walk another step.

Here the collision model (27) still works. We also expect
to achieve the desired average rolling velocity θ̇d0 . Thus
xc0 should satisfy (32), which can be rewritten as a linear
equality constraint on θ̇c0:

aT
12θ̇c0 = θ̇d0T −

(
aT
11 − [1 01×3]

)
θc0 (36)

where a11 and a12 contain the first and last four components
of a1, respectively. Combining (27), (28), and (36), we obtain[

Q
aT
12P

]
q̇ =

[
b

θ̇d0T −
(
aT
11 − [1 01×3]

)
θc0

]
. (37)

Once solving (37) for q̇, we can calculate θ̇c0 by (28).
Nevertheless, (37) is an underdetermined system, which
has an infinite number of solutions. In order to maintain
a planned cyclic gait, we pursue the solution to (37) that
minimizes the cost function defined as follow.

First, we wish to minimize the error in the CoM position
at the end of each step. From (5) and (28), the final state of
a step after collision can be written as

xcf = e(A−BK)T

[
θc0
P q̇

]
. (38)

Then we can compute the CoM position pcf at the end of the
step after collision as (23). Since θc0 has been determined by
the IK computation, from (38) we see that xcf is a function
of q̇ and so is pcf . Let x∗0 = [θ∗ θ̇∗]T be an optimal initial
state obtained by solving the optimization problem (33) and
p∗ the CoM position calculated by (23) with respect to x∗0.
Thus the error in the CoM position is represented as

eCoM =
1

2
(pcf − p)TWp(pcf − p) (39)

where p = (1− kp)psf + kpp
∗ and kp ∈ [0, 1].

We also intend to minimize the error in the initial state of
each step, which is represented as

estate =
1

2
(θ̇c0 − θ̇)TWs(θ̇c0 − θ̇) (40)

(a) (b)

Fig. 4. Distribution of optimal initial states in the state space. Blue and red
dots represent the optimal initial sates with smaller and larger values of the
cost function defined by (30).

(a) (b)

Fig. 5. Distribution of optimal initial states with smaller (marked in green)
and larger (marked in red) energy consumption for one step.

where θ̇ = (1− ks)θ̇s0 + ksθ̇
∗ and ks ∈ [0, 1].

Therefore, the cost function is defined as eCoM+estate and
the solution for q̇ is reduced to the optimization problem

minimize eCoM + estate

subject to (37) and (18).
(41)

Using larger values for kp and ks, the resulting gait may be
closer to the cyclic gait obtained from the optimization (33).

VI. SIMULATION RESULTS

A. Setup for Optimization

The parameters of the simplified dynamics model are
m0 = 157 kg, I0 = 20 kg ·m2, m1 = 4 kg, I1 =
0.05 kg ·m2, m2 = 61 kg, I2 = 12 kg ·m2, r0 =
0.5 m, and L0 = 0.8 m. We set the step time T = 0.5 s
and the desired average velocity θ̇d0 = 0.2 rad/s. The
upper and lower bounds on x0 are xlb

0 = [−π/4 −
0.15 − π/2 − π/2 − π/2 − π/2]T and xub

0 =
[0 0.15 π/2 π/2 π/2 π/2]T . We use the function fmincon
provided by the Matlab Optimization Toolbox to solve (33).

B. Optimal Cyclic Gait

Fig. 4 shows the optimal initial states with slightly differ-
ent minimized cost function values obtained by solving (33)
with random initial values for the function fmincon between
xlb
0 and xub

0 . Most of the optimal initial states have cost
function values below 10−8. In Fig. 5, the optimal initial
states are colored according to the energy consumed in the
step, which is estimated by the squared sum of ankle torques
at every time step. It is clear that the gait with smaller initial
|θ0+θ1| has lower energy consumption, probably because the
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(a) (b)

Fig. 6. Optimal initial states colored according to the change in the cost
function while shifting optimal initial states in the normal direction. The
yellow (red) color means that the change is relatively smaller (bigger).

(a) (b)

(c) (d)

Fig. 7. One hundred walking cycles starting with an optimal initial state.
Each curve from a dot to a square represents a step. The red color denotes
the first step starting with the optimal initial state, while the blue color
denotes the last step.

robot stands closer to the top of the cylinder and possesses
larger potential energy. Equation (32) shows that the initial
state lies on a hyperplane with normal a1 − e1. We slightly
change each optimal initial state along the normal by the
same amount and then plot optimal initial states in Fig. 6
colored according to the change of the cost function, which
implies the robustness of a planned cyclic gait. It can be seen
that the changes for most optimal initial states are similar.

Fig. 7 depicts 100 step cycles starting with an arbitrary
optimal initial state. Due to the numerical error in the op-
timization, the spring-damper motion slightly deviates from
the planned motion, as shown in Fig. 7(d). From Fig. 7(a)
we see that the cylinder rolls 0.1 rad in one cycle, which
implies that the average velocity is 0.2 rad/s and reaches
the desired value, as the cycle period is 0.5 s.

C. Simulation Under Disturbance

We change the mass and inertia of the simulated model to
m2 = 70 kg and I2 = 15 kg ·m2 to emulate the modeling
error. We also add a Gaussian random error with zero mean
and deviation of 0.2 N ·m as the noise to the ankle torque at
every time step. By the method proposed in Section V with

(a) (b)

(c) (d)

Fig. 8. Walking cycles under disturbances in the model and the ankle torque.
The red color denotes the first step starting with the optimal initial state,
while the green and blue colors denote the last two steps, which are slightly
different due to the random disturbance.

(a) (b)

(c) (d)

Fig. 9. Walking cycles with desired average velocity equal to 0.4 s−1.

kp = 0.2 and ks = 0.2, the robot can still achieve stable
cycles, as shown in Fig. 8. The cycles are slightly different
from each other and those shown in Fig. 7 because of the
disturbances in the model and the ankle torque. Nevertheless,
the average velocity remains close to the desired value.

By our methods, we can achieve cyclic gaits with different
average velocities even under larger disturbances, as shown
in Fig. 9, where θ̇d0 = 0.4 s−1, m2 = 80 kg and I2 =
20 kg ·m2, and the deviation of the Gaussian random noise
to the ankle torque is 0.5 N ·m.

Fig. 10 displays the snapshots of one step of the two cyclic
gaits, while the accompanying video exhibits 20 steps.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of generating
and controlling cyclic bipedal walk on a rolling cylinder
in the sagittal plane. We designed a balance control for a
simplified linear model of the robot and derived a collision
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(a)

(b)

Fig. 10. Snapshots of one cyclic step with average velocity equal to (a)
0.2 rad/s and (b) 0.4 rad/s under different disturbances.

model for the supporting leg exchange. Then we established
an optimization problem to compute the optimal initial state
such that the robot can achieve a cyclic walking gait on
the cylinder with a desired average rolling velocity. In
consideration of modeling errors and external disturbance,
we also proposed a method for determining an appropriate
state of the swing leg before collision to maintain the robot
in a stable cyclic gait. The effectiveness of our methods is
demonstrated with simulations.

Our ultimate goal is to realize this motion on a real robot.
To do this, there are many other issues that need to be
considered. First, we shall explore how to bring the robot to
a planned optimal initial state for a cyclic walk. Second, we
would like to conduct the simulation with full-body dynamics
rather than the simplified linear model. Third, we need to add
an observer in our balance controller such that the state in
the controller can keep close to the real state of the robot.
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