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ABSTRACT

In this paper we introduce a simplified architecture for gated
recurrent neural networks that can be used in single-pass ap-
plications, where word-spotting needs to be done in real-time
and phoneme-level information is not available for training.
The network operates as a self-contained block in a strictly
forward-pass configuration to directly generate keyword la-
bels. We call these simple networks causal networks, where
the current output is only weighted by the the past inputs and
outputs. Since the basic network has a simpler architecture as
compared to traditional memory networks used in keyword
spotting, it also requires less data to train. Experiments on a
standard speech database highlight the behavior and efficacy
of such networks. Comparisons with a standard HMM-based
keyword spotter show that these networks, while simple, are
still more accurate.

Index Terms— Continuous speech, Online word-spotting,
Speech recognition, Recurrent neural networks, Gated net-
works

1. INTRODUCTION

One of the key problems in speech recognition is that of word
spotting — detecting whether and where in a recording a spec-
ified word occurs. The task itself may take two forms. In
one, the word to be spotted is specified only as text. Here
word spotting must employ a speech recognition based for-
malism: the spotter must convert the text to an appropriate
sequence of phonemes, and the recording must be searched
for the sequence of phonemes in the word [1]. The second
form of word spotting is example based: a set of examples
of the word are provided. From these the spotter must learn
to detect the word in the audio. Unlike the text-based ap-
proaches, where the basic patterns recognized are phonetic
and words must be built over them, the example-based meth-
ods generally model the word in its entirety. While a text-
based method can be very flexible (keywords can be changed
easily), example-based retrieval can be much more accurate,
e.g. [2][3].

In this paper we address the problem of example-based
word spotting. Although the literature on example-based

spotting is significantly smaller than the literature on text-
based specification, there have nevertheless been several
methods proposed. Many of these attempt to mimic the text-
based detection mechanism — attempting to derive a phoneme
sequence or lattice, which is then used along with the pho-
netic models in an automatic speech recognizer [4]. Other
methods explicitly build detectors or classifiers for the words
themselves, based on a variety of instantaneous and long-
term features, without explicitly considering the phonetic
composition [5]. The latter approach is particularly useful
when one does not have access to a large vocabulary sys-
tem; even otherwise, it can in fact be more accurate than
phoneme-lattice-conversion based methods.

Lately, neural-network based techniques have been found
to be highly effective for speech recognition tasks, with a
number of different approaches employing different network
architectures [6]-[8]. Of these, the gated recurrent neural net-
works (RNN) or their variants which have some kind of mem-
ory or recurrence structure built-in have been most successful.
One reason for their success can be attributed to their abil-
ity to capture the clear temporal structure present in speech
signals. Conventional speech recognition systems attempt to
capture this using a hidden Markov model. HMMs effectively
quantize the underlying state space for the speech and repre-
sent the dynamics by characterizing the stochastic transitions
through these states. RNN models characterize the dynam-
ics more directly, through first- or higher-order recurrence
[9]. However modeling temporal structure through direct re-
currence between hidden units in a network tends to be in-
effective — learning of the recurrence suffers from the well-
known “vanishing-gradient” (or exploding-gradient) problem
[10]. The gated RNN or more specifically the long-short-term
memory (LSTM) neuronal structure solves this problem by
carrying temporal recurrence through gates and storing it over
a longer time period in its memory structure called the Con-
stant Error Carousel (CEC) [11]. By combining the outputs
of a gated RNN which works on vectors in the forward direc-
tion , i.e., from 1 to 1" and another network which forms the
backward component since it works on vectors in the reverse
direction, i.e., from time 7" to 1 we obtain an anti-causal struc-
ture also called the bi-directional long-short-term memory
(BLSTM) neural networks, which capture both causal and



anti-causal recurrence. BLSTMs have been employed with
particular success for word spotting tasks. In speech, they
have been used primarily to model phonemes [12]. Phonemes
have regular, but relatively simple structures that are mod-
eled well by the recurrence in BLSTMs. Word-spotting with
BLSTMs has focused on text- or phoneme-sequence-based
word specification: the BLSTM first generates a phoneme se-
quence or lattice from learned phoneme-level models, and the
word spotter either scans the phoneme lattice generated with
the BLSTMs for the specified words [13], or uses a second-
level discriminative classifier that employs features derived
from the lattice to detect the words [14]. As such, these
methods are two-level classifiers. The BLSTMs require en-
tire recording sequences to be able to do the forward and
backward processing, and the secondary classifiers may re-
quire further passes through the phoneme sequences or lat-
tices to do the word spotting. Thus these two-level classifi-
cation strategies might prove to be a deterrent for online pro-
cessing tasks.

In the work presented here, we employ an RNN with
a simple forward-gated structure for example-based online
word spotting. Unlike previously described approaches, we
assume no knowledge of underlying phonetic structure, and
no additional information about the language besides the ex-
amples of specified words; instead the models are entirely
segment based, with each segment modeling an entire word.
We do not explicitly find word boundaries. We segment the
audio into short, equal-length segments and assign full-word
labels to each segment depending on some criteria that we
describe later in this paper. Similarly, for online operability
during the testing phase, we do not assume the knowledge
of word boundaries. Instead we segment the audio into short
segments, and classify the individual segments. This ap-
proach has inherent problems during training: for example,
for training the network, we dont know if it is necessary to
capture the temporal sequence of entire words for spotting
them, or whether it is sufficient to model words in sections.
Furthermore, it is unclear how sensitive the classifier will be
to annotation that is, exactly how accurately the boundaries
of training instances of words must be known in order to train
models for them. Even if we use segments that span entire
words, we need to investigate whether a simple forward-
gated structure will be an effective model for the temporal
structure in words (which can be significantly more complex
than phonemes). It is also not clear, within this framework,
whether a causal formulation could be sufficient for the over-
all classification. If we automatically block the recording
into segments of equal length to enable online processing,
we have to contend with the fact that words may cross the
segment boundaries in an unpredictable manner; under such
circumstances, the effectiveness of our network could be
compromised. We investigate these issues in this paper, and
show that the block-processing mechanism we propose with
our simple network is an effective strategy for word spot-

ting. We find that the network is able to capture the temporal
structure of the words well, despite the issues mentioned
above. Moreover, it is also remarkably robust to variations
introduced by segmentation and imprecision in marking the
boundaries of training instances. A much better performance
in terms of false alarm rates as measured by the mean time
between false alarms (MTBFA) is obtained, which is signif-
icantly superior to that obtained with HMMs under similar
settings. Furthermore, we also show that the gated RNNs are
more robust to noise as compared to the HMM models.

2. GATED RECURRENT NEURAL NETWORK

An RNN has a simple recurrence structure intended to capture
temporal structure. However, as mentioned earlier, modeling
or learning temporal structure through direct recurrence be-
tween hidden units in an RNN is associated with a computa-
tional problem: to analyze a time series of 7" vectors, the RNN
has T" “columns”, one for each time instant. The inputs to the
hidden units at any time are derived directly from the units
at the previous instance. The problem with this simple recur-
rence is that the relationship of error at time ¢ to the input at
time ¢ —n vanishes quickly with increasing n — this is the well
known “vanishing-gradient” (or exploding-gradient) problem
[10]. Gated RNNs solve the vanishing gradient problem men-
tioned above by carrying temporal recurrence through gates
[11]. Each gate has a binary value for allowing/disallowing
inputs to it for factoring into the output at the current time in-
stant. When gradients become too small, gates simply disal-
low the inputs to be continued into the recurrence. Figure 1A
illustrates a gated RNN. Each gated neuron consists of four
components. The architecture is centered around the main
“memory” component or the CEC. The excitation of the CEC
is gated by the “input” and “forget” gates, while its output is
gated by the “output” gate. The recurrence relations are given
below. In the following equations we use the generic nota-
tion: to represent the input to a gate of type Z, where Z could
be ¢ (for input), f for (forget), o (for output), or ¢ for inputs to
the CEC.
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Fig. 1. (A) A gated RNN memory neuron. (B) Bi-directional network.
FRNNSs are the units in the forward network, while BRNNS are the units in
the backward network.



I2(t) = Wix(t) + Whh(t — 1) (1)

x(t) is the input vector at time t. W% represents a matrix of
weights from input vector x to the set of gates of type Z. h(t)
is the vector of gated outputs from all network units at time ¢,
and W}ZL is a matrix of weights from the gated outputs to the
gates of type Z. We denote the vector of CEC outputs at ¢ as
c(t).

The input and forget gates at ¢ take on values that depend
on CEC outputs and gated outputs at £ — 1 as follows:

i(t) = o(L;(t) + Wic(t —1) + by) 2)
£(t) = o(Is(t) + Wie(t —1) +by) 3)

Here i(t) represents the vector of input gate values at ¢ and
f(t) represents the vector of forget gate values. The o denotes
a sigmoid which ensures the output of the gate is in the range
0,1]. W¢ and W are diagonal peephole weight matrices
from CEC:s to input and forget gates respectively, and b, and
b are the biases at all input and forget gates, respectively.

The input and forget gates govern the inputs to the CECs.
The CEC output c(¢) at any time also affects the output gates
o(t) at that time, which then gate the CEC output itself to
generate the gated output:

c(t)=£f(t) ©c(t —1)+i(t) © tanh(I.(t) + b.) (@]
o(t) = o(I,(t) + Wec(t) + b,) %)
h(t) = o(t) ® tanh(c(t)) (6)

Here © represents component-wise multiplication. Thus all
three gates (2, (3) and (5) work together to influence what is
stored as memory in the cell at time ¢ denoted as c(t) and how
this memory influences the final gated outputs h(¢).

These gated neuronal units can form one or more layers
in an RNN. Their outputs then feed into a final output layer.

In a bi-directional gated RNN [9], also shown in Figure
1B, such gated units are utilized to capture both forward and
backward recurrences. The two recurrences are independent
of one another, but the gated output values of both networks
combine to contribute to the final output of the network.

3. INCREMENTAL EXAMPLE-BASED WORD
SPOTTING

In example-based word spotting, we must distinguish be-
tween the target word(s), and everything else. In addition, the
word spotting must be performed on blocked or segmented
audio for incremental processing. Traditional bidirectional
gated networks do not require explicit segmentation of each
label for training. They can automatically determine label
boundaries during the training process by using a CTC like
algorithm [7]. Our background model on the other hand, is a
catch-all for all sounds that are not keywords and therefore,
the model doesn’t have a distinctive structure, that can be uti-
lized or learnt effectively for segmentation. For this reason,

in our case training from unsegmented data and allowing any
algorithm to do automatic segmentation is not expected to
be as effective. We therefore need to pre-segment the data
for training an online word spotting network. Our approach
is as follows: We employ the gated RNN described above
in a forward-only configuration, with multiple output units.
Each output unit represents a binary encoding of the presence
(or absence) of one of the target words. One additional unit
encodes the background. We train models from segmented
audio. We assign relevant word labels to segments within the
target words, and call everything else (including words that
are not target words) as ”‘background”’. We use a uniform
segmentation, i.e., we segment the audio uniformly into seg-
ments of 7" seconds with an overlap of T'/2 seconds. If half
or more than half the segment under consideration contains a
portion of a target word, it is labeled as containing the word,
otherwise it is labeled as background. Clearly, words may
span multiple segments in this scenario. In such a case, the
history of the word is carried across segments by the CEC
of the gated RNN. Training is performed through back prop-
agation to minimize the Kullback-Leibler (KL) divergence
between the labels output by the network and the vector of
true labels for the segments. Detection of the target word is
performed simply by classifying each segment into either one
of the target words, or the background. Additional details are
presented in the experimental section.

As a comparator, in the experimental section below we
provide a comparison to the oracle segmentation scenario,
wherein the precise time-stamps within which the target
words occur are assumed to be known. Thus, segments of
audio corresponding to the word were provided as positive
instances of the target word and segments of audio corre-
sponding to the background were presented as instances of
background. In addition we compare the pros and cons of
using a forward only model to a bi-directional model.

4. EXPERIMENTS

Experiments were carried out on the TIMIT database. For
our experiments, we selected the six most frequently occur-
ring words in the corpus: greasy, oily, water, carry, dark and
wash. These words were selected so as to have a comparison
of our model with the results in [2]. All other words were
considered to be part of the background. The training data
used was the TIMIT training set, comprising 3696 sentences
spoken by 462 speakers across eight dialects. We used two-
thirds of the original TIMIT train set for training the network
and the remaining one-third was used as the cross-validation
set. The test set was the same as the original TIMIT test set
comprising 1344 utterances from 168 speakers. There were
a total of about 460 training instances of each keyword with
300 in the training set and about 160 in the cross validation
set. The test set had 168 instances of each keyword. All the
other words made up the background garbage model.



For all experiments, the speech signal was transformed
into a sequence of 39- dimensional feature vectors consist-
ing of 13-dimensional MFCC vectors appended with their A
and AA terms, computed from analysis windows of 25ms,
with a 50% overlap between frames. In order to evaluate the
ability of the units to capture the detailed temporal structure
in words, we used a relatively small network with 26 hidden
units, and as many output neurons as the number of output
labels, that is, the number of keywords + one for background.
The importance of the segmentation length: In the first ex-
periment we evaluated the effect of segment length on per-
formance, since this is an important parameter when consid-
ering the buffer size in an online speech recognition setting.
Simply utilizing the gated-network to perform segmentation
intrinsically resulted in extremely poor performance. Thus,
we explored training the network with four different segment
lengths. The segment lengths that were used were 156 ms,
306 ms, 500 ms and 1s, since the average word length across
all words in the train set was about 306 ms. Fig. 2, lists
the recall (in %) and MTBFA (in ms) for different segment
lengths as well as for an oracle segmentation and HMM mod-
els. With respect to gated RNN models, model A corresponds
to a forward model while model B is the bidirectional anti-
causal model. In case of the HMM, model A has an extended
dictionary with all other words mapped to garbage, while in
model B, the dictionary only contains the keywords and one
alternate pronunciation for garbage. The HMM models used
were 3-state context dependent phoneme models with 3000
senones with 8 gaussians per state and a diagonal covariance
matrix. As can be seen in Fig.2, the plots peak for the or-
acle model, both in terms of MTBFA and recall. Thus, as
expected, the gated RNN trained on oracle segmented data
performs much better than uniform segment models as well
as the HMM models. This indicates that selecting a segment
length which is the average size of the keywords might be a
better choice as compared to selecting a word size that spans
an average length of all words in the training set. If we com-
pare the uniform segment models, we see that the best perfor-
mance overall, in terms of MTBFA and recall rates is given
by the 500 ms model across all keywords, even though the
Is models performs better than the 500 ms model for cer-
tain keywords, it has a greater variance across keywords and
thus we believe that the 500 ms is the best in terms of the
uniform segment length. Moreover, the MTBFA rates that
are achieved by this model, which requires no segmentation
and no word boundary information, is significantly better than
MTBFA rates achieved by an HMM. However, the 500 ms
uniform segment model does lose out on recall by about 8%
as compared to HMM model B, which is not a very heavy
penalty to pay for the significantly lower false alarm rates or
higher MTBFA, since a missed detection is not as expensive
as a false alarm for this task.

The impact of bi-directionality: In this set of experiments,
we wanted to compare the performance of a bidirectional

model as compared to a forward model, to see what is the op-
timal performance one can obtain from a gated structure. Fig
2 compares the two. We see that across all segment lengths,
the bidirectional network has some performance improve-
ments as compared to the forward only model. Both models
seem to have similar recall rates across segment lengths,
however, the bidirectional model gains slightly in terms of
precision which in turn leads to higher MTBFA. This shows
us that by adding in the extra backward pass, one can increase
the precision, without having too much of a fallback on the
recall rates. However, under this scenario we would no longer
have a purely causal system and there would always be some
lag between the input and the decision of the network.
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Fig. 2. Comparison of two models trained with 4 segment lengths (756,
306, 500 and 1000 ms). Also shown are performance obtained with oracle
segmentation (Ocl) and HMMs. Model A- Forward-only gated RNN. Model
B - Bidirectional gated RNN.

The effect of training size: To learn how the network per-
formance scales with an increase in the training set size, we
tested for different sizes of the training set (in terms of num-
ber of keywords used for training). The total number of key-
words in the training set was about 300 keywords of each type
from a total of 31942 words with 30130 words comprising the
garbage words. The results as are shown in Fig. 3 were ob-
tained by varying the number of instances of keywords from
50 keywords of each type, which included a total of 4915
words of which 4635 were garbage words, to 300 instances
of keywords. As can be seen, the main effect of increasing
the training set size is on the recall rates which increases lin-
early in most cases with respect to the increase in training set
size across all keywords.

Noise robustness: Table 1 compares the performance of the
best gated RNN model with the HMM for two noise levels
5db and 10db. the noise was mixed noise of various kinds
which included other speech and music. The models were
trained on this noisy speech. We see that we get significantly
higher recall rates as compared to HMM models, without
much loss in precision as seen by the slightly lower MTBFA
rates for gated RNN model. This clearly shows us that the



Table 1. Comparison of noise robustness of gated RNN and HMM for
two noise levels 5db and 10db of mixed noise Legend: Carry (C),Water
(W),Greasy (G) and Oily (O) Dark (D) and Wash (Wa)

Noise/ Key | Bidirectional-gated RNN HMM
Rec MTBFA(s) Rec  MTBFA(s)
5db C 0.828 555.05 | 0.272 1179.48
w 0.682 786.33 | 0.194 1572.64
G 0.779 1048.44 | 0.315 1347.98
o 0.762 124.157 | 0.417 131.05
D 0.789 496.63 | 0.169 2358.96
Wa | 0.809 629.06 | 0.178 9435.84
10db C 0.887 314.53 | 0.432 725.83
w 0.830 629.06 | 0.329 857.80
G 0.851 3145.33 | 0.524 673.989
(¢} 0.762 337.0 | 0.583 88.18
D 0.865 589.75 | 0.257 2358.96
Wa | 0.869 1048.44 | 0.327 2358.96
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Fig. 3. Effect of increasing number of training instances of keywords for 6
different keywords.

gated RNN models are much more robust to noise as com-
pared to the HMM models, which might be attributed to the
sequence structure that is learnt by these gated memory net-
works.

The importance of the garbage model: To have a robust
word spotter, it is of paramount importance that the back-
ground be modeled well. We can model the garbage in two
ways: using a generic model, which simply encompasses all
alternate words, or through a more structured model which
explicitly models some alternate words, in addition to the
generic background. Table 2 compares these two methods.
Here, for each of our six target words we trained two clas-
sifiers, one a binary word-vs-background classifier, and a
second multi-class classifier, where the word was the pri-
mary target and all other words (the remaining target words)
were grouped with the background. Comparing the recall
and MTBFA rates in Table 2 column 1 to recall rates in col-
umn 2 corresponding to the generic garbage model, we see
that across the different keywords, there is no set pattern as
to which model performs better. However, in most cases it
has comparable recall and false alarm rates. Thus, choosing
which model to use would depend more on our application,

since the structured model would afford us more flexibility to
change keywords on the fly as it has one separate model for
each keyword. However, for the generic model, a change of
keywords would mean retraining the entire model.

Table 2. Comparison of structured garbage model for the different key-
words using 500 ms uniform segmented training data.. Legend: Carry
(C),Water (W),Greasy (G) and Oily (O) Dark (D) and Wash (Wa)

Key Structured Model Generic Model
Rec  MTBFA(s) | Rec  MTBFA(s)
C 0.853 277.53 0.858 248.31
W | 0.819 725.85 0.86 428.90
G 0.80 496.63 0.827 629.06
(6] 0.846 188.72 0.81 209.69
D 0.860 362.92 0.86 496.63
Wa | 0.876 269.6 0.857 449.33
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Fig. 4. Plots of the input to hidden weights and hidden to hidden weights to
the cell input for networks with gated RNN blocks, tanh activation function,
and logistic activation function

The impact of memory gating: The gated RNN introduces
many additional parameters compared to a simple recurrent
network, mainly due to the weights associated with all the
gates. The benefit of these gates and the memory structure
they protect has generally been taken for granted; here we
confirm the advantage. Figure 5 compares a conventional
RNN with two different types of hidden activations, a tanh
and sigmoid activation function with a gated RNN. The gated
RNN clearly outperforms other models.

In addition, Figure 4 shows learned weight matrices for
different RNNs’ activation functions, and compares them
with the gated RNN. Since neurons in a neural network effec-
tively act as matched filters it is interesting to note what they
have learned as the basic patterns in their weight matrices.
We have performed an IDCT to invert the patterns from the
quefrency domain to the frequency domain. We note that
for the gated RNN models, the neurons strongly accept or
reject frequencies, presumably those that uniquely identify
the target words. The conventional RNN activations, on the
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other hand, show a more uniform structure, demonstrating a
reduced ability to learn discriminative features. The distinc-
tions are particularly stark for the weights on the recurrent
connections. The gating functions appear to introduce a key
discriminative ability, and are in fact necessary for good
accuracy and to prevent the recurrent (hidden-to-hidden) con-
nections from getting saturated, even for memories that must
span only a fraction of a second.

5. DISCUSSION

This paper proposes and evaluates a simple sectioned gated
RNN architecture for example-based word spotting. Unlike
[3] and [13] solutions that also use gated memory networks,
the proposed approach does not require the use of a secondary
algorithm like the CTC algorithm to carry out the sequence
labeling over the classified phone labels. Instead, in our ap-
proach we directly classify the input data into either target
or background words in a left-to-right online manner. The
paper investigates various factors that matter in this process
- such as optimal segment or buffer size to consider, appro-
priate background model, issues relating to size of training
set and noise robustness etc. It was found that selecting an
appropriate buffer size plays an important role in affecting
false alarm and recall rates. We found that the best segment
length overall lies in a range corresponding to the average
duration of keywords in the training set. Modeling the back-
ground appropriately was an issue that was also investigated.
It was found that across keywords, there wasn’t really a clear
winner as to which was the appropriate method to model the
garbage. The structured garbage model has a slight advantage
over more detailed, generic models for detecting specific key-
words. However, this difference is not very large, and in sys-
tems where simple training is desired, a generic background
model should serve the purpose equally well. We note that
the gated RNN, even when applied in a blocked fashion, does
provide improved recall and false alarm rates. The effect on
the network performance with an increase in training set size
on the other hand shows a linear increase in the recall rates.

In addition, the biggest advantage the gated RNN network
seems to have as compared to HMM'’s is their robustness to
noise. In the blocked processing that we introduce, words
may span segment boundaries. We observe that the gating
mitigates many of the ill-effects of this gross representation
as seen by comparing a gated RNN vs. a non-gated RNN.
Finally, in spite of the very simple model structures used, we
achieve good performance, obtaining an effective false alarm
rate of less than one per 500 seconds on an average at rela-
tively low missed detection rates. In future we plan to inves-
tigate mechanisms for carrying information across segments,
minimizing the training examples needed, and improving ro-
bustness to noise.
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