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Abstract

In unsupervised semantic role labeling,
identifying the role of an argument is usu-
ally informed by its dependency relation
with the predicate. In this work, we pro-
pose a neural model to learn argument
embeddings from the context by explic-
itly incorporating dependency relations as
multiplicative factors, which bias argu-
ment embeddings according to their de-
pendency roles. Our model outperforms
existing state-of-the-art embeddings in un-
supervised semantic role induction on the
CoNLL 2008 dataset and the SimLex999
word similarity task. Qualitative results
demonstrate our model can effectively bias
argument embeddings based on their de-
pendency role.

1 Introduction

Semantic role labeling (SRL) aims to identify
predicate-argument structures of a sentence. The
following example shows the arguments labeled
with the roles A0 (typically the agent of an action)
and A1 (typically the patient of an action), as well
as the predicate in bold.

[Little Willy A0] broke [a window A1].

As manual annotations are expensive and time-
consuming, supervised approaches (Gildea and
Jurafsky, 2002; Xue and Palmer, 2004; Pradhan
et al., 2005; Punyakanok et al., 2008; Das et al.,
2010; Das et al., 2014) to this problem are held
back by limited coverage of available gold anno-
tations (Palmer and Sporleder, 2010). SRL per-
formance decreases remarkably when applied to
out-of-domain data (Pradhan et al., 2008).

Unsupervised SRL offer a promising alternative
(Lang and Lapata, 2011; Titov and Klementiev,

2012; Garg and Henderson, 2012; Lang and La-
pata, 2014; Titov and Khoddam, 2015). It is com-
monly formalized as a clustering problem, where
each cluster represents an induced semantic role.
Such clustering is usually performed through man-
ually defined semantic and syntactic features de-
fined over argument instances. However, the rep-
resentation based on these features are usually
sparse and difficult to generalize.

Inspired by the recent success of distributed
word representations (Mikolov et al., 2013; Levy
and Goldberg, 2014; Pennington et al., 2014), we
introduce two unsupervised models that learn em-
beddings of arguments, predicates, and syntac-
tic dependency relations between them. The em-
beddings are learned by predicting each argument
from its context, which includes the predicate and
other arguments in the same sentence. Driven
by the importance of syntactic dependency rela-
tions in SRL, we explicitly model dependencies
as multiplicative factors in neural networks, yield-
ing more succinct models than existing represen-
tation learning methods employing dependencies
(Levy and Goldberg, 2014; Woodsend and Lap-
ata, 2015). The learned argument embeddings are
then clustered and are evaluated by the clusters’
agreement with ground truth labels.

On unsupervised SRL, our models outperform
the state of the art by Woodsend and Lapata (2015)
on gold parses and Titov and Khoddam (2015) on
automatic parses. Qualitative results suggest our
model is effective in biasing argument embeddings
toward a specific dependency relation.

2 Related Work

There has been growing interest in using neu-
ral networks and representation learning for su-
pervised and unsupervised SRL (Collobert et al.,
2011; Hermann et al., 2014; Zhou and Xu, 2015;
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Figure 1: (a): The SYMDEP model. (b): The ASYMDEP model. (c): An example of how embeddings
relate to the parse tree. In SYMDEP, the biasing of dependency is uniformly applied to all argument
embeddings. In ASYMDEP, they are concentrated on one side of the dot product.

FitzGerald et al., 2015). Closely related to our
work, Woodsend and Lapata (2015) concatenate
one hot features of dependency, POS-tag and a dis-
tributed representation for head word and project
the concatenation onto a dense feature vector
space. Instead of using dependency relations as
one-hot vectors, we explicitly model the multi-
plicative compositionality between arguments and
dependencies, and investigate two different com-
positionality configurations.

Our model is related to Levy and Goldberg
(2014) who use dependency relations in learn-
ing word embeddings. In comparison, our mod-
els separate the representation of dependency rela-
tions and arguments, thereby allow the same word
in different relations to share weights in order to
reduce model parameters and data sparsity.

Besides unsupervised approaches, semi-
supervised SRL provides another means for
overcoming shortage of annotation. Fürstenau
and Lapata (2012) grow an annotated corpus by
aligning parts of an annotated sentence to unanno-
tated sentences with binary integer linear program
and copying the annotation over. Kshirsagar
et al. (2015) use both FrameNet and PropBank
annotations to train a classifier for FrameNet.

3 Approach

Most unsupervised approaches to SRL perform
the following two steps: (1) identifying the ar-
guments of the predicate and (2) assigning argu-
ments to unlabeled roles, such as argument clus-
ters. Step (1) can be usually tackled with heuristic
rules (Lang and Lapata, 2014). In this paper, we
focus on tackling step (2) by creating clusters of
arguments that belongs to the same semantic role.
As we assume PropBank-style roles (Kingsbury
and Palmer, 2002), our models allocate a separate
set of role clusters for each predicate and assign its

arguments to the clusters. We evaluate the results
by the overlapping between the induced clusters
and PropBank-style gold labels.

The example below suggests that SRL requires
more than just lexical embeddings.

[A car A1] is hit by [another car A0].

The A0 and A1 roles are very similar lexically, but
their dependency relations to the predicate differ.
To allow the same lexical embedding to shift ac-
cording to different relations to the predicate, we
propose the following models.

3.1 Models
Following the framework of CBOW (Mikolov et
al., 2013), our models predict an argument by
its context, which includes surrounding arguments
and the predicate.

Let vt be the embedding of the tth argument
in a sentence, and ut the embedding of the ar-
gument when it is part of the context. Let
up be the embedding of the predicate. uc =
{ut−k, . . . ,ut−1,ut+1, . . . ,ut+k} are the vectors
surrounding the tth argument with a window of
size k.1 The prediction of the tth argument is:

p(vt|up,uc) ∝ exp(f(vt)
ᵀg(up,uc)) (1)

where f(·) and g(·) are two transformation func-
tions of the target argument embedding and con-
text vectors respectively.

We further associate a dependency relation with
each argument (explained in more details in §4).
Let matrix Dt encode the biasing effect resulting
from the dependency relation between the tth argu-
ment and its predicate, and Et be the correspond-
ing dependency matrix for the tth argument if it is

1To be precise, the embeddings are indexed by the argu-
ments, which are then indexed by their positions, like uw(t).
Here we omit w. The same convention applies to dependency
matrices, which are indexed by the dependency label first.



used as a context. We define a ⊗ operator:

vt ⊗Dt , tanh (Dtvt)

ut ⊗Et , tanh (Etut) ,
(2)

where tanh(·) is the element-wise tanh function.
Eq. 2 composes an argument and its dependency
with a multiplicative nonlinear operation. The
multiplicative formulation encourages the decou-
pling of dependencies and arguments, which is
useful in learning representations tightly focused
on lexical and relational semantics, respectively.

Symmetric-Dependency. In our first model,
we apply the dependency multiplication to all ar-
guments. We have

f1(vt) = vt ⊗Dt (3)

g1(u
p,uc) = up ⊗Ep +

∑
ui∈uc

ui ⊗Ei (4)

This model is named Symmetric-Dependency
(SYMDEP) for the symmetric use of ⊗. Since the
predicate does not have an dependency with itself,
we let Ep = I . Generally, ∀i,Ei 6= I .

Asymmetric-Dependency. An alternative
model is to concentrate the dependency relations’
effects by shifting the dependency of the predicted
argument from f(·) to g(·), thereby concentrating
all ⊗ operations to one function:

g2(u
p,uc) = (up⊗Ep+

∑
ui∈uc

ui⊗Ei)⊗Dt (5)

f2(vt) = vt (6)

This model is named Asymmetric-Dependency or
ASYMDEP. Figure 1 shows the two models side
by side. Note that Eq. 5 actually defines a feed-
forward neural network structure g2(u

p,uc) for
predicting arguments. Consider the prediction
function defined in Eq. 1, these two models will
be equivalent if we eliminate all nonlinearities in-
troduced by tanh(·).

3.2 Clustering Arguments

In the final step of semantic role induction, we
perform agglomerative clustering on the learned
embeddings of arguments. We first create a num-
ber of seed clusters based on syntactic positions
(Lang and Lapata, 2014), which are hierarchically
merged. Similar to Lang and Lapata (2011), we
define the similarity between clusters as the cosine
similarity (CosSim) between the centroids with

a penalty for clustering two arguments from the
same sentence into the same role. Consider two
clusters C and C ′ with the centroids x and y re-
spectively, their similarity is:

S(C,C ′) = CosSim(x,y)−α ·pen(C,C ′) (7)

where α is heuristically set to 1.
To compute the penalty, let V (C,C ′) be the set

of arguments ai ∈ C such that ai appears in the
same sentence with another argument aj ∈ C ′.
We have

pen(C,C ′) =
|V (C,C ′)|+ |V (C ′, C)|

|C|+ |C ′|
(8)

where | · | is set cardinality. When this penalty is
large, the clusters C and C ′ will appear dissimilar,
so it becomes difficult to merge them into the same
cluster, preventing ai and aj from appearing in the
same cluster.

4 Experiments

We evaluate our models in unsupervised SRL and
compare the effectiveness our approach in model-
ing dependency relations with the previous work.

4.1 Setup
Our models are trained on 24 million tokens and
1 million sentences from the North American
News Text corpus (Graff, 1995). We use MATE
(Björkelund et al., 2009) to parse the dependency
tree and identify predicates and arguments. Em-
beddings of head words are the only feature we use
in clustering. Dependency matrices are restricted
to contain only diagonal terms. The vocabulary
sizes for arguments and predicates are 10K and
5K respectively. We hand-picked the dimension
of embeddings to be 50 for all models.

We take the first dependency relation on the
path from an argument’s head word to the predi-
cate as its dependency label, considering the de-
pendency’s direction. For example, the label for
the first car in Figure 1(c) is SBJ−1. We use neg-
ative sampling (Mikolov et al., 2013) to approx-
imate softmax in the objective function. For
SYMDEP, we sample both the predicted argument
and dependency. For ASYMDEP, we sample only
the argument. Models are trained using AdaGrad
(Duchi et al., 2011) with L2 regularization. All
embeddings are randomly initialized.2

2Resulted embeddings can be downloaded from https:
//bitbucket.org/luanyi/unsupervised-srl.



Baselines. We compare against several baselines
using representation learning: CBOW and Skip-
Gram (Mikolov et al., 2013), GloVe (Pennington
et al., 2014), L&G (Levy and Goldberg, 2014) and
Arg2vec (Woodsend and Lapata, 2015). Similar to
ours, L&G and Arg2vec both encode dependency
relations in the embeddings. We train all models
on the same dataset as ours using publicly avail-
able code3, and then apply the same clustering al-
gorithm. Introduced by Lang and Lapata (2014),
SYNTF is a strong baseline that clusters arguments
based on purely syntactic cues: voice of the verb,
relative position to the predicate, syntactic rela-
tions, and realizing prepositions. We also employ
two state-of-the-art methods from Titov and Kle-
mentiev (2012) (T&K12) and Titov and Khoddam
(2015) (T&K15).

4.2 SRL Results

Following common practices (Lang and Lapata,
2014), we measure the overlap of induced seman-
tic roles and their gold labels on the CoNLL 2008
training data (Surdeanu et al., 2008). We report
purity (PU), collocation (CO), and their harmonic
mean (F1) evaluated on gold arguments in two set-
tings of gold parses and automatic parses from the
MaltParser (Nivre et al., 2007). Table 1 shows the
results.4

SYMDEP and ASYMDEP outperform all repre-
sentation learning baselines for SRL. T&K12 out-
performs our models on gold parsing because they
use a strong generative clustering method, which
shared parameters across verbs in the clustering
step. In addition, T&K15 incorporates feature-
rich latent structure learning. Nevertheless, our
models perform better with automatic parses, in-
dicating the robustness of our models under noise
in automatic parsing. Future work involves more
sophisticated clutering techniques (Titov and Kle-
mentiev, 2012) as well as incorporating feature-
rich models (Titov and Khoddam, 2015) to im-
prove performance further.

Table 1 shows that including dependency rela-
tions (L&G, Arg2vec, SYMDEP, and ASYMDEP)
improves performance. Additionally, our mod-
els achieve the best performance among those,

3Except that Arg2vec is reimplemented since there is no
public code online.

4The numbers reported for Arg2vec with gold parsing
(80.7) is different from Woodsend and Lapata (2015) (80.9)
since we use a different clustering method and different train-
ing data.

Gold parses Automatic parses
Model PU CO F1 PU CO F1

SYNTF 81.6 78.1 79.8 77.0 71.5 74.1

Skip-Gram 86.6 74.7 80.2 84.3 72.4 77.9
CBOW 84.6 74.9 79.4 84.0 71.5 77.2
GloVe 84.9 74.1 79.2 83.0 70.8 76.5
L&G 87.0 75.6 80.9 86.6 71.3 78.2
Arg2vec 84.0 77.7 80.7 86.9 71.4 78.4
SYMDEP 85.3 77.9 81.4 81.9 76.6 79.2
ASYMDEP 85.6 78.3 81.8 82.9 75.2 78.9

T&K12 88.7 78.1 83.0 86.2 72.7 78.8
T&K15 79.7 86.2 82.8 - - -

SYM1DEP 83.8 77.4 80.5 82.3 74.8 78.4

Table 1: Purity, collocation and F1 measures for
the CoNLL-2008 data set.

showing the strength of modeling dependencies
as multiplicative factors. Arg2vec learns word
embedings from the context features which are
concatenation of syntactic features (dependency
reations and POS tags) and word embedings. L&G
treats each word-dependency pair as a separate to-
ken, leading to a large vocabulary (142k in our
dataset) and potentially data scarcity. In compar-
ison, SYMDEP and ASYMDEP formulate the de-
pendency as the weight matrix of the second non-
linear layer, leading to a deeper structure with less
parameters compared to previous work.
Qualitative results. Table 2 demonstrates the ef-
fectiveness of our models qualitatively. For exam-
ple, we identify that car is usually the subject of
crash and unload, and the object of sell and pur-
chase. In comparison, CBOW embeddings do not
reflect argument-predicate relations.
Ablation Study. To further understand the ef-
fects of the multiplicative representation on un-
supervised SRL, we create an ablated model
SYM1DEP, where we force all dependencies in
SYMDEP to use the same matrix, but still dif-
ferentiate between Ei and Di depending on the
argument’s position. The network has the same
structure as SYMDEP, but the dependency infor-
mation is removed. Its performance on SRL is
shown at the bottom of Table 1. SYM1DEP per-
forms slightly worse than Arg2vec. This suggests
that the performance gain in SYMDEP can be at-
tributed to the use of dependency information in-
stead of network structure.

4.3 Word Similarity Results

As a further evaluation of the learned embed-
dings, we test if similarities between word em-



Argument SYMDEP (SBJ) SYMDEP (OBJ) CBOW

car crash, roar, capsize, land, lug, un-
load, bounce, ship

sell, purchase, buy, retrieve, board,
haul, lease, unload

train, splash, mail, shelter, jet, ferry,
drill, ticket

victim injure, die, protest, complain,
weep, hospitalize, shout, suffer

insult, assault, stalk, avenge, harass,
interview, housing, apprehend

void, murder, kidnap, widow, mas-
sacre, surge, sentence, defect

teacher teach, mentor, educate, note, rem-
inisce, say, learn, lecture

hire, bar, recruit, practice, assault,
enlist, segregate, encourage

coach, mentor, degree, master, guide,
pilot, partner, captain

student learn, resurface, object, enroll,
note, protest, deem, teach

teach, encourage, educate, assault,
segregate, enroll, attend, administer

graduate, degree, mortgage, engi-
neer, mentor, pilot, partner, pioneer

Table 2: The 8 most similar predicates to a given argument in a given dependency role.

Model Nouns Verbs

L&G 31.4 27.2
Arg2vec 38.2 31.4
SYMDEP 39.2 36.5
ASYMDEP 39.7 15.3

NODLAYER 33.0 25.3
ASYM1D 33.2 24.2

Table 3: A POS-based analysis of the various em-
beddings. Numbers are the Spearman’s ρ scores
of each model on nouns and verbs of SimLex999.

beddings agree with human annotation from Sim-
Lex999 (Hill et al., 2015). Table 3 shows
that SYMDEP outperforms Arg2vec on both
nouns and verbs, suggesting multiplicative depen-
dency relations are indeed effective. However,
ASYMDEP performs better than SYMDEP on noun
similarity but much worse on verb similarity. We
explore this further in an ablation study.

Ablation Study. We create two ablated models to
explore the reason for ASYMDEP’s performance
on verb similarity. In the NODLAYER model, the
layer for Di in both SYMDEP and ASYMDEP is
removed, after which the two models become
identical. ASYM1D is based on ASYMDEP where
we force all dependency relations for the predicted
argument vt to use the same matrix Di. The dif-
ference is that ASYM1D employs one more layer
than NODLAYER. Dependency information in the
context (i.e. Ei) is preserved in both ablated mod-
els. The results are shown at the bottom of Ta-
ble 3. Interestingly, adding the Di layer and de-
pendency information in ASYMDEP gradually im-
proves performance on nouns but also gradually
decreases performance on verbs. In comparison,
adding the Di layer in SYMDEP (i.e. transform-
ing from NODLAYER to SYMDEP) improves per-
formance on both nouns and verbs.

To explain these results, we offer the follow-
ing hypothesis. In SYMDEP, arguments and de-

pendency matrices are first multiplied before go-
ing through non-linear functions, which resembles
syntactic structures. In contrast, ASYMDEP has
less resemblance to syntactic structures, and works
like a simple feed-forward network to predict the
argument. Thus, low layers in ASYMDEP, like
the predicate up, may lose semantic information.
This is consistent with our results where adding
more layers to ASYMDEP decreases the amount
of semantic information preserved in up. Note
that noun similarity is computed with embeddings
from the predicted argument vt. Adding one more
layer improves prediction and hence has a positive
effect on the argument embedding vt.

5 Conclusions

We present a new unsupervised semantic role la-
beling approach that learns embeddings of argu-
ments by predicting each argument from its con-
text and considering dependency relation as a mul-
tiplicative factor. Two proposed neural networks
outperform current state-of-the-art embeddings on
unsupervised SRL and the SimLex999 word sim-
ilarity task. We also conduct ablation studies to
explore structural characteristics of the two net-
works. As an effective model for dependency re-
lations, our multiplicative argument-dependency
factor models encourage the decoupling of argu-
ment and dependency representations. Disentan-
gling linguistic factors in similar manners may be
worth investigating in similar tasks such as frame
semantic parsing and event detection.
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Lluı́s Màrquez, and Joakim Nivre. 2008. The
conll-2008 shared task on joint parsing of syntactic
and semantic dependencies. In Proceedings of the
Twelfth Conference on Computational Natural Lan-
guage Learning, CoNLL ’08, pages 159–177.

Ivan Titov and Ehsan Khoddam. 2015. Unsupervised
induction of semantic roles within a reconstruction-
error minimization framework. Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics.

Ivan Titov and Alexandre Klementiev. 2012. A
Bayesian approach to unsupervised semantic role in-
duction. In Proceedings of the 13th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 12–22.

Kristian Woodsend and Mirella Lapata. 2015. Dis-
tributed representations for unsupervised semantic
role labeling. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings
of the 2004 Conference on Empirical Methods in
Natural Language Processing, pages 88–94.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the 53rd Conference of the
Association for Computational Linguistics, pages
1127–1137.


