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Abstract. Existing speech technology tends to be poorly suited for
young children at play, both because of their age-specific pronunciation
and because they tend to play together, making overlapping speech and
side discussions about the play itself ubiquitous. We report the perfor-
mance of an autonomous, multi-keyword spotter that has been trained
and tested on data from a multi-player game designed to focus on these
issues. In Mole Madness, children laugh, yell, speak at the same time,
make side comments and even invent their own forms of keywords to
control a virtual on-screen character. Within this challenging language
environment, the system achieves 94% overall recall and 85% overall ac-
curacy, providing child-child and child-robot pairs with responsive play
in a rapid-paced game.This technology can enable others to create novel
multi-party interactions for entertainment where a limited number of
keywords has to be recognized.
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1 INTRODUCTION

Applications using speech recognition are increasingly commonplace, due to both
the amount of data available and the maturation of machine learning approaches.
Still, existing systems tend to derive their acoustic models largely from adult
speech and/or their language models from single-user search and scheduling
tasks [2, 8]. As a result, they tend to be poorly suited for young children, whose
language is acoustically, lexically, syntactically, semantically, and pragmatically
distinct [6, 9]. This is particularly true for young children at play, who are chal-
lenging both because of their age-specific pronunciation and because they tend
to play together, making overlapping speech and side discussions about the play
itself ubiquitous. The same speech recognition issues occur when designing an
entertainment application where a child plays a game with an artificial agent or
robot that uses natural language for communicating. In this paper, we report the
performance of a multi-keyword spotter that has been trained from and tested
on data from both child-child and robot-child pairs. The speech recognition sys-
tem is used to control a virtual on-screen character and it provides children with
responsive play in a rapid-paced game, even in the presence of overlapping and
out-of-task speech.



2 MOLE MADNESS

Mole Madness is a speech-controlled game in which two players move a virtual
mole through its environment, acquiring rewards and avoiding obstacles (Figure
1, left). One player creates horizontal movement using the word go and the
other creates vertical movement with jump, a simple design that makes the
game accessible to even the youngest child with little instruction. Successful
play requires both coordinated turn-taking and overlapping speech [7].

The game can be played in a child-child or child-robot configuration with
Sammy, a Furhat robot head [1] encased in a cardboard body (Figure 1, right).
The architecture that permits this flexibility includes separate processes for the
game engine, speech recognition, and robot control, coordinated by an IrisTK
dialog module [10] that synchronizes the independent processes at time-slice
boundaries. The mole character and basic game play are built in Unity3D and
include the A* search that returns a value when Sammy requests a move on
the optimal path. If the returned value is go or jump, Sammy randomly plays
a pre-recorded sound file with one or more instances of that command. The
frenetic pace of the game makes Sammy engage in overlapping speech and the
pre-recorded sound files include all the language phenomena identified in the
next section.

Fig. 1. A Mole Madness screenshot (left) and a play session with Sammy (right).

3 THE SPEECH CORPUS

Data for the models was collected from 62 children between the ages of five and
ten who played Mole Madness as part of a multi-activity study in summer 2015.
Participants’ mean age was 7.45 years (SD=1.44 years), and 48% were female.
Children were compensated for their participation.

Interleaved with other activities, children played the game twice, first paired
with another child and then with Sammy. Each game traversed four to six levels,
depending on time available and the child’s desire to continue. Speech recognition
was performed by a human wizard who listened via headphones in a separate
room, trying to map each go and jump into a button press on a game controller.



To create the ground truth for training the keyword models described below,
˜6.9 hours of gameplay were hand-segmented and transcribed, producing ˜11.8K
non-overlapping instances of go, ˜9.4K non-overlapping instances of jump, ˜10.1k
instances of overlapping keywords, ˜2.1K social utterances, and ˜12.9k back-
ground segments. The resulting corpus contains three language phenomena that
define the main challenges for speech recognition and full autonomy in the mole’s
behavior:

Overlapping speech: Mole Madness was specifically designed to elicit over-
lapping keywords at a small number of predictable obstacles on each level. How-
ever, most children discovered that overlapping speech makes the mole “fly” over
flat ground. As a result, almost 40% of keywords overlap in child-child games,
and 26% in child-robot games.

Social side talk: When children play together, task commands (go, jump)
naturally occur intermixed with both non-task speech directed to the mole
(“watch out,” “faster”) and speech directed to the other player (“a giant tomato,”
“he’s funny”). Any speech that is not a keyword becomes a potential source of
false keyword recognitions. Meta-comments about game strategy (“don’t say
jump yet”) are particularly challenging because they can contain one or more
task words that should not be interpreted as commands. On average, 7% of utter-
ances during gameplay were social in nature, and 29%/7% of child-child/child-
robot side talk contained at least one go or jump.

Lexical variability: A game with only two commands is easy to learn but
ultimately frustrating in its lack of expressive power. Children always began by
imitating the fully-formed versions of the keywords modeled in a brief tutorial
video. However, children throughout our age range eventually tried to increase
the task vocabulary (“double jump,” “go faster”). When that failed, they created
variations of the keywords using elision, repetition, and elongation (“g- g- g-
g- go,” “juuuuuuuuuump”) to encode more complex meanings. Based on the
distribution of keyword lengths, we define fast and slow speech to correspond to
a keyword with a length that is less/more than half a standard deviation from
the mean length, respectively. We posit that when the child uses a typical go or
jump s/he expects to see an instance of the action per word within a causally-
meaningful period of saying it. We interpret the meaning of fast speech relative
to that norm - faster speech intends faster movement. Slow speech, conversely,
appears to have two distinct meanings. Emphatic elongation (“gooo!”) seems to
ask for a single bigger movement or a movement right away, while prolonged
elongation seems to ask for steady or on-going movement. Children used faster-
than-normal forms about 32% of the time with each other and the robot but
were much more likely to use slower-than-normal speech with the robot (27% of
keywords) than the other child (17%).

4 THE MULTI-KEYWORD RECOGNIZER

With only two in-task words and the necessity of reacting quickly enough to
establish a perceived relationship between the spoken command and the mole’s



action, the recognition problem in Mole Madness is a natural fit to keyword
spotting in continuous speech. In this section, we describe the components of
the real-time implementation of our multi-keyword recognition algorithm [11],
including extensions to that work necessitated by the language phenomena out-
lined above. Figure 2 grounds the discussion.

In most example-based keyword spotters, training data is used to build a
model of the keyword in its entirety and a window on the speech stream that is
the size of the expected duration of the word is evaluated against the model in
a sliding fashion. As more of the keyword appears in the window, the probabil-
ity increases that the necessary threshold to signal recognition will be reached.
Previous work [11] extended this idea by building separate models of both non-
overlapping and overlapping speech, then viewing the speech stream in the win-
dow as composed from a probabilistic mixture of those models, using Student’s
t-distribution (hereafter, TMMs). Models in that work were based on a 300ms
window - the mean duration of go and jump in the data. The evaluation of the
algorithm used pre-segmented keywords, with a categorization of the segment
as a whole into one of the classes go, jump, or mixed depending on the most
prevalent classification as the window slid across the entire segment.

The online version also models overlap explicitly but extends the previous
work in a number of ways. The TMMs in Figure 2 are trained using the same
algorithm and hand-annotated corpus, but with a 150ms window size and an
extended set of classes: go, jump, their combination (mixed), social speech and
background noise segments. The recognition system as a whole can issue at most
one command to the mole per time-slice, indicating if go, jump or both were
spoken. The shorter time-slice allows faster response time overall as well as better
recognition of individual elided forms in fast speech (“ju- ju- j- jump”). The
latter means the mole will better conform to the expectation that faster speech
leads to faster movement, but a shorter time-slice also means that less context is
available for distinguishing between the keywords themselves and discriminating
task speech from social speech. The addition of a distinct social speech classifier
is used in conjunction with other compensatory features of the system to address
this problem, as described below. Similarly, the addition of an explicit background
model is included to control for another source of false keyword recognition.

At run-time, we perform the maximum-likelihood computation as shown in
the middle portion of Figure 2. The algorithm extracts overlapping blocks of
Mel-frequency cepstral vectors (MFCCs,) within the 150ms time-slice, and then
the TMMs are used to compute the posterior probabilities for each of the five
class labels with the WEKA library.

The simplest way to translate the output of the TMM classifiers into game
commands would be to define a constant posterior threshold, as in [11] and many
other systems. Under such an approach, a go, jump or mixed command would
be sent to the game at the end of the time-slice if the posterior exceeded the
respective classifier’s threshold, and no game command would be sent if all of
those posteriors were below the threshold. Given atypical lexical forms and the
intermix of keywords and social speech, we need and can get more power by



Fig. 2. A sample classification task: audio features of the current 150ms time-slice are
combined with information from four previous time-slices to generate a jump label.

looking at the relative likelihoods of each class in combination and over time. As
shown in Figure 2, we achieve a finer-grained judgment based on the patterns
of probabilities in the training data by building an additional classifier over
the combination of posterior values from the TMMs for the current time-slice
and several previous time-slices. We tested several algorithms - decision trees,
neural networks and Support Vector Machines (SVMs) - and several values for
the number of prior segments. Best performance was achieved with four prior
segments (600ms of history) and a multi-class SVM model with a Radial Basis
Function (RBF) kernel using the open source LibSVM library and performing a
grid search to find the optimal C and gamma values.

The use of prior history is intended to overcome the information that was
lost by committing to a more reactive 150ms time-slice. The solution as a whole
- using the full context of the relative likelihood of the five different classes of
speech over time - is intended to help distinguish keywords embedded in social
speech from keywords that are spoken as task commands. It should also help
to discriminate partial keywords that occur at the time-slice level during both
elongation and elision from those same sounds when they occur as components
of non-task utterances.

5 METHOD OF EVALUATION

A metric of evaluation must take into account the contextual and temporal as-
pects of the real-time game environment. Although the system makes a decision
at the end of every 150ms, accuracy statistics at this architectural level are mis-
leading for two reasons. First, time-slice level accuracy gives undue importance
to correct recognition behavior during silence, which constitutes 45% of any
game, on average. Indeed, children that were shy, slower to learn the game, or



not fully engaged would have high accuracy measures even in cases where the
recognizer was doing poorly on the spoken phenomena required to play.

Second, and more generally, the time-slice is not the unit of measure at
which the phenomena of interest occur. These phenomena include not only the
linguistic ones - variable-length commands, overlapping speech, and social side
talk - but also, critically, the child’s perception of the causal relationship between
her/his words and the mole’s action. The purpose of evaluation is to establish
whether the word spotter creates an interaction that corresponds to the child’s
natural understanding of cause and effect: if one or both keywords are spoken
to the mole, the relevant action(s) should be perceived to occur in response; if
a keyword is spoken incidentally in a social context, or if no keyword has been
spoken, then no corresponding change in the mole’s behavior should be seen.

To bridge the divide between recognizer output at the 150ms time-slice and
human judgments at the level of variable-length but semantically-meaningful
units, we aggregate the behavior of the recognizer across time with respect to
the annotation. The window over which we aggregate reflects assumptions about
how long a lag there can be between voicing the command and seeing the mole’s
behavior change before the child no longer experiences the two as causally con-
nected. Choosing the appropriate recognition window is not a trivial task because
it depends on the particular activity or game [3]. The wizard who mapped spoken
commands to button presses in our corpus, for example, had a mean reaction
time of 529ms (SD=419ms). Despite the variable and occasionally significant
lags in the wizard’s response, children appeared to experience the game as voli-
tional (if a bit finicky) and enjoyed it overall [11]. These results are in line with
both [5], which found a 300-700ms lag to be acceptable, and [4], which found
that a 400ms lag produced a greater sense of agency than an 800ms lag in a task
where two people were engaged in potentially overlapping behaviors.

Because our application is a fast-paced, real-time game and children’s percep-
tual expectations may be variable, we compute performance statistics both with
and without a lag. In the no-lag case, the window over which recognizer output
is aggregated extends from the beginning of the annotation through the time-
slice in which the annotation ends. This method compensates for imprecision in
the annotator’s boundaries, holds the system to a tight standard for causality,
and defines a lower-bound on performance from a perceptual perspective. In the
with-lag case, we follow the literature, allowing for as much as 450ms between
the end of speech and action. The longer window extends from the beginning
of the annotation through three time-slices after the end of the annotation. It
may give credit for detecting a keyword based on evidence that falls outside the
shorter window’s view, but does so under the assumption that children would
also attribute the mole’s action to their utterance within that period.

To compute standard statistics for the multi-keyword recognizer, each anno-
tation in the corpus and each continuous segment of silence must be accounted
for. A ground truth keyword annotation counts as either a false negative (FN)
or a true positive (TP). A false negative is scored when there is no time-slice
with the keyword’s label in the window. Similarly, a true positive is scored if



there is at least one time-slice with a matching game command in the window.
Thus FN means the character’s movement doesn’t change as a result of the spo-
ken word and TP means that it appears to do so. A time-slice labeled as mixed
represents both a jump and a go command for evaluation purposes.

The TP definition leads to a number of consequences. It means, for example,
that a single keyword annotation in the corpus “consumes” all the matching
detections within the window’s bounds. In the case of average length keywords
this is likely to correspond to one, occasionally two, commands per annotation.
In the case of fast speech, it means that the system’s performance is bounded
by the time-slice - the recognizer can get credit for an elided form, at most once
every 150ms. If the system is working well, it will nevertheless recognize enough
of those elided forms that the mole’s behavior will reflect the child’s intent:
faster speech will create faster movement. For a slow keyword, however, the TP
definition biases the statistics in the recognizer’s favor, potentially giving full
credit to a five second go that has only an occasional correctly-labeled time-slice
in it even though the apparent behavior would not correspond to the steady
movement that is expected. To remove this bias, we preprocess slow speech
into separate consecutive 300ms keyword (normal duration, steady movement)
segments and apply the TP/FN definitions to each segment individually.

The remaining annotations - social speech and, by default, non-speech seg-
ments with silence and/or background noises - are the potential sources of true
negative (TN) judgments. Both types are scored as TN if there is no time-slice
with a keyword label in the window. Note that this way of treating silence min-
imizes the influence of TN on accuracy in the same way that an architectural
time-slice accounting would maximize its influence.

Social speech and non-speech segments can also be sources of false positives
(FP). An FP is scored when a keyword label generated by the recognizer does not
fall within the window of any keyword annotation. A false positive is also scored
for any isolated (non-overlapping) keyword that is recognized as an instance of
the other keyword.

6 RESULTS AND DISCUSSION

Table 1 summarizes the results of a 10-fold cross-validation on the corpus, cal-
culated with and without lag. Overall the system’s accuracy is 85% with the
more conservative metric, and 89% with the wider perceptual window. As ex-
pected, the increase in accuracy is attributable primarily to keywords that are
recognized during time-slices after the end of the annotation.

Note that the poor specificity (with high variability) is attributable largely to
our conservative method of scoring silence and social talk. Because such segments
are counted as a single unit, a false positive means only that there was at least
one time-slice labeled with a keyword during the span. For elongated keywords,
we divided the annotation into contiguous 300ms segments to be able to detect
whether the recognizer would produce the expected continuous movement. For
stretches of silence and social talk, however, we have no a priori understanding



Table 1. Performance means (standard deviations) with and without perceptual lag,
overall and separated by co-player type. Precision is the fraction of correctly identi-
fied positive results (TP/(TP+FP)). Specificity is the fraction of correctly identified
negatives (TN/(TN+FP)). Sensitivity is the proportion of positives that are correctly
identified as such (TP/(TP+FN)).

No Lag With Perceptual Lag

Session Type Overall Child-Child Child-Robot Overall Child-Child Child-Robot

Accuracy .85 (.10) .79 (.11) .89 (.07) .89 (.09) .83 (.10) .93 (.06)
Precision .85 (.10) .78 (.11) .89 (.07) .90 (.09) .83 (.10) .93 (.06)
Specificity .70 (.19) .57 (.20) .76 (.14) .77 (.18) .64 (.18) .84 (.13)
Sensitivity .94 (.08) .92 (.10) .96 (.06) .96 (.07) .93 (.09) .97 (.05)

Go .95 (.08) .93 (.11) .96 (.05) .96 (.07) .94 (.09) .97 (.04)
Jump .94 (.09) .91 (.10) .96 (.08) .95 (.08) .92 (.09) .97 (.08)
Overlapping .93 (.09) .91 (.11) .95 (.07) .95 (.08) .93 (.10) .96 (.06)
Slow .95 (.08) .92 (.08) .96 (.07) .96 (.06) .94 (.08) .97 (.05)
Medium .95 (.07) .92 (.10) .97 (.04) .96 (.06) .94 (.08) .98 (.03)
Fast .92 (.12) .85 (.15) .95 (.08) .94 (.11) .88 (.13) .97 (.08)

about how often a sporadic unexpected movement can occur before the causal
connection between speech and action is shattered. Were we to break background
and social segments up using the same 300ms rule, the specificity would increase
to 84%/88% in the no lag and perceptual lag conditions, respectively. Neverthe-
less, the values under the stricter accounting shown here are important for giving
a realistic idea of how well the system handles keywords in side talk. The results
are less favorable than we would like: social speech with one or more embedded
task words still triggers a misrecognition about 65% of the time, despite the
information in the four prior time-slices. The fact that social segments without
embedded task words also generate a misrecognition about half the time suggests
that we may have erred too much on the side of responsiveness in choosing the
time-slice. A somewhat longer time-slice might change the number of errors that
come from false recognition of sub-segments of non-task words without substan-
tively affecting the rest of the children’s experience. Alternatively, achieving a
better balance in the amount of keyword versus social speech data might also
help minimize this source of error.

The remaining source of misrecognition (FPs) is the confusion of one keyword
for another. This confusion occurs almost entirely from overprediction of the
mixed category in the presence of a single keyword. The problem seems to stem
from a strong correlation between overlapping keywords and volume - when they
are excited both children are more likely to be yelling and commanding. As a
result, even when children yell a single command alone, the combination serves
as evidence for the mixed model.

Overall sensitivity is excellent across all conditions, although statistically
better and less variable during child-robot games. Higher values occur with the
robot co-player because the robot’s voice is less varied and more predictable. We



intentionally treat the robot like a player with a voice that must be recognized,
despite the fact that it is possible to know with certainty when the robot issues
a command. Having a uniform solution for both types of co-player simplifies the
architecture and allows any agent with natural language synthesis to play our
game. As important, it creates a grounded experience for the child given that
some errors in detection and the same lag in response can be noticed.

Looking at sensitivity more closely, we find that it is consistent across key-
words and not statistically different for non-overlapping and overlapping speech.
The one class of phenomena in which we do see differences in recognizer per-
formance is lexical variability: performance is statistically worse on fast speech
when compared to either slow speech or typical duration forms. As noted above,
false negatives must occur whenever the keyword rate is faster than the 150ms
time-slice. In addition, shortened forms contain less signal and are more error-
prone in general. Runs of fast speech occur more often in child-child games,
and when they do occur in child-robot games they do so in Sammy’s more eas-
ily recognized speech about 40% of the time. As a result, the degradation in
performance is significant only in child pairs. Note that although sensitivity is
about 7% worse in fast speech at 150ms, it is, nonetheless, recognized at least
85% of the time, often enough to ensure that rapidly repeated keywords produce
perceptually faster movement in the mole.

To set these results in a larger context, we compared the performance of the
multi-keyword spotter without perceptual lag to the performance of a state-of-
the-art commercial continuous speech recognizer given the finite state grammar
go and jump. The commercial system was about 35% less accurate overall, and
displayed a number of biases not seen in our results. In particular, where the
word spotter detects go and jump about equally well, the commercial recognizer
was significantly worse at detecting go (67% sensitivity for jump versus 40%
sensitivity for go). Similarly, the commercial system did more poorly on over-
lapping than non-overlapping speech (25% versus 46%) and showed uniformly
decreasing performance as a function of keyword rate (50% sensitivity on slow
words, 45% on normal duration, and 19% on fast speech).

7 CONCLUSIONS AND FUTURE WORK

The motivation for this work was to explore a point in the space of multi-party
language-based character interactions for young children that confronted head
on some of the difficult issues that arise with children at play. Mole Madness
allows us to study overlapping speech, side talk, and exaggerated variability in
pronunciation. Within this challenging environment, the system described in this
paper is able to achieve 94% overall sensitivity and 85% overall accuracy. The
technology presented here can be reproduced with other vocabulary, allowing
designers and developers to build novel children’s applications that use limited
speech to the agent as an input method.

Although our solution works well across most of the phenomena, and sig-
nificantly better than commercial systems, a number of important questions



remain. The first question concerns the generality of the results. Mole Madness
was designed for only two players and with only two keywords. Although we
can imagine many scenarios with most or all of these same characteristics (two
children being asked by a character if they want to go left or right, for exam-
ple), it is important to understand how performance systematically degrades as
a function of relaxing these assumptions. What happens when three or more
voices are calling out commands? Which results change when the keywords are
of varying length, or have common phones or syllables? And, of course, how
many keywords can be adequately distinguished given any one or more of these
modifications?
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