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Abstract

We present a solution for monitoring nocturnal giraffe
behavior by reducing several hours of thermal camera
surveillance footage into a short video summary which can
be reviewed by experts. We formulate the video summa-
rization task as a tracking problem: frames in which gi-
raffes are successfully tracked are presumed to be typical
poses/behaviors and not included in the summary; whereas
frames containing track initializations or terminations are
presumed to be atypical events and are therefore included
in the summary. To implement our tracking-by-detection
summarization approach, we explore various combinations
of image features to determine the best combination for
long infrared spectrum cameras, and devise a variant of
the deformable parts model object detection technique us-
ing geodesic distances to handle the extreme variations of
typical giraffe postures. Finally, we evaluate our summa-
rization performance in terms of recall and compressibility,
and show how a trade-off exists between these two measures
using more fragile or robust tracking techniques.

1. Introduction
Observing animal behavior is critical for ensuring the

long term health and safety of animals in the wild and un-
der human care. Human experts can generate reliable data
through direct observation, but such as approach is rarely
sustainable for long periods of time. Instead, automated
data collection and analysis are needed to construct a more
comprehensive understanding of animal behavior. In some
situations, intrusive data collection methods like on-body
sensors and data loggers (or transmitters) may be feasible.
However, that is not always the case. In this paper, we ex-
plore passive sensing of giraffe nocturnal behavior using
thermal cameras.

Although recent computer vision work [4, 9] has per-
formed well on object detection tasks, the majority of the
datasets have focused on humans. Relative to pedestrians,
most animals have a substantially larger pose variation, self
occlusion, and strong visual similarity between individuals.

Figure 1. Visual vs Thermal Imaging. Sample frames from RGB
(left) and thermal (right) video cameras. Although detection is
significantly easier in thermal video, long term tracking remains a
difficult challenge, as giraffes are easily occluded by trees and/or
other animals.

As a result, directly applying established object detection
techniques may not achieve sufficient reliability for long
term animal surveillance.

Furthermore, we are interested in monitoring noctur-
nal behavior. Because visual spectrum cameras struggle
in low-light conditions (see Figure 1), our study uses IR
thermal cameras. The characteristics of thermal images are
quite different from those captured in the visual spectrum.
Therefore, many of the image-based features used in the
visual spectrum (often designed to be invariant to illumi-
nation changes) may not be well suited to thermal images.
For instance, when using thermal cameras to detect and
track pedestrians, [5] employed contour saliency maps as
the principle image-based feature.

In this paper, we describe a system for reducing several
hours of surveillance data into a short summary video of
observed rare behaviors which can be reviewed by human
experts. We define rare events as atypical body poses. For
example, when a giraffe eats, there is a significant deviation
in the pose of the head and neck. The summary is gener-
ated by first detecting and tracking giraffes in video cap-
tured from stationary thermal cameras. The detectors are
tuned to search for typical poses. The initialization or ter-
mination of a track constitutes a summary event. Because
of occlusions with trees and other giraffes, the system also
includes sequences where heads and necks are not tracked
with high confidence.



Contributions We investigate a host of image-based fea-
tures for building rigid part detectors for thermal video, and
show how incorporating features specific to thermal cam-
eras boosts performance over standard HOG+SVM imple-
mentations used in visual spectrum images. In order to re-
liably detect highly deformable objects (like giraffes), we
reason about the connectivity of parts using geodesic dis-
tances, instead of the more standard Mahalnobis distance.
Again, our experiments illustrate how this measure is able
to correctly resolve ambiguous situations were the standard
techniques fail. Finally, we formulate video summarization
as a tracking problem: interesting events occur whenever
tracks are initialized or terminated.

2. Related Work
Sliding a window over an image pyramid is a very ef-

fective method for finding objects in arbitrary images. The
combination [4] of histograms of oriented gradients (HOG)
features and linear support vector machine (SVM) classi-
fiers has been particularly popular due to its detection per-
formance and computational efficiency. For non-rigid ob-
jects, a more complex approach is typically used: individual
object parts are localized using HOG+SVM, and the exist-
ing of an object is inferred by the spatial arrangement of
the parts [9]. For computational efficiency, the deformable
parts model assumes parts have a spring-like potential rel-
ative to a reference location. In particular, [17, 18] found
that giraffes were very difficult to detect (in visual spectrum
images) because the neck could have significant deforma-
tion (and required to be modeled as several parts in order
to detect successfully). Our thermal images lack the resolu-
tion and color texture information that was available in the
images used by [17, 18].

The recent survey [10] by Gade and Moeslund gives a
good overview of using thermal cameras for object detec-
tion. Because most objects of interest in thermal video are
warmer than the background, exhaustive multi-scale sliding
window techniques are often not necessary. Instead, candi-
date regions of interest can be found based on intensity, and
object detectors can then be used to make a final decision
as to whether an object is present or not. Almost all object
detectors in thermal images use shape-based features, often
derived from silhouettes identified by applying a threshold
to intensity values. Gradient-based features, such as HOG,
have also been used as well. Although the majority of in-
vestigations involving thermal cameras has focused on hu-
mans, some work has been done on animals (see the recent
survey [3] by Cilulko et al. for a complete review). The
most closely related previous work to ours is the roadside
deer detection system [22]. A stationary thermal camera
was used to monitor a road in a forested area. A computer
vision system searched for deer in thermal images by find-
ing candidate regions using an intensity threshold, and then

making a final decision using HOG+SVM. The system was
fast enough for realtime object detection, but no tracking
was performed.

Many state-of-the-art tracking methods [2,11] are unable
to track objects for long periods of time — especially in
cluttered scenes. These trackers usually require manual ini-
tialization, and adapt to movement and appearance changes
over time. However, once the tracker has lost the object, it is
not trivial to find the target again. Tracking-by-detection, on
the other hand, uses object detections to automate initializa-
tion and avoid drifting, and are equally competitive with on-
line trackers [21]. As we require tracking multiple objects
over long periods of time, we use a tracking-by-detection
approach. However, we note that tracking is an intermedi-
ate goal. We use track initializations and terminations to
identify important frames in the video.

Video summarization [15, 16] extracts representative se-
quences from a long video. Khosla et al. [13] use web im-
ages as priors to determine significant frames. Rodriguez et
al. [19] compact multiple actions over time so actions hap-
pen at once in the video, compressing the amount of time
needed to see all the actions in the video. However, this re-
quires the actions to occur at different locations for multiple
actions to be visually seen at once.

3. Method
Our goal is to develop a system which can automatically

summarize several hours of surveillance video into short
segments of observed atypical animal behavior for review
by human experts. Because it may be impossible to define
all types of atypical behavior in advance, we pose the sum-
marization problem in terms of discarding frames which
contain only well recognized animal behaviors — i.e. we
want to find the most compact subset

F ⊂ { t | 1 ≤ t ≤ T } (1)

of frames from a video of T frames that includes all exhib-
ited atypical behaviors. As a result, a key requirement for
our approach is the ability to detect common animal behav-
iors reliably.

Giraffes are particularly difficult to detect [17] because
their composite shape is highly deformable. Furthermore,
in thermal video, appearance cues (such as texture) are not
present, and the only reliable visual characteristic of a gi-
raffe is its long neck. Because the neck has extreme vari-
ations in pose, we detect giraffes in a two-stage process:
we run head-only and body-only part detectors over each
frame of the video (see Section 3.3.1), and then post-process
the detection results to search for pairs of heads and bodies
which appear to be connected by a giraffe-like neck (see
Section 3.3.2). Finally, we link detected head-body pairs
across multiple video frames (see Section 4) to determine



the expected number of animals within the scene, as well as
the on-set and off-set of atypical behavior.

3.1. Dataset

Our dataset consists of two hours of nighttime video
recorded from a fixed vantage point using an Axis Q1910
video camera (see Figure 1). Four giraffes (Giraffa
camelopardalis) and a variety of other African fauna were
enclosed in a circular savanna approximately 180m in di-
ameter. For convenience, the video was re-sampled at 1fps
to generate 7410 frames of data (split into datasets of 361,
3060 and 3989 frames). Bounding boxes of heads and bod-
ies were manually annotated in each frame, resulting in
24495 head-body pairs. Finally, the temporal sequences
corresponding to infrequent behaviors (such as eating) were
manually identified.

3.2. Features

Similar to [3, 7], we experiment with multiple features.
We forgo an initial preprocessing step to calculate regions
of interest. This is often done with thresholding, morpho-
logical operators and “blob-splitting” [10, 23] to create ob-
ject proposals. However, occlusion with trees and other
animals is common and makes this preprocessing prone to
error without careful hand-tuning. Instead of using a seg-
mentation preprocessing step, we incorporate segmentation
features, such as thresholding and background subtraction,
directly into a sliding window classifier as additional fea-
ture elements. In all, we found the following six features to
be useful:

Intensity (INT) The raw grayscale pixel intensities val-
ues. These somewhat correlate with actual temperature, al-
though the camera incorporates automatic gain and expo-
sure controls.

Thresholding (THRESH) A threshold of 130
255 is applied

to the raw intensity values to coarsely segment warm-
blooded animals.

Background subtraction (BG) A period of 11 minutes
at 30fps (19981 frames) of the scene was captured without
any animals to model the characteristics of an empty scene.
A univariate Gaussian distribution was fit to the temporal
history of each pixel. For all input frames, a binary mask
was created by testing for pixels which differed by more
than 5 standard deviations from the mean value.

Gradient magnitude (MAG) Similar to [7], we compute
the gradient magnitude of each pixel.

Intensity Gradient HOG Background
Magnitude Subtraction

Figure 2. Features. A variety of channel features were used to
detect rigid body parts.

Histogram of oriented gradients (HOG) We use
Felzenszwalb et al. variant of HOG [9]. Due to the low
resolution of the camera, we use a cell size of 4 instead of
the default 8.

Unnormalized gradient histograms (UHOG) We bin
oriented gradients without the post-processing contrast nor-
malization normally set normally present in HOG. Illumi-
nation invariance is counterproductive for thermal imagery.

3.3. Giraffe Detector

To accurately detect the giraffes, we experiment with dif-
ferent feature sets and classifiers. We devise a head detector
and a body detector and reason about how to best connect
the parts to improve accuracy. We find a parts-based model
with a suitable distance measure for connecting the parts
superior to a single rigid whole body giraffe template.

3.3.1 Head and Body Classifiers

Both SVMs and random forests (RFs) were considered as
classifiers. Combinations of features and classifiers were
trained on one video of 361 frames and validated on another
video of 3060 frames. The more effective feature-classifier
combinations are shown in Figure 3. Generally, false head
detections occurred on other animals and background struc-
tures like rocks, and false body detections occurred on other
animals and animals clustered in groups. We found a com-
bination of HOG, gradient magnitude and background sub-
traction features using linear SVMs to be a viable solution
for detecting heads and bodies.

Implementation details We use the sliding window
paradigm [4] to detect objects of varying sizes within the
image. The detection windows are implemented using Pi-
otr’s Matlab Toolbox [6], with 8 scales per octave and a
maximum scale factor of 1.6. The smallest bounding box
sizes of the head and body are 24 × 24 pixels and 48 × 32
pixels respectively, determined by the smallest giraffe sizes
in the training set. The HOG cell size was 4 × 4 pixels,
and the stride between windows was also 4 pixels. Each
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Figure 3. Classifier Performance. Various feature combinations
were used in conjunction with SVMs and RFs. The performance
of heads is shown here. The body detectors had similar perfor-
mance curves.

classifier used a negative training set that is hard negative
mined for the specific combination of features and classifier.
Each classifier underwent eight iterations of mining, termi-
nating early if perfect training precision was achieved. Re-
sults were greedily non-maximum suppressed with an over-
lap threshold of 0.3 as recommended in [14].

3.3.2 Neck Detection

Similar to the deformable parts model (DPM) [9], we com-
bine parts to improve detection performance by explicitly
considering pose variation. However the spatial relationship
between giraffe body parts is complex. Figure 4 shows how
the 2D Gaussian distribution used in DPMs is ill-fitted for
estimating the location of a giraffe’s head relative to its body
(because of its highly deformable neck). Furthermore, gi-
raffes frequently overlap within the video, making it neces-
sary to include mutual exclusion constraints when matching
parts (since each head can only be connected to one body,
and vice versa). As a result, we experiment with alterna-
tive distance measures, and match discrete body and head
detections through a linear assignment formulation. Four
distance measures are explored:

1. Euclidean: The distance between the actual head lo-
cation (relative to the body) and the learned average
location of the head (relative to the body) in the train-
ing data.

2. Mahalanobis: The Euclidean distance between the
centroids of the head and body detections is normal-
ized by the mean and covariance observed in the train-
ing set.

Figure 4. Head-Body Spatial Relationship. The positions of
heads relative to their respective bodies (in pixels) for 9153 giraffe
instances in a 51 minute video. The mean and one standard devi-
ation contour is shown. The large space of body to neck positions
prevents fitting a standard univariate distribution.

Figure 5. Geodesic Distance. Neck traces found by traversing the
shortest path of the negative intensity image.

3. Scale: The size ratio of each body-head pair is sub-
tracted from the ideal body to head ratio.

4. Geodesic: If a pair of head and body detections corre-
spond to the same giraffe, then there should be a neck-
like structure connecting them. Here, we compute the
shortest path between the centroids of the head and
body detections, where the cost of including a pixel
is proportional to its negative intensity (see Figure 5).
The resulting geodesic distance counts the number of
pixels involved in the shortest path.

For each distance measure we experiment with thresh-
olding at 2, 2.5 and 3 standard deviations from the mean of
the training set. Any body-head pair with a distance greater
than this threshold is considered not a match.

Because giraffes are frequently in close proximity to
each other, a greedy association of the closest head to the
closest body may fail (see Figure 6). Instead, we match
heads to bodies in a non-greedy fashion by formulating a
linear assignment problem. For n body detections and m



Figure 6. Greedy vs Linear Assignment. Head-body associa-
tions made in a greedy fashion using Euclidean distance can eas-
ily lead to incorrect solutions (left). The geodesic distance (right),
in combination with a linear assignment formulation, significantly
improves the correct association of heads to bodies.

head detections, we define a (n + m) × (n + m) cost ma-
trix Cparts (2) representing the negative log likelihood that a
head-body pair corresponds to the same giraffe. The struc-
ture of the matrix is divided into four quadrants. The upper-
left n × m block contains the distance dij between head
detection i and body detection j, (where the specific dis-
tance measure changes between experiments). The upper-
right and lower-left quadrants account for heads and bodies
with no suitable match. The diagonal of these blocks corre-
sponds to the maximum possible inlier distance dmax = kσ,
where σ models the standard deviation of inlier distances
in training data, and k > 0 is a user defined parameter.
The off-diagonal elements are inadmissible and have infi-
nite cost. Finally, the lower-right block encourages null
head detections to associate to null body detections by spec-
ifying a cost of zero in these cases

Cparts =



d11 · · · d1m dmax ∞ · · ·
d21 · · · d2m ∞ dmax · · ·

...
. . .

...
...

...
. . .

dn1 · · · dnm ∞ ∞ · · ·
dmax · · · ∞ 0 0 · · ·
∞ · · · ∞ 0 0 · · ·
...

. . .
...

...
...

. . .


.

(2)
The minimal cost assignment is found using the Hungar-

ian algorithm, and generally includes head-body, head-null
and null-body pairings. The linear assignment formulation
prevents multiple heads associating to one body and vice
versa. The maximum inlier distance dmax has the effect of
discarding false positives generated by the head-only detec-
tor. Table 1 summarizes the performance of the different
distance measures. The geodesic distance with a tolerance
< 3σ results in the best performance. Figure 6 qualitatively
shows the results of using the Euclidean and geodesic dis-
tance measures. Both results reduce the number of false
detections, and we see the body-head pairs are assigned dif-
ferently if different distance measures are used.

Implementation details Implementing the shortest path
between n heads and m bodies takes O(nmE), where E

Criteria FPPI Miss Rate F1 Score

(2σ) Euclidean 0.8710 0.5114 0.5443
(2σ) Mahalanobis 0.6452 0.7763 0.3009
(2σ) Scale 2.7419 0.7614 0.2165
(2σ) Geodesic 1.0645 0.5059 0.5250
(2.5σ) Euclidean 1.0968 0.4886 0.5389
(2.5σ) Mahalanobis 0.7097 0.7089 0.3710
(2.5σ) Scale 2.7419 0.7614 0.2165
(2.5σ) Geodesic 1.1935 0.4886 0.5294
(3σ) Euclidean 1.7097 0.2614 0.6311
(3σ) Mahalanobis 1.6129 0.2386 0.6537
(3σ) Scale 3.3871 0.7273 0.2212
(3σ) Geodesic 1.5484 0.2159 0.6732

Table 1. Distance Measures. Each distance measure is normal-
ized using the mean and variance of the training body-head pairs.
In testing, any body-head pair that falls outside of k standard de-
viations (in brackets) from the training average is considered a
impossible pair. The remaining body-head pair combinations are
then optimally matched to minimize the distance costs from the
training average, using the Hungarian algorithm. Note that detec-
tions are valid only if both the head and body have an intersection
over union > 0.5 with their corresponding ground truth parts, a
significantly harder task than the full giraffe object detection task
seen in Table 2.

Criteria FPPI Miss Rate F1 Score

Whole Giraffe 1.6452 0.4432 0.5213
Head Only 1.5484 0.0522 0.8015
Head + Neck/Body 0.3871 0.1023 0.8827

Table 2. Detector Performance. A single rigid template which
looks for an entire giraffe achieved the lowest performance. A
head only detector achieved the highest recall, but had a signifi-
cant number of false detections. Filtering the head detections by
searching for appropriate context of a body and neck drastically
reduced the false positive rate, while still preserving good recall.

is the cost of the shortest path algorithm (for example, A-
Star or Dijkstra’s algorithm). Instead, we calculate geodesic
images for each part [20], which allows the shortest path
between a head and body to be found by adding the two
part images and taking the minimum value. This results in
(n + m)a + (n + m)b = O((n + m)a), where a(b) is the
cost of the generalized geodesy method and b is the constant
number of pixels in the image. In practice, the constant
is non-negligible, but we use this method to conservatively
hedge in the event of many detections.

3.3.3 Performance Comparison

A rigid whole giraffe detector was as a performance base-
line. First, ground truth annotations of entire giraffes were



found by taking the minimum size bounding box that en-
compassed both the head and the body bounding boxes.
Each whole giraffe bounding box was then rescaled to
48×48 pixels (the average bounding box size of the training
set is 53.8377 × 52.6849), and our HOG, gradient magni-
tude and background subtraction rigid features were calcu-
lated. During hard negative mining and testing, 48 × 48
square bounding boxes were used with an SVM classifier.
This replicates the rigid detector used for the head and body.
For the connected head-body detections, a similar bound-
ing box is drawn encompassing both parts. This bounding
box is compared to the ground truth. Table 2 shows the
detection performance of the baseline whole body giraffe
detector, only a head detector, and the body-head detections
with the geodesic distance measure which incorporates both
the individual head and body detectors. The detector with
the geodesic distance measure drastically improves preci-
sion with minimal effect on recall.

4. Tracking

The giraffe head detector and subsequent neck filter were
specifically trained to search for typical head poses. How-
ever, our primary interest is in atypical head poses. As a
result, we need to know not when the detector is success-
ful, but rather when the detector is unable to locate a giraffe
head (presumably because the head had uncommon appear-
ance or spatial context). Because it is impossible to directly
test for missed detections, we instead identify detection fail-
ures by tracking detected objects: tracking initializations
and terminations indicate missed detections before/after the
current frame.

Two-Frame Hungarian Our baseline tracking-by-
detection algorithm operates over pairs of sequential
frames. Head detections Ht in the current frame t are
matched to head detections Ht−1 in the previous frame.
In general, there are n = |Ht−1| detection in the previous
frame, and m = |Ht| detections in the current frame. In
order to handle missed and false detections, we formulate
an (n+m)× (n+m) cost matrix Ctwo, of the same form as
(2). The upper-left n ×m quadrant represents the negative
log likelihood that detection hit−1 in the previous frame
and detection hjt in the current frame correspond to the
same giraffe. We assume the displacements are normally
distributed and hence Ctwo

ij is the square Euclidean distance
between the centroids of each detection. The head dis-
placements between frames for the training video is shown
in Figure 7. Though the majority of the displacements are
within two pixels, during movement the head displacement
is up to 18 pixels. Hence, we assume the maximum
possible displacement between frames is 20 pixels, and
the diagonals in the upper-right and lower-left quadrants

Figure 7. Diraffe head frame-to-frame displacement. The mean
and one standard deviation contour of multiple giraffes in 361 are
shown.

are 400. We use the Hungarian algorithm to determine the
optimal association of head detections from the previous
frame to the current frame. Track initializations occur when
no detections in the previous frame are within 20 pixels of a
detection, and the detection is matched to an element in the
lower left quadrant. Similarly, terminations are identified
by matches with a detection from the previous frame to an
element in the upper-right quadrant, signifying there are no
detections in the current frame within 20 pixels.

Multi-Frame Hungarian The two-frame tracking ap-
proach is very conservative: a single missed detection will
justify including frame t in the final summary video. As a
result, we also examine the multi-frame linear assignment
method of [12]. In this alternative formulation, the entire
set of detections H[1,T ] is considered. Here, an assignment
i ↔ j implies detections hi and hj are immediate pre-
decessor/successor detections in a particular track. How-
ever, it is not strictly enforced that the two detections occur
in frames t − 1 and t respectively — tracks can continue
while skipping frames with missed detections. In this for-
mulation, there is now a 2n × 2n cost matrix Cmulti where
n = |H[1,T ]|. Similar to the two-frame formulation, values
in Cmulti encode the negative log probability P (hi → hj)
of hj being the next detection of the same object immedi-
ate followingly detection hi. Like the two-frame tracking
formulation, the spatial term is modeled using a 2D nor-
mal distribution of displacement between the centroids of
the two detections. For the temporal term, we compute the
elapsed time ∆t between the two detections. The proba-
bility of hj being the next immediate true detection after
hi needs to enforce temporal continuity and also take into



account the detector recall r

Ptemporal(h
i → hj) =

{
0 if ∆t <= 0,

(1− r)(∆t−1) otherwise.
(3)

As a result, the combined probability is P (hi → hj) =
Pspatial(h

i → hj)Ptemporal(h
i → hj). Similarly, the prob-

ability of hi begin a false detection is directly proportional
to the detector’s false detection rate (1 − p), where p is the
detector’s precision. We refer the reader to [12] for details
on how each Cmulti

ij is computed from the various probabil-
ities.

In practice, it is not feasible to process all detections si-
multaneously — especially if the video is long. We make
the problem tractable by spitting the video into five minute
chunks (300 frames), and perform multi-frame Hungarian
algorithm on each chunk. We then perform two-frame
tracking at the boundary of each 300 frame chunk to stitch
the solutions together.

5. Summarization
We use the initialization and termination of automati-

cally generated tracks to determine when the giraffe head
detector fails. We assume these failure cases arise because
the giraffe is currently exhibiting unusual behavior, and
therefore the head and neck are in an unusual spatial con-
figuration relative to the body. Of course, the tracks will
also terminate whenever a giraffe enters or exits the camera
view, as well as when it is significantly occluded behind a
tree or other obstruction. However, because there is no set
limit to the length of the summary video, our formulation
automatically adapts to the complexity of the scene: typi-
cal behaviors lead to long, connected tracks and a shorter
a summary video, whereas more difficult scenes with many
occlusions result in a longer summary.

Of course, there are other ways to summarize a video.
In this study, we compare against two baseline methods.
Similar to Khosla et al. [13], our first baseline is a uniform
temporal sampling: one frame every fifth minute is included
in the summary

Funiform = {300, 600, 900, . . . }. (4)

For our second baseline, we use motion history images
[1] to gauge the amount of movement in each frame. Frames
with significant motion history energy MH (t) are added to
the summary

Fmotion = {t |MH (t) ≥ λ} . (5)

A motion history image is computed as an exponentially
decaying summation of previous inter-frame difference im-
ages. The exponential decay parameter γ = 30 was de-
termined by visually evaluating typical giraffe movements.

Method Compression Recall

Uniform 0.8007 0.2857
Motion History 0.8444 0.8571
Two-Frame Tracking 0.5203 1.0000
Multi-Frame Tracking 0.9124 0.7143

Table 3. Summarization Performance. We evaluate the four
methods on a 51 minute test video containing 7 rare events. The
two-frame tracking algorithm is able to detect all rare events, but
has the least amount of compression. The multi-frame tracking al-
gorithm generates the shortest summary video while maintaining
good recall.

The energy threshold λ = 0.2 was tuned by finding the
largest value of λ that still retained all rare frames in the
training data.

5.1. Evaluation

Because a human expert benefits from context, we ex-
tract a short window of±5 frames (equivalent to 5 seconds)
around each frame of interest f ∈ F .

Each manually annotated ground truth event (standing
up, sitting down, bobbing head) spanned multiple frames.
Therefore, we use a one-dimensional equivalent to PAS-
CAL VOC [8] and compute intersection over union scores
between temporal ranges to determine whether an automat-
ically detected summary event [f − 5, f + 5] adequately
coincides with a ground truth event. Because some ground
truth events span only a few frames, we use a threshold of 0,
which corresponds to at least one frame of overlap. How-
ever, a larger intersection over union requirement may be
suitable for higher frame rates.

A comparison of our two tracking methods to the two
baselines are tabulated in Table 3 and visually summarized
in Figure 8. The two-frame tracking algorithm is able to
find all rare events, but generates the longest summary video
(∼25 minutes). The multi-frame tracking algorithm gener-
ates the shortest summary video (∼5 minutes) and finds 5
of 7 events. Motion history does remarkably well for its
computational efficiency. However, because the two-frame
tracking algorithm is able to find all rare events, the multi-
frame tracking algorithm should be able to obtain simi-
lar recall performance while keeping its high compression
rate if more complex probabilistic models are incorporated,
as well as correctly ignoring frames with significant non-
giraffe related motion.

6. Summary
Although techniques for detecting objects in visual spec-

trum images can be applied to thermal images directly, we
have found significant performance improvements when ad-
ditional features are incorporated. For instance, absolute
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Figure 8. Summarization Visualization. The subset of frames F
selected by each method to include in the summary are shown in
white. The two-frame tracking method is able to recall all ground
truth events of interest, but generates a very long summary video.
The multi-frame tracking algorithm generates the most concise
summary, while maintaining a fairly high recall.

gradient magnitude captures large intensity changes charac-
teristic of the boundaries of animals in the scene, whereas
HOG features provide fine-grain shape discrimination re-
gardless of intensity values.

Giraffes are particularly difficult to detect because they
have a large variation of permissible poses. Not surpris-
ingly, a single rigid whole giraffe detector did not perform
well in our experiments. Instead, we followed a similar ap-
proach to deformable part models, and trained rigid part
detectors, and then reasoned about the existing of a com-
plete object based on the local part evidence. In practice,
we found a geodesic distance measure that searched for a
suitable neck shape between a head and body drastically re-
duced the number of false head detections. Furthermore,
enforcing one-to-one head/body matchings through a lin-
ear assignment problem avoided the pitfalls of successive
greedy assignments.

Most of the giraffes in our training and testing videos ap-
peared in sideways profile relative to the camera. However,
the frontal view is noticeably different. Successfully deal-
ing with this larger variation of deformations in an efficient
manner is still an open problem.

Lastly, we have shown the viability of formulating video
summarization as a track-by-detection problem. The ap-
proach naturally adapts the summary length based on the
confidence of the detector and tracker, and the difficulty of
the scene.
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