
From the ACM SIGGRAPH Asia 2011 conference proceedings.

Modular Radiance Transfer

Bradford J. Loos1,2 Lakulish Antani1,3 Kenny Mitchell1 Derek Nowrouzezahrai4 Wojciech Jarosz4 Peter-Pike Sloan1
1Disney Interactive Studios 2University of Utah 3UNC Chapel Hill 4Disney Research Zurich

Direct Lighting Indirect Lighting (with Multi-Bounce) Direct + Indirect Lighting (with Multi-Bounce)

20.2 ms = 50 FPS Our Method (2.1 ms = 476 FPS) Ground Truth Our Method Ground Truth

Figure 1: Indirect light computed in reduced subspaces for a cave with 19 blocks and 4 lights. We derive low-dimensional transport operators,
on simple proxy shapes, that are warped and combined at run-time, at > 475 FPS on high-end GPUs and > 45 FPS on mobile platforms, and
can model indirect light at surfaces (with detailed normal variation) and within volumes of large-scale scene geometry. c© 2011 The Authors.

Abstract

Many rendering algorithms willingly sacrifice accuracy, favoring
plausible shading with high-performance. Modular Radiance Trans-
fer (MRT) models coarse-scale, distant indirect lighting effects in
scene geometry that scales from high-end GPUs to low-end mobile
platforms. MRT eliminates scene-dependent precomputation by
storing compact transport on simple shapes, akin to bounce cards
used in film production. These shapes’ modular transport can be in-
stanced, warped and connected on-the-fly to yield approximate light
transport in large scenes. We introduce a prior on incident lighting
distributions and perform all computations in low-dimensional sub-
spaces. An implicit lighting environment induced from the low-rank
approximations is in turn used to model secondary effects, such as
volumetric transport variation, higher-order irradiance, and transport
through lightfields. MRT is a new approach to precomputed lighting
that uses a novel low-dimensional subspace simulation of light trans-
port to uniquely balance the need for high-performance and portable
solutions, low memory usage, and fast authoring iteration.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: Global Illumination, GPU, Interactive

Links: DL PDF

1 Introduction

Indirect illumination increases the realism of computer generated
images. The ambient term is a simple inexpensive approximation

c©ACM, 2011. This is the authors version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ACM Transactions on Graphics, 30, 6, December 2011.
doi.acm.org/10.1145/2024156.2024212

that does not respond to dynamic lighting. Accurate real-time tech-
niques [Keller 1997] have difficulty scaling to complex scenes and
often have significant performance requirements, particularly on
modern console and mobile platforms. Techniques that approximate
different elements of indirect lighting have been extremely success-
ful in interactive graphics applications. Precomputation techniques
used in video games [Chen 2008; Larsson and Halen 2009] tend to
assume static scenes and lighting, but suffer from long authoring
iteration times and memory requirements. Ambient Occlusion (AO)
[Zhukov et al. 1998] captures only salient shading effects. Variants
of Precomputed Radiance Transfer (PRT) [Sloan et al. 2002] gener-
ate soft lighting results. These techniques are favorable compared to
more accurate techniques due to their lower storage and computation
costs and the pleasing nature of their approximation. Modular Radi-
ance Transfer (MRT) targets coarse-scale, distant indirect lighting
in scene geometry, responds plausibly and smoothly to dynamic
lighting, has extremely high-performance, and allows fast author
iteration.

Our shapes are motivated by bounce cards used in live-action films.
These planes only approximate indirect light from geometry in the
real-world but offer a high level of control to produce the desired
lighting. In digital film production, non-shadow casting lights are
commonly used to allow artists to quickly iterate and achieve a
desired look. The ease-of-use and controllability of these approxi-
mations outweighs their physically incorrect nature.

Our approach is very efficient, uses very little data and a quick, one-
time, scene-independent precomputation step. It also allows real-
time computation of approximate indirect light, and is designed with
rapid iteration of light design in mind. We precompute light transport
operators (LTOs) for a handful of simple canonical “shapes”, then
interactively warp and combine these shapes, along with their LTOs,
to more complex geometry. These shape proxies are used to model
direct-to-indirect transport which is then applied as a light map to the
actual scene geometry. The flow of indirect light between proxies
is modeled with lightfields, and all computations are performed on
very low-dimensional subspaces. MRT results in plausible, dynamic
global-illumination effects, rendered at high frame rates with low
memory overhead. We design special LTOs for secondary transport
effects such as light volumes for dynamic characters and higher-
order irradiance for normal mapping. We illustrate our solutions
ability to scale from high-end to mobile platforms and, like PRT, to
provide smooth results which respond to light change.

1

http://doi.acm.org/10.1145/2024156.2024212
http://portal.acm.org/ft_gateway.cfm?id=2024212&type=pdf
http://doi.acm.org/10.1145/2024156.2024212

Keeping the design goals mentioned above in mind, MRT makes the
following contributions:

• Compact transport operators using a novel lighting prior:
we represent direct and indirect light in a specialized light
prior basis which enables us to build compact and efficient
LTOs to propagate multiple bounces of indirect light.

• Modular, scene-independent transport computation: LTOs
from different canonical shapes are warped and combined, re-
sulting in on-the-fly mapping of complex scene geometry (and
its light transport) to simpler shapes (and their LTOs).

• Flexible and efficient implementation: we show that our
approach runs on low-end mobile platforms as well as high-
end GPUs, all while maintaining high performance.

2 Related Work

Interactive global illumination. Several approaches approximate
global illumination without precomputation [Wang et al. 2009]. In-
stant radiosity techniques [Keller 1997] dynamically inject virtual
point lights (VPL) to simulate diffuse bounced light [Dachsbacher
and Stamminger 2005; Dachsbacher and Stamminger 2006; Ritschel
et al. 2008]. Examples of other approaches are screen-space radios-
ity [Nichols and Wyman 2009; Nichols et al. 2009], multi-resolution
height field sampling [Nowrouzezahrai and Snyder 2009], precom-
puted rigid reflectance fields [Iwasaki et al. 2007], and real-time
ray-tracing [Parker et al. 1999]. Unfortunately, these techniques do
not scale to large scenes, do not exploit coherence in light transport
operators, or do not have performance characteristics suitable for
the strict rendering budgets of modern game engines. For exam-
ple, evaluating an unshadowed point light takes 25 ms on the iPad,
eliminating the possibility of VPL techniques.

Light Propagation Volumes (LPVs) [Kaplanyan and Dachsbacher
2010] augment VPL approaches with a discrete, volumetric propa-
gation phase for approximate global illumination. By storing and
propagating a linear spherical harmonics (SH) radiance distribution
in a volume grid encompassing the entire scene, LPVs avoid pre-
computation, capture indirect shadows, and attain high-performance.
However, the heavyweight nature of LPVs precludes implementa-
tion on low-end platforms and radiance propagation causes energy
loss which precludes distant light propagation: e.g., our large maze
examples would be challenging to render with LPVs.

Precomputed light transport. PRT [Sloan et al. 2002; Lehtinen
2007; Ramamoorthi 2009] computes shading response to basis il-
lumination, capturing soft shadows, indirect light and caustics for
static geometry. Extensions to local lighting [Kristensen et al. 2005]
require lengthy preprocessing and large amounts of data, as well
as being scene dependent. We build on direct-to-indirect trans-
fer [Hašan et al. 2006; Kontkanen et al. 2006; Wang et al. 2007;
Lehtinen et al. 2008] although, unlike previous approaches, we rep-
resent transport using bases tailored to plausible direct and indirect
lighting. We perform fast precomputation on small shape dictionar-
ies so that, at run-time, scene-specific transport can be approximated
by warping and combining transport from the dictionary elements.
In this manner, we decouple scene dependence from precomputation.

A recent interactive approach [Martin and Einarsson 2010] has sim-
ilar goals, but with significant differences. Both techniques use
simplified geometry, though we use even coarser geometry and re-
use transfer data. In addition, we employ a novel lighting prior on
plausible radiance distributions to enable high performance precom-
putation and relighting, scaling from low- to high-end platforms.

Approximate techniques. SSAO [Mittring 2007; Bavoil et al.
2008] approximates AO using depth buffer sampling. While
physically-incorrect, SSAO is easily implementable across many
platforms, has high-performance, and simple artist control, leading
to broad adoption in modern games. One limitation of screen space
techniques is they can not model lighting out of the frame. In con-
trast we target coarse, soft and often distant indirect lighting effects.
Our approach, while capable, is not meant for physically-accurate
simulation. We purposefully trade accuracy for: extremely high-
performance, soft and plausible shading that responds to dynamic
lighting, and the ability to manipulate large scenes.

Other techniques use proxies to compute approximate visibility [Ren
et al. 2006] or indirect light [Sloan et al. 2007; Guerrero et al. 2008]
from dynamic objects in an efficient manner. In contrast, we target
extremely high performance indirect lighting of “world geometry”
(and bouncing this light to dynamic objects), with scalability to large
dynamic scenes and across many platforms.

Surface normal and volume light variation. Adding high-
frequency surface variation to smooth shading is a popular approach
used in games [McTaggart 2004; Chen 2008]. As in meshless direct-
to-indirect transfer [Lehtinen et al. 2008], we seamlessly support
this “transport normal mapping”. Irradiance volumes [Greger et al.
1998] store radiance distributions in a volumetric grid so that, at
run-time, dynamic objects can be lit by their environment. While
games have used irradiance volumes to give dynamic objects a sense
of immersion, we dynamically generate indirect irradiance volumes
based on dynamic light transport. We share the same mathematical
framework across surface and volumetric lighting response.

Modeling surface light variation. Meyer and Anderson [2006]
perform PCA on noisy indirect light, leveraging the low-frequency
nature of color bleeding to quickly filter out noise. Motivated by their
work, we precompute bases for physically-realizable direct light and
indirect transport, coupling these spaces for efficient computation.
As with our work, Ashdown [2001] also performs spectral analysis
on transport operators (in a radiosity context), however we use a
prior on the direct light distribution, construct low-dimensional bases
for direct and indirect light, and perform transport completely in
these reduced spaces. Similarly, we augment lightfields [Levoy and
Hanrahan 1996; Gortler et al. 1996] with response bases to propagate
and couple light flow to distant geometry.

Scene subdivision and coupling. We compute lightfields at in-
terfaces similarly to Lewis and Fournier [1996]. However, we avoid
instantiating a signal on the lightfields at run-time by using precom-
puted operators that couple between reduced spaces, aggregating
distant light while bounding the cost of local indirect lighting evalu-
ation. Similar concepts have been used in fluid simulation [Wicke
et al. 2009] and off-line rendering [Xu et al. 1990].

3 Preliminaries

We adopt the following notation: italics for scalars and 3D
points/vectors (e.g., ω), boldface lowercase for column vectors (e.g.,
l), and boldface uppercase for matrices (e.g., T).

3.1 Standard Direct-to-Indirect Transfer

Suppose we choose n surface locations on the scene to sample direct
light; direct-to-indirect transfer maps direct illumination at these
points to indirect lighting at these points:

lind = F ld , (1)

2

Computed during precomputation then discarded:
Ld Matrix of all possible direct lighting signals.
P Light prior basis retaining kd left singular vectors of Ld.

Limp Implicit lighting environment.
Hlf Raw lightfield matrix.

Hrlf Reduced lightfield basis retaining krlf modes of Hlf .
M Light space indirect LTO.

Computed during precomputation, used during level initialization:
Rb→rlf Projects b’s to rlf-space (at each dictionary items’ interface).
R�,↑,� Propagates interface lightfield (input/output are both in rlf-space).
Trlf→r Maps reduced lightfield values to kr surface response modes.

Computed during precomputation, used during run time:
Td→b Transforms direct light (ld) to indirect light coefficients (b).

Ub Indirect light basis after retaining kb modes. Maps b’s to lind.
U−→

b
OHLSH version of Ub (maps b’s to vector irradiance).

Ubvol Maps b’s to indirect volumetric light represented in SH.
Ur Indirect lightfield response basis with kr modes. Maps r’s to lind.

Tb→r Maps b’s to r’s via lightfields of the level’s block connectivity.

Computed during run-time:
ld Direct lighting.
b Spectral lighting coefficients due to self-transfer (Td→b ld).
r Lightfield response coefficients on surfaces (Tb→r b).

lind Indirect lighting (Ub b + Ur r).

Table 1: Notation used in this paper.

where ld and lind are n-dimensional vectors of direct and indirect
irradiance, and F is the one bounce transport operator.

Evaluating Equation 1 quickly limits run-time direct-to-indirect
performance since F grows as O(n2). Thus, we approximate
F using singular value decomposition (SVD), F = Uf Σf VT

f ,
where Uf and VT

f are high-dimensional rotation matrices, and Σf

is a diagonal matrix of singular values σi. Approximate indirect
light can be computed by retaining the k largest singular values,
lind ≈ Ũf Σ̃f ṼT

f ld, where Uf /VT
f /Σf are replaced with trun-

cated matrices (retaining only the top k columns/rows) Ũf /ṼT
f /Σ̃f .

3.2 Overview

The truncated SVD of F requires large k for accurate computation of
lind (see Table 2), motivating a different approach. We define a novel
lighting prior to compute reduced-dimensional transfer within a
block (Section 4) and then couple the transfer between blocks with
lightfields at their mutual interface (Section 5). Lastly, we show how
to warp lighting from simple shapes to complex scene geometry
(Section 6). These steps involve several intermediate spaces for
derivation, but we always perform runtime computation in the low-
dimensional spaces. The different spaces and quantities used in our
derivations are summarized in Table 1.

Matrix 80% 90% 95%

F / Ld / M 164 / 22 / 1 240 / 41 / 5 313 / 62 / 8

Table 2: Number of singular values to capture percentage of the
energy for different matrices (for a cube with n = 6×162 samples).

4 Reduced Direct-to-Indirect Transfer

Taking the SVD of F assumes a uniform distribution of arbitrary n-
dimensional direct light patterns, explaining the slow decay of σi. In
real scenes, direct light at a given point obeys a (simplified) rendering
equation and is not drawn from an arbitrary distribution. We define
a light prior over the distribution of direct light to construct a space
spanned by physically-plausible ld. Our analysis will show that this
space has dimensionality significantly smaller than n.

We first sample direct illumination patterns, {ld0, . . . , ldm} in order
to construct a low-dimensional basis for plausible direct lighting.
These patterns can be computed using any approach, however it is
best to use the same direct illumination at run-time. We generate
each sample by placing a sphere light at uniform volumetric locations
in our (canonical) block shape and computing the direct lighting.

Next, we place the samples {ld0, . . . , ldm} into columns of a matrix
Ld and compute its SVD: Ld = Ud Σd VT

d . The left singular
vectors yield our light prior basis: P = Ũd. Table 2 summarizes
the singular value fall-off, justifying our earlier observation that
physically-realizable direct light lies in a low-dimensional linear sub-
space: dim(Ld) � n. We do not subtract the mean and compute
PCA, since we wish to represent lighting with arbitrary intensities,
which means all scales of input patterns should be well represented.

4.1 Light Transport in Indirect Light Space

Any plausible indirect lighting condition can be approximated as
a linear combination of indirect light due to the direct light prior
basis vectors: lind = F P

[
PT ld

]
, where PT projects ld onto our

light prior, resulting in scaling coefficients for indirect light induced
by the light prior basis vectors. In other words, each direct lighting
(basis) pattern has a corresponding indirect lighting (basis) pattern.

Unfortunately, this formulation does not exploit correlations in the
indirect light (the columns of F P are not independent). We aim to
directly obtain an orthogonal basis for indirect light which accounts
for our direct light prior, instead of simply reconstructing direct light
and applying the one-bounce operator to it (as described above).

We start by post-multiplying F P by the scaling matrix S = Σ̃d,
which leads to an equivalent problem:

lind = F P S S−1 PT ld , (2)

where we define the light space indirect LTO M = F P S, which
maps (scaled) direct lighting prior coefficients (ld) to indirect light,
and take its SVD: M = Um Σm VT

m. Table 2 shows that the SVD
of M falls off much more rapidly than either F or Ld. We retain
kb � n singular values, yielding the approximation:

lind ≈ Ub Td→b ld = Ub b , (3)

where Td→b = ṼT
m S−1 PT maps ld to spectral coefficients

b, used to scale columns of Ub = Ũm Σ̃m. These orthogonal
columns form an indirect light space basis and scaling by Σ̃m makes
the lengths proportional to the statistics from M. Figure 2 illustrates
several columns of Ub and rows of Td→b.

Implicit Lighting Environment. An interesting question to con-
sider is whether there exists a direct lighting pattern that, after appli-
cation of the one bounce transport operator, generates the columns
of Ub as an output indirect lighting pattern. In other words, we wish
to find Limp such that Ub = F Limp. We derive this direct lighting
pattern, which we call the implicit lighting environment, as follows:

M = Um Σm VT
m = F P S by definition, and after post-

multiplying both sides by Vm, we obtain Um Σm VT
m Vm =

F P S Vm, with the left hand side simplifying to Um Σm = Ub.

And so, Limp = P S Vm and it will prove useful in several in-
stances, e.g. when generating higher-order lighting variation on sur-
faces (Section 6.4), volume samples within the scene (Section 6.5),
and interface lightfields between connected shapes (Section 5.1).

3

Level Creation Runtime

Ub b

Ur r

Dictionary Creation

Lighting Prior

Interfaces

Block Map
Shapes

b coefficients

r coefficients

Bases

Direct Lighting Direct & Indirect

M
atrix

Multiply

Multiply

M
at

rix

Sum

Sum

Sum

Calculate

Figure 2: Overview: dictionary creation precomputes light priors and bases for scene independent shapes. Level creation maps the shapes and
generates the lightfield propagation matrix Tb→r . At runtime, we generate b and r vectors to compute indirect light with Ub and Ur bases.

5 Direct-to-Indirect Transfer Between Shapes

We first couple transport between blocks in order to compute direct-
to-indirect transfer on large, interconnected sets of dictionary shapes.

Our high performance relies on computing coupled transport in
reduced basis spaces. Given b coefficients for a simple shape (e.g. a
cube with missing faces), our goal is to compute operators that act
directly on this vector and scatter light into neighboring shapes.

5.1 Interfaces: Far-Field Light Transport Coupling

Our approach is independent of the dictionary’s contents and we
illustrate results with cube-based and cylinder-based dictionaries.
For cubic shapes, we create five operators: Rb→rlf describes how
light leaves each shape via its missing faces or interfaces, R�,↑,�
describes transfer between interfaces, and Trlf→r describes transfer
from an interface onto the surface of a block. These five operators
are concatenated, based on block layout, at level creation time to
generate a sparse block matrix Tb→r describing how light leaving
each block illuminates all other connected blocks.

We compose a raw lightfield matrix Hlf at the Ni dictionary inter-
faces (see Section 6.1). Columns of Hlf are a resampling of implicit
lights (columns of Limp), for each dictionary element, at each posi-
tion and direction of the interface’s lightfield. Hlf is an s×Ni kself
matrix, where s is the spatio-directional lightfield resolution.

Given the SVD of Hlf ≈ Ũrlf Σ̃rlf ṼT
rlf , the krlf left singular vec-

tors scaled by the corresponding singular values (Hrlf = Ũrlf Σ̃rlf)
form a low-rank reduced lightfield basis. This represents the re-
sponse at the shape’s interfaces to Limp. We use basis enrichment
to handle more complex propagation operations (see Appendix A).

We define a Rb→rlf operator for each interface of each dictionary
element to map the element’s b coefficients to coefficients in the
reduced lightfield basis. We construct this operator by lighting
each element with its implicit lighting environments, resampling the
implicit lighting from the surfaces to the interface(s), and projecting
the resampled lightfields into the reduced lightfield basis.

We construct three additional operators to capture near-field

R�R�

R↑

interface-to-interfacelightfield propaga-
tion and resampling. Given an interface
(red line in small figure), its lightfield can
be propagated to the interface straight
ahead (dark blue line) with R↑, or to the
interface on the left adjacent face (green
line) with R�, or to the interface on the
right adjacent face (orange line) with R�.
These square matrices (with dimensions k2rlf) resample the lightfield
at one interface to either the straight-ahead, left-adjacent, or right-

adjacent interface, and project the resulting lightfield back into the
reduced lightfield basis.

Lastly, we define an operator to map reduced lightfield coefficients
to lighting response on geometry near a lightfield: G = Frlf Hrlf ,
where Frlf is a transport matrix that computes the surface response
to the reduced lightfield basis lighting (columns of Hrlf). This only
needs to be done for a single canonical interface, due to symmetry.

Using a similar motivation as in Section 4.1, we compute the SVD
of G = Ug Σg VT

g , leveraging coherence to Hrlf ’s response, and
retain the left singular vectors (columns of Ur, where Ur = Ũg) to
form an indirect lightfield basis. Trlf→r = Σ̃g ṼT

g maps reduced
lightfield coefficients to reduced lightfield responses r.

We only retain operators, Rb→rlf and Trlf→r, that act in reduced
spaces. Lightfields never need to be reconstructed, resulting in
significant memory and performances savings.

6 Direct-to-Indirect Transfer on Real Scenes

We now combine compact direct-to-indirect transport operators
within (Section 4) and between (Section 5) simple shapes to quickly
approximate direct-to-indirect transfer on arbitrary scenes.

Smooth, plausible and dynamic light transport is computed every
frame using a mapping between dictionary shapes and scene geome-
try during scene creation. We derive special transport operators for
vector-valued irradiance (to model high-frequency surface detail),
and volumetric direct-to-indirect light probes (to relight dynamic
objects), all of which will be computed entirely in reduced spaces.

6.1 2D Shape Dictionary

To simplify our exposition, we first consider 2D mazes with cubes
connected to each other along missing faces (we also show cylinder-
based results). For these scenes, we populate a dictionary with all
possible cubes with 0 to 4 faces missing1. Exploiting symmetry, this
dictionary has 6 entries with a total of 12 missing faces.

6.2 Authoring the Scene Proxy

We map complex geometry to only a handful of connected blocks
from our shape dictionary. To do so, we begin by generating a set
of connected blocks and associating portions of the complex scene
to each block. We are motivated to model scenes with extremely
coarse proxy geometry in order to capture large-scale indirect light-
ing effects as efficiently and compactly as possible; unlike discrete

1For 2D mazes, all cubes have a “top” and “bottom” face; 3D mazes do
not have this constraint and result in a 9 element dictionary.

4

Block Contribution to Interfaces Interface Contributions to Block

Used Interface
Unused Interface
Block Interface

Used Interface
Unused Interface
Block Interface

Paths from Blocks
to Interface

Figure 3: Left: light originating from the block containing the red
interfaces propagates to all other visible outgoing interfaces in the
maze. Right: all the blocks that contribute light to the red interface.
These are rows and columns of the matrix Tb→r that maps bs to rs.

ordinate methods that use a large number of blocks. This is analo-
gous to the use of bounce cards when lighting for film.

The real scene must be mapped to shapes in our dictionary before
lighting can be computed. Each shape in this proxy is an instanced
transformation of an element in our dictionary, and also contains a
region in texture space for a light map atlas that will be constructed
to light the real scene. We also compute a geometry image that
will be used to compute ld. A key point is that we can re-use the
precomputed transfer data from the dictionary. Dictionary shapes
can be warped and attached by artists, or automatically for simple
mappings (see Section 7.2). When applying severe warping to
shapes, we can reduce artifacts by dynamically warping the prior
and Us (see Section 8 and Figure 12).

While each shape’s texture is self-contained, the final mapping to
real scene geometry requires continuous reconstruction between
connected shapes. Moreover, clamping is required over the shape’s
internal creases. We rectify these continuity issues by creating a
padded light map atlas, and a set of records that copy edge/corner
values from neighboring un-padded regions to the padded light maps
(faces translate to the center of padded faces) [Loos et al. 2011].

6.3 Interface Propagation for Distant Light Transport

Once the set of proxy shapes is generated, we compute a block sparse
operator Tb→r to map b coefficients at all the shapes to r coeffi-
cients at each interface. The interface matrices Rb→rlf , R�,R↑,R�,
and Trlf→r are combined to propagate transport through a complex
scene in our reduced spaces. It is important to note that these steps
only depend on the block connectivity and the input is parameterized
by the b coefficients, which results in an efficient runtime.

To propagate indirect light from block x, breadth-first traversal of the
block connectivity (with a maximum traversal depth dmax) builds
columns of Tb→r to map indirect light coefficients b from x to
reduced lightfield coefficients r at the traversal’s current interface.

The relevant block of Tb→r is initialized to x’s Rb→rlf and, as each
interface is traversed, is pre-multiplied with one of {R�,R↑,R�},
depending on the propagation direction [Loos et al. 2011]. This
traversal concatenates transport operators to “drive” indirect light
from source shapes, through interfaces, to the rest of the scene.

At each interface, the accumulated portion of Tb→r is pre-multiplied
by Trlf→r and stored. If a path from the same source block has al-
ready been computed, the matrices are summed, otherwise a new
record is computed. These block matrices form a sparse representa-
tion of the full matrix that maps the block’s b coefficients to reduced

interface response r at all other lightfields visible from x. When this
matrix is multiplied by the b’s, we are aggregating the energy at
every scene interface, avoiding more expensive reconstructions into
a light map. Figure 3 is a visual representation of an column and
row of the matrix. This process is only done when a scene is created,
and takes less than a second for all our example scenes.

6.4 Higher-Order Irradiance in Indirect Light Space

We replace indirect irradiance (columns of Ub in Equation 3) with
vector-valued irradiance capable of approximating indirect light due
to high-frequency, normal-mapped surface details (see Figure 4).

We derive an Optimal Hemispherical Linear SH (OHLSH) basis for
vector-valued irradiance stored at the n sample locations in each
canonical block. To compute the vector-valued irradiance response
basis, U−→

b
, we simply light a block with its Limp and project the

irradiance distribution into quadratic SH instead. This 9D vector is
analytically mapped to a 4D OHLSH vector (see Appendix B).

Scalar Irradiance Vector Irradiance

Figure 4: Vector irradiance for surface details in a normal-mapped
maze (top) and the Great Hall (bottom). c© 2011 The Authors.

6.5 Parameterized Irradiance Volumes

We light dynamic geometry, such as animating characters and “orna-
mental clutter” like pillars and statues that do not map naturally to
block faces (see Figure 5), by computing parameterized lightprobes
in the volume of the scene. These lightprobes are represented as
order-3 SH vectors sampled uniformly in space and allow us to shade
animated (or “clutter”) geometry using traditional SH techniques.

We compute an operator Ubvol (with size 9 × kself) that gathers
radiance from implicit lights (Limp) in a uniform volumetric grid
in each block, and projects these distributions into SH. Ubvol maps
indirect illumination in the indirect light space to SH coefficients.
As with surface and interface response, we use Limp to drive the gen-
eration of these probes entirely in the indirect light space, and need
only precompute this operator once for the shapes in our dictionary.

7 Implementation and Results

7.1 Dictionary Construction and Precomputation

We generate a 2D block dictionary with six basic cube shapes and a
cylinder dictionary with three shapes (straight, right turn, left turn).

For these dictionaries, we construct the prior P by lighting the basic
shapes with 63 sphere lights placed uniformly in the block’s volume
and through interfaces. We use kd = 64 and kself = 32, enriching
the basis with functions that are constant on only one face at a time
as well as Ub so that multiple light bounces are well represented.

5

Direct Lighting Indirect Lighting Only Direct & Indirect Lighting
Our Method (1.9 ms)1.6 ms

Our Method (1.4ms) Our MethodGround Truth Ground Truth12.9 ms
Figure 6: Dynamic indirect light at >500 FPS. We ignore indirect shadows and focus on adding smooth, approximate dynamic indirect light
with low computation cost. In the extreme case of the Great Hall modeled with 1 cube (and volume samples for “clutter” geometry), our
results respond to direct light at a cost similar to static ambient terms but with soft shading quality common in e.g. PRT. c© 2011 The Authors.

Figure 5: Indirect transport on dynamic objects (character mesh)
without (left) and with (right) volume samples. c© 2011 The Authors.

Most of our example blocks have 162 samples per face. We evaluate
M by ray tracing the scaled prior vectors (columns of P) using 16K
gather rays with importance sampling. We perform this at each of
the 162 points on the face, from which Ub, Limp and Td→b are
computed. The cylinder dictionary uses 642 samples per shape. We
also compute several lower resolution dictionaries using only scalar
surface response for the iPad and x86 CPU implementations. Using
fewer than 62 samples results in objectionable artifacts.

The U−→
b

, Ur, and Ubvol are computed by ray tracing implicit lights
(columns of Limp) and computing their respective output data. U−→

b
,

and Ubvol are computed once per dictionary shape, and the interface
data is computed for only a single canonical interface.

To compute Hlf from Limp we use 52 directional super-sampling
of interfaces. Three iterations of enrichment are applied to Hrlf ,
retaining krlf = 128 lightfield modes and kr = 32 response modes.

We use raw interface resolutions of s = 122 spatial × 242 direc-
tional = 82944 total samples, mapping the hemisphere to a square
[Shirley and Chiu 1997] for continuous directional interpolation.

Precomputation. The dictionary (without interfaces) requires
4.7MB, takes 59s to build, and 60s to enrich. Interfaces increase
precomputation by 260s, adding 1.2MB of memory. Timings are on

a dual 2.93GHz 6-core Intel CPU. Interface computation does not
scale well with the 12 cores, but the other stages scale linearly.

7.2 Mapping Shapes to Complex Scenes

We use two approaches to compute texture coordinates (and posi-
tion/normal geometry images) in complex scenes. For the game
scene (Figure 7), artists map blocks with our level editor: a cube is
warped to roughly align with part of the scene, then additional cubes
are extruded/warped from existing ones (see video for a modeling
session). The artist can preview indirect light directly in the tool.
Tb→r is also computed at this phase and takes a second at most.

As an extreme stress test, we model the Great Hall scene (Figure
6) using only a single block. The vertices are mapped to block
faces using rasterization: a cube map camera at the center of the
block renders a downsampled “geometry texture” which allows
us to categorize the vertices belonging to each face. The texture
coordinates for a given vertex are computed by orthographically
projecting the vertex onto the chosen face, and these coordinates are
used to lookup indirect light in the padded light-map texture atlas.

We create records, for each block’s face, to render indirect light
(lind ≈ Ub b) into an (un-padded) light map. Each record is

Figure 7: An 18 block scene from a video game: direct light (left,
1.2ms), direct and indirect (right, 2.2ms).

6

Figure 8: Feeding back the previous iteration’s indirect light buffer
into the direct light buffer generates multiple bounces.

Figure 9: Tunnel created with 10 cylinders. Direct lighting (left),
direct and multi-bounce indirect lighting (right, 5.2 ms = 192 FPS).

positioned appropriately in the light map and contains Ub texture
coordinates and a block index for the face to look up b coefficients.

7.3 Simple Run-time Implementation

Our run-time is quite simple. An indirect light texture, using direct
light evaluated at n surface points, is computed as follows:

1. Compute direct light at a reduced resolution in each block (ld),

2. Compute per-block spectral coefficients (b = Td→b ld),

3. Compute indirect light within a block into a lightmap (Ub b),

4. Compute response coefficients at interfaces (r = Tb→r b),

5. Blend response from “external” blocks into a lightmap (Ur r),

6. Create padded lightmap texture to eliminate texture seams,

7. Render scene using the dynamic lightmaps of indirect lighting,

8. [optional] Compute indirect light volume (from b’s and r’s),

9. [optional] Render dynamic objects with volume lighting.

As in Enlighten [Martin and Einarsson 2010] it is easy to feedback
indirect light (scaled by albedo) to get multiple bounces with little
overhead (Figures 8 and 9). Figure 1 compares our approximate
multi-bounce indirect light (476 FPS) to ground truth (many hours).

7.4 Results

GPU performance was recorded on an NVIDIA 480 GTX with
a DX11 runtime. Rendering of omnidirectional shadow maps for
direct lighting is by far the largest bottleneck of our run-time renderer
for a moderate number of blocks. Our indirect lighting performance
scales linearly with the number of blocks (see Figure 10) with the
most expensive stage being computing b’s. This could potentially
be optimized by using a single pass reduction or compute shader.

We also have two software implementations, one for x86 CPU’s
using SSE and one for iPad/iPhone using NEON instructions. The
CPU versions support everything but volume samples and vector

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21 26 31 36 41 46 51 57

Ti
m

e
 in

 m
s

Number of Blocks
Padding Volumes U r U b Padding Lightmap
U r U b Calculate R Calculate B r

bvol rvol

b

Figure 10: Average performance taken from many random mazes.

irradiance. We measure performance for two scenes on the CPU
code paths in Table 3. For comparison one unshadowed point light
takes 25 ms on the iPad, making VPL techniques difficult.

Small Maze Large Maze

blocks 11 41
iPad ms 2.0 12.9
x86 ms 1.4 6.2
GPU ms 0.4 1.0

Table 3: Performance results. The iPad uses 62 textures and 12
modes. The x86 and GPU use 162 textures and 32 modes.

8 Discussion

Instead of computing ground truth indirect effects, we target large-
scale indirect lighting that responds to dynamic direct illumination,
can be properly applied to fine scale surface detail, and supports
animated character meshes. Our very high-performance allows our
run-time to be easily integrated across many hardware platforms,
as well as significantly reducing iteration time (see accompanying
video); lighting artists get instant indirect lighting feedback that is
guaranteed to match the in-game rendering.

Limitations. When mapping scenes to a single box, using only the
first mode is akin to an “intelligent ambient term” that is computed
by averaging the direct light in the scene. Higher order terms add
spatial variation. The bottom row of Figure 6 illustrates that even
in the extreme case of a single cube mapped to complex geometry,
our approach “fails gracefully”, with smooth and plausible results.
Of course, using a more accurate proxy shape would produce better
results. With a single cube, light propagates too far along the longest
axis of the scene’s bounding box; we could alleviate this with a
prior that uses the aspect ratio of the scene’s bounding box, but
almost equivalent results can be created by only re-raytracing the
U vectors with an appropriately stretched prior (Figure 12), taking
only seconds to “re-precompute”. Our algorithm is designed for
scenarios where a small number of coarse proxies are mapped to
complex geometry (like bounce cards in film production); using
many proxy shapes to model this scene would defeat our purpose.

Another limitation stems from performing all computation in re-
duced spaces: lighting conditions outside our prior cannot be cap-
tured. Figure 11 highlights this issue, where a light is positioned too
close to a wall. Shadows, strong albedo changes, and direct lighting
used in video game scenes are outside of our prior, but plausible
results are generated in these cases using enrichment (Appendix A).

We choose a simple prior, trading off accuracy for flexibility and
performance. A more complex prior can be constructed using e.g.

7

Figure 11: Indirect light from a well-represented (left) and poorly-
represented (right) direct-illumination pattern in the light prior.

Original Prior & U-Vector Scaled Prior or U-Vector

1 Mode 32 Modes U-Vector Scaled Both Scaled

Figure 12: Great Hall mapped to 1 cube is better than using an
ambient term, but causes unrealistic lighting on the longest axis
(1 Mode / 32 Modes). Re-raytracing U (U-Vector Scaled) with the
cube prior stretched to the bounding box achieves results similar to
recomputing the entire prior (Both Scaled). c© 2011 The Authors.

permutable blockers in a scene and different light sources, but this
would require a higher-dimensional representation. As an extreme
example, we could use the scene from Figure 12 as a shape library
element, yielding a lighting prior that would capture higher-fidelity
results for that particular scene (but for no other); however, especially
when combined with direct illumination, it is clear that the additional
fidelity is not worth the decrease in performance and the elimination
of modularity/generality.

Our light prior bases are small, dense matrices derived using the
SVD, in contrast to multiresolution bases such as wavelets which are
typically represented as large sparse matrices. Our dense matrices
map more effectively to texture mapping hardware, have more coher-
ent access patterns, and require less overall memory than wavelets,
which is especially important on low-power handheld devices. This
is particularly true with the 12 to 32 coefficients we use in practice.

Non-diffuse Transport. Scalar (diffuse) response can be substi-
tuted with a directional radiance representation (e.g. using a basis
representation such as SH or wavelets) our transport operators can
also be augmented to support non-diffuse light transport. We note
that low-frequency glossy reflectance models can still be applied to
e.g. our SH representation of volumetric light. We have instead tar-
geted flexible and rapid scene development with physically-plausible
diffuse indirect illumination, as illustrated in our examples. Extend-
ing the simplicity of our approach to high-frequency glossy transport,
while keeping the benefits (compactness, high-performance, plausi-
bility) is a challenging problem left to future work. Such directional
radiance transport modeling may also prove useful for handling
fine-scale indirect shadows, as we discuss below.

Indirect Shadows. Our approach models coarse-scale indirect
shadows (e.g. around maze corners) while ignoring large-scale
indirect shadowing effects within blocks. While this is sometimes
problematic (e.g. the Cornell box in Figure 6), when direct lighting is
included the lack of exact indirect shadows is often difficult to notice
(see Figure 1). In fact, in film production, shadow computation for
the fill lights used to model indirect light is often disabled.

In the future, we plan on investigating techniques to include fine-
scale indirect shadows from objects and clutter geometry within
blocks, by applying light subtraction ideas from antiradiance [Dachs-
bacher et al. 2007], as well as dynamic blocker accumulation and
reflection from [Sloan et al. 2007].

Dictionary Shapes. The restriction to basic shapes allows us to
eliminate scene-dependent transport precomputation. To support
modularity, we must restrict the generality of the shape library.
This constraint is softened during authoring by combining light
transport coupling, warping, volume samples, and support for normal
variation. It is possible to use more complicated shapes and extend
our lighting prior to support e.g. internal occluders (see above).

Alternative Real-time Indirect Approaches. We achieve much
higher performance than other approximate indirect lighting solu-
tions, and our approach can readily be used in high-end and mobile
gaming applications. Moreover, MRT scales favorably with re-
spect to both the number of direct lights and the number of indirect
bounces. However, these performance gains are only a by-product
of the more substantial, novel contributions of our work: the light-
ing prior, transport computation in reduced spaces, and modularity
(which also eliminates expensive scene-dependent transport precom-
putation). We feel that these ideas can be applied more generally
to other areas in offline and real-time rendering, including other
approximate indirect illumination techniques (e.g. instant radiosity).

9 Conclusions and Future Work

We target plausible, large-scale, and soft indirect lighting with rapid
content generation, and sit between a simple ambient term and more
accurate and costly simulations. We leverage a novel approach
to direct-to-indirect transport, using scene-independent transport
warping and coupling. Reduced-dimensional operators act on sim-
ple shapes which are, in turn, warped and coupled to approximate
transport in more complex scenes with extremely high-performance.
Volumetric and vector-valued extensions model transport with high-
frequency surface details and onto dynamic objects.

Blocks in our example dictionaries are cubes with one or more faces
removed or cylindrical shapes. In order to support scenes such as
office hallways with doors and/or windows, we would need to model
blocks with “holes” cut into their faces. One option would be to
subtract the response of the door/window from the implicit light
coefficients of the room.

We incorporated our mapping into an internal level editing tool, pro-
ducing promising results (see video). Investigating semi-automated
and art-directed mapping control are interesting areas of future work.

Acknowledgements

The authors acknowledge the late Marek Romanowski for very
fruitful discussions in the developing stages of the project. Ladislav
Kavan and Peter Shirley also provided valuable feedback. We also
thank Stephen Duck and the MIT Computer Graphics Group for
allowing us to use the Great Hall scene.

References

ASHDOWN, I. 2001. Eigenvector Radiosity. Master’s thesis, De-
partment of Computer Science, University of British Columbia.

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH talks, ACM,
New York.

CHEN, H. 2008. Lighting and Materials of Halo 3. In Game
Developers Conference.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In ACM Symposium on Interactive 3D Graphics
and Games.

8

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting
indirect illumination. In ACM Symposium on Intearactive 3D
Graphics and Games.

DACHSBACHER, C., STAMMINGER, M., DRETTAKIS, G., AND
DURAND, F. 2007. Implicit visibility and antiradiance for inter-
active global illumination. ACM Trans. Graph. 26, 3.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M. F. 1996. The lumigraph. In SIGGRAPH.

GREGER, G., SHIRLEY, P., HUBBARD, P. M., AND GREENBERG,
D. P. 1998. The irradiance volume. IEEE Computer Graphics &
Applications.

GUERRERO, P., JESCHKE, S., AND WIMMER, M. 2008. Real-
time indirect illumination and soft shadows in dynamic scenes
using spherical lights. In Computer Graphics Forum, vol. 27,
2154–2168.

HABEL, R., AND WIMMER, M. 2010. Efficient irradiance normal
mapping. In ACM Symposium on Interactive 3D Graphics and
Games.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2006. Direct-to-
indirect transfer for cinematic relighting. ACM Trans. Graph. 25,
3.

IWASAKI, K., DOBASHI, Y., YOSHIMOTO, F., AND NISHITA,
T. 2007. Precomputed Radiance Transfer for Dynamic Scenes
Taking into Account Light Interreflection . Computer Graphics
Forum, 35–44.

KAPLANYAN, A., AND DACHSBACHER, C. 2010. Cascaded light
propagation volumes for real-time indirect illumination. In ACM
Symposium on Interactive 3D Graphics and Games.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH.

KONTKANEN, J., TURQUIN, E., HOLZSCHUCH, N., AND SILLION,
F. 2006. Wavelet radiance transport for interactive indirect
lighting. In Eurographics Symposium on Rendering.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN, H. W.
2005. Precomputed local radiance transfer for real-time lighting
design. ACM Trans. Graph. 24, 3.

LARSSON, D., AND HALEN, H. 2009. The unique lighting of
Mirror’s Edge. In Game Developers Conference.

LEHTINEN, J., ZWICKER, M., TURQUIN, E., KONTKANEN, J.,
DURAND, F., SILLION, F. X., AND AILA, T. 2008. A meshless
hierarchical representation for light transport. ACM Trans. Graph.
27, 3.

LEHTINEN, J. 2007. A framework for precomputed and captured
light transport. ACM Trans. Graph. 26, 4.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In
SIGGRAPH.

LEWIS, R. R., AND FOURNIER, A. 1996. Light-driven global
illumination with a wavelet representation of light transport. In
Rendering Techniques.

LOOS, B., ANTANI, L., MITCHELL, K., NOWROUZEZAHRAI, D.,
JAROSZ, W., AND SLOAN, P.-P. 2011. Run-time implementation
of modular radiance transfer. In SIGGRAPH talks, ACM, NY.

MARTIN, S., AND EINARSSON, P., 2010. A real-time radiosity ar-
chitecture for video games. SIGGRAPH 2010 Course: Advances
in Real-Time Rendering in 3D Graphics and Games.

MCTAGGART, G. 2004. Half-Life 2 source shading. In Game
Developers Conference.

MEYER, M., AND ANDERSON, J. 2006. Statistical acceleration for
animated global illumination. ACM Trans. Graph. 25, 3.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In SIG-
GRAPH courses, ACM, New York, 97–121.

NICHOLS, G., AND WYMAN, C. 2009. Multiresolution splatting
for indirect illumination. In ACM Symposium on Interactive 3D
Graphics and Games.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchical
image-space radiosity for interactive global illumination. Com-
puter Graphics Forum 28, 4.

NOWROUZEZAHRAI, D., AND SNYDER, J. 2009. Fast global
illumination of dynamic height fields. Computer Graphics Forum
28, 4.

PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS,
B., AND HANSEN, C. 1999. Interactive ray tracing. In ACM
Symposium on Interactive 3D Graphics.

RAMAMOORTHI, R. 2009. Precomputation-based rendering. Foun-
dations and Trends in Computer Graphics and Vision 3, 4.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B.,
SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-
time soft shadows in dynamic scenes using spherical harmonic
exponentiation. ACM Trans. Graph. 25, 3 (July), 977–986.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHS-
BACHER, C., AND KAUTZ, J. 2008. Imperfect shadow maps
for efficient computation of indirect illumination. ACM Trans.
Graph..

SHIRLEY, P., AND CHIU, K. 1997. A low distortion map between
disk and square. Journal of Graphics Tools.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed ra-
diance transfer for real-time rendering in dynamic, low-frequency
lighting environments. ACM Trans. Graph. 21, 3.

SLOAN, P.-P., GOVINDARAJU, N. K., NOWROUZEZAHRAI, D.,
AND SNYDER, J. 2007. Image-based proxy accumulation for
real-time soft global illumination. In Pacific Graphics, IEEE.

WANG, R., ZHU, J., AND HUMPHREYS, G. 2007. Precomputed
Radiance Transfer for Real-time Indirect Lighting using a Spectral
Mesh Basis. Computer Graphics Forum, 13–21.

WANG, R., WANG, R., ZHOU, K., PAN, M., AND BAO, H. 2009.
An efficient gpu-based approach for interactive global illumina-
tion. ACM Trans. Graph. 28, 3.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Trans. Graph. 28, 3.

XU, H., PENG, Q.-S., AND LIANG, Y.-D. 1990. Accelerated
radiosity method for complex environments. Computers and
Graphics, 65 – 71.

ZHUKOV, S., INOES, A., AND KRONIN, G. 1998. An ambient light
illumination model. In Rendering Techniques, Springer-Verlag.

A Basis Enrichment

When constructing the direct light (P) or interface (Hrlf) priors, some functions are
not well represented in the reduced space: e.g., direct light with shadows cast by objects
not present during the computation of {ld0, . . . , ldm}, or indirect light Ub vectors
for multiple bounces. To model targeted effects, we can enrich our basis.

9

Given bases stored in columns of matrices, we first re-scale the matrices to have a
prescribed Frobenius norm, then concatenate the matrices into a larger matrix with the
same number of rows and compute the SVD, retaining the left singular vectors and
singular values (optionally). This new prior better spans all sub-spaces.

To generate a new prior for blocks we equally weight the scaled prior P S from
Section 4, fall back basis functions that are constant on one face and zero on others to
approximate changes from shadows/albedo, and indirect lighting represented by Ub.

Without Basis Enrichment With Basis Enrichment

Figure 13: A box has 5 red and one white face. Without enrichment,
red faces bounce all colors onto the white face, which is incorrect.

For interfaces, lightfield-to-lightfield operators {R�,R↑,R�} can generate output
outside of Hrlf ’s space. In this case, we compute the reduced basis response through
these operators, yielding a temporary basis Ltemp and balance that with Hrlf gen-
erating a new basis H̄rlf . The new basis better captures functions from both spaces;
repeated enrichment is used to handle multiple propagation steps (or bounces.)

B Quadratic SH to Hemispherical Linear SH

We present an alternative to vector irradiance: a closed-form solution for the optimal
hemispherical projection of quadratic irradiance back into a linear (vector) model.
This effectively models the higher-frequency energy that “bleeds” into the linear band
after clamping reflectance response to the upper-hemisphere. We solve for linear-SH
coefficients that minimize the difference, over the hemisphere, between quadratic (L2)
and linear (L1) expansions of radiance,

E =

∫
H

[L2(ω)− L1(ω)]
2
dω

=

∫
H

 9∑
j=1

bj yj(ω)−
4∑

i=1

ai yi(ω)

2

dω,

whereH is the hemispherical domain, ai (unknowns) and bj (knowns) are order-2 and
order-3 SH coefficients, and we single index the SH basis functions, yk(ω). Setting
the derivative of error with respect to the unknowns to zero and solving yields

dE

dak

= 2

∫
H2

[L2(ω)− L1(ω)]
dL1(ω)

dak

dω = 0

0 = 2

9∑
j=1

bj

∫
H

yj(ω)yk(ω)dω − 2

4∑
i=1

ai

∫
H

yi(ω)yk(ω)dω ,

which we express in matrix form: H1 a = H2 b, where the 4× 4 matrix [H1]ik =∫
H yi(ω)yk(ω)dω and the 4× 9 matrix [H2]jk =

∫
H yj(ω)yk(ω)dω. The top

4× 4 block of H2 is H1, and an analytic expression for a is:

a = H1
−1

H2b = {b1 − c1b7, b2 + c2b6, b3 + c3b7, b4 + c2b8} ,
where c1 = 3

√
5/4, c2 = 3

√
5/8, c3 =

√
15/2.

The H4 basis [Habel and Wimmer 2010] and OHLSH span the same space.

10

