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Abstract

Filming team sports is challenging because there are
many points of interest which are constantly changing. Un-
like previous automatic broadcasting solutions, we propose
a data-driven approach for determining where a robotic
pan-tilt-zoom (PTZ) camera should look. Without using any
pre-defined heuristics, we learn the relationship between
player locations and corresponding camera configurations
by crafting features which can be derived from noisy player
tracking data, and employ a new calibration algorithm to
estimate the pan-tilt-zoom configuration of a human oper-
ated broadcast camera at each video frame. Using this data,
we train a regressor to predict the appropriate pan angle
for new noisy input tracking data. We demonstrate our sys-
tem on a high school basketball game. Our experiments
show how our data-driven planning approach achieves su-
perior performance to a state-of-the-art algorithm and does
indeed mimic a human operator.

1. Introduction
Automatic broadcasting makes small events, such as

lectures and amateur sporting competitions, available to a
much larger audience. These systems must be able to sense
the environment, decide where the cameras should look,
and ensure the cameras remain fixated on the intended tar-
gets [7]. In this paper, we focus on planning where the
cameras should look. Most existing autonomous camera
systems function in an object tracking paradigm (such as
following the lecturer) and implement camera planning as
smoothing noisy tracking data. In practice, the resulting
output video often looks robotic. Human operators, in con-
trast, are trained to anticipate action and to frame their shots
with sufficient ‘lead room’ [18]. Motivated by this distinc-
tion, we formulate camera planning as a supervised learn-
ing problem: given sensor data of the environment and cor-
responding exemplar camera work by a human expert, we
learn a regressor which can predict an appropriate camera
configuration for a new situation. Basketball is a good sce-
nario for a proof of concept because the current situation
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Figure 1. Mimicking. Using a stationary machine vision camera,
we extract a fixed length feature vector from tracking data to de-
scribe the game state. Meanwhile, we estimate the pan-tilt-zoom
configuration for each video frame of a human operated camera.
Using these data, we train a regressor to model the relationship be-
tween camera pan angle and game state. At test time, we use the
regressor to generate target pan angles for an autonomous robotic
camera based on the input tracking data.

can be precisely described (to a large extent) by the posi-
tions of the players. Furthermore, the repetitive nature of
the game ensures a representative training set can be col-
lected efficiently.

Generally, the camera configuration information is not
directly available from the recorded video. Instead, we must
estimate the pan, tilt and zoom settings of the camera at each
frame from recorded video. Previous approaches [10, 17]
have estimated camera parameters by searching the images
for known geometric features. Alternative methods have
looked for matching key points between the image and a set
of reference frames [11]. In both cases, robustly estimating
the parameters of a PTZ camera for long video sequences
has not been addressed.

Long-term multi-object tracking remains an unsolved
problem in computer vision, especially within a realtime
constraint. As a result, any practical planning algorithm
for autonomous camera systems must be robust to track-
ing errors, such as coping with a varying number of objects.
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Therefore, a robust feature extraction phase which can mit-
igate the effects of noise is critical for successful camera
planning.

Many machine learning methods (such as SVM, neural
networks and KNN classifiers) have been used during fea-
ture extraction in previous camera planning algorithms [7].
However, to the best of our knowledge, no one has for-
mulated camera planning as a supervised regression prob-
lem (and certainly not for automatically broadcasting sport-
ing events). Furthermore, we have proposed a novel cam-
era model to estimate pan-tilt-zoom settings at every video
frame, as well as a host of new features which can be de-
rived from noisy tracking data. In summary, our paper has
three main contributions:

• implementing camera planning by solving a super-
vised regression problem,

• estimating the per-frame pan-tilt-zoom settings of a
PTZ camera via video analysis,

• extracting robust features from noisy multi-object
tracking data.

We first summarize recent work in Section 2. We then ex-
plain in Section 3 how camera planning can be posed as a
regression problem. In Section 4, we investigate the perfor-
mance of different regression algorithms and feature com-
binations. Finally, we validate our method in Section 5 by
comparing to a baseline automatic planning algorithm, as
well as the actual camera work performed by the human
operator.

2. Related Work
Automatic Broadcasting As illustrated in a recent sur-

vey [7], several previous automatic sports broadcasting sys-
tems operate in an offline manner by cropping subregions
from recorded video after tracking players and/or the ball.
For example, Chen et al. [6] determined important subre-
gions by considering user-defined attentional interests (such
as including star players). In contrast, Daigo et al. [8] de-
veloped an online system which controlled a robotic camera
by tracking audience face directions and a rough region of
where players were located on a basketball court.

Sports Scene Understanding Sports scene understand-
ing refers to how the current game situation is described in
an efficient manner. Typically, it consists of the locations of
players and the ball, such as in [2]. However, higher-level
understanding is also possible. Kim et al. [12] proposed a
global motion vector field on the ground plane to predict
the motion of the broadcast camera. Generally, it mimicked
the human operators by setting heuristic rules and learning
from recorded video.

Video Calibration In most sports, the camera param-
eters are estimated by determining the homography H be-

tween the image plane and the ground plane. For exam-
ple, Gupta et al. [10] leveraged ellipses along with lines and
points to estimate H. The combination of geometry, appear-
ance and motion information enabled them to track long
sequences of broadcast video in hockey. To overcome the
lack of distinct image features in football, Hess et al. [11]
proposed non-distinctive local features which increased the
number of matched patches by limiting the possible match-
ings. The pan, tilt and zoom parameters can be estimated
from homographies [1].

3. Method
We model camera planning as a structured regression

problem (see Fig. 1)

ŷt = h(xt) (1)

where ŷt is the planned pan-tilt-zoom state of the camera
for a particular time, h(·) is the learned regressor, and xt is
a feature vector extracted from the current tracking data (see
Sec. 3.1). To learn the regressor, the work of an expert hu-
man camera operator is analyzed (see Sec. 3.2) to generate
exemplar pan-tilt-zoom states {yt} for the observed track-
ing features {xt}. Using these paired data {(yt,xt)}, we
investigate various machine learning algorithms (see Sec. 4)
to generate a suitable camera planning algorithm h(·).

Our experimental setup is from a high school basket-
ball match recorded by two cameras. The broadcast camera
(1280 × 720 at 60fps) is operated by a human expert. The
machine vision camera (1936× 1456 at 25fps) remains sta-
tionary so that a computer can detect and track players au-
tomatically. We manually segmented the recorded video to
remove all non-continuous periods of play (such as timeouts
and free throws). The resulting dataset is about 17 minutes
in duration (16 of which were used for training, and 1 held
out for testing). For convenience, we linearly interpolated
the tracking data to 60fps. Because the main broadcast cam-
era in basketball maintains a wide shot and mostly constant
tilt angle, we focus on predicting an appropriate pan angle,
leaving tilt and zoom as future work (which may be more
important in sports such as soccer).

3.1. Features

We detect players within the video of the stationary ma-
chine vision camera using a method similar to [4], which
analyzes background subtraction results in terms of 3D
cylinders. To minimize the impact of missed and false
detections, we analyze the data in τ = 12 frame chunks
(≈ 0.5s), and greedily fit constant velocity models to the
detection data using RANSAC [13]. As a result, temporal
chunk t contains a set Tt = {T1, T2, ...TNt

} of short con-
stant velocity trajectories. Unlike [6], we do not have an
estimate of the players’ identities.
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Figure 2. Feature Extraction. Players are detected in a stationary
camera (a) with corresponding world locations (b). The heat map
feature (c) is computed by quantizing the basketball court into 1×
2, 2 × 4 and 3 × 6 grids, and soft binning each detected player
location. The spherical map (d) is computed by projecting each
(x, y) player location onto a unit sphere located at the broadcast
camera’s center of projection, and soft binning the pan angle into
three different quantization resolutions.

In order to formulate camera planning as a regression
problem, we must extract a fixed length feature vector xt
from each set Tt of noisy player trajectories (see Fig. 2).
Here, we proposed three possible features.

Centroid We compute a 2-dimensional feature vector
xcentroid
t by computing the average (x, y) location of all

players during temporal chunk t.

Heat Map Similar to HOG and SIFT, we divide the bas-
ketball court into a 2D grid and count the number of players
present within each cell to generate xheat map

t . To minimize
quantization effects, we linearly interpolate each player’s
count between the four neighboring cells. Additionally, the
heat map describes the player distribution at different scales
by changing the resolution of grid. In practice, we employ
three resolutions: 2 × 1, 4 × 2 and 6 × 3, resulting in a
28-dimension feature vector.

Spherical Map Because the regressor predicts a pan an-
gle for the PTZ camera, there is an inherent non-linear
spherical projection between the world coordinate system,
and the pan-tilt-zoom domain of the camera. Therefore, we
generate an equivalent heat map xspherical map

t on the unit
sphere of the PTZ camera. There are two key differences:
(1) we project each player location onto the unit sphere, and
(2) since we are only interested in predicting pan angle, we
only quantize the pan axis. As a result, the spherical heat

map is generated for resolutions 1 × 2, 1 × 4, and 1 × 8.
Again, these scales are stacked to build a 14-dimension fea-
ture vector. Unlike the heat map in the world coordinate
system, the spherical heat map is specific to a particular
camera location C. Effectively, the spherical map is a polar
quantization of the player positions on the basketball court.

Ball Currently, we do not use any direct information about
the ball because estimating its 3D location in monocular
video is ill-posed (unless the ball is in contact with the
floor). Moreover, players are coached to be in the right
place at the right time. As a result, the spatial formation
of the offensive and defensive players usually gives strong
clues about the ball’s location [21]. Our experiments illus-
trate a similar pattern: the learned regressor often follows
the ball, even though it has no direct information about the
ball. Of course, if reliable ball data was available as a fea-
ture, we would expect improved learning performance.

3.2. Labels

In addition to feature vectors {xt}, we also require corre-
sponding ground truth labels {yt}, which in this application
are camera pan angles. Therefore, we now describe how
we estimate the pan angle of the human operated camera at
each video frame.

The pinhole model is frequently used to describe the pro-
jective aspects of a camera [19]

P = KR[I| −C] (2)

where K is the intrinsic matrix, R is a rotation matrix from
world to camera coordinates, and C is the camera’s center
of projection. Assuming square pixels and a principle point
at the image center, the focal length f is the only degree of
freedom in the intrinsic matrix K.

Generally, a PTZ camera system has two separate com-
ponents: a camera and a robotic head. The rotation matrix R
changes as robotic head moves. Thus, we factor R into two
rotation matrices Q and S [3]

R = QS. (3)

The rotation matrix S represents the rotation from the
world coordinate system to pan-tilt motor coordinate sys-
tem, and remains constant regardless of the actual pan-tilt
settings. We model the rotation matrix using the Rodrigues
notation S = [sx, sy, sz]

T. The matrix Q represents the 3D
rotation for a specific pan-tilt (θ, φ) setting

Q = QφQθ (4)

where

Qφ =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 , Qθ =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 .
(5)



Figure 3. Displacement. When a PTZ camera is realized by
mounting a large camera on a tripod, the projection center and
the rotation center are usually significantly far apart. As a result,
it is necessary to model this displacement.

Most PTZ models assume the rotation center is the same
as the projection center. However, it is only an approxima-
tion [1]. Some cameras obviously do not obey this assump-
tion. For example, Figure 3 shows a professional broadcast
camera. The camera is mounted on a tripod, and rotates
around the tripod head (green circle). The projection center
(white circle) is significantly far from the rotation center.
Therefore, we refine the camera model to account for this
displacement

P = KC̃

[
R 0
0 1

] [
I −D
0 1

]
. (6)

Here, D is the center of rotation, and C̃ is the translation
from the center of rotation to the center of projection

C̃ =

 1 0 0 c̃x
0 1 0 c̃y
0 0 1 c̃z

 . (7)

The center of projection changes significantly whenever
the camera zooms in or out. Therefore, we model the dis-
placement between the center of rotation and the center of
projection as a linear function of f

c̃x = λ1 + λ4f,
c̃y = λ2 + λ5f,
c̃z = λ3 + λ6f.

(8)

In our PTZ camera model, there are twelve time invariant
parameters Φ = [Dx, Dy, Dz, sx, sy, sz, λ1, ..., λ6]T and
three per-frame parameters [θ, φ, f ]T. Constrained by the
common parameters Φ, our model can estimate pan, tilt and
focal length from at least two correspondences. Okubo et
al. [16] employed a similar idea, but included an additional
rotation between the rotation center and projection center.

Parameter Estimation We begin by independently esti-
mating the calibration matrix Pj of each video frame j us-
ing the standard pinhole model (2). Afterwards, we employ

Figure 4. Keyframe Matching. The left column shows the warped
overview images from different keyframes and the corresponding
matched points. The right column show the final calibration.

Levenberg-Marquardt optimization to estimate the time in-
variant parameters Φ and per-frame pan-tilt-zoom settings
by minimizing the projection error of key points

Φ, {θj , φj , fj} = arg min
∑
i

‖mi − m̂i‖2. (9)

Here, mi is the observed image location of known 3D
point Mi (corners of basketball court markings), and m̂i

is the projection of Mi by P(Φ, θj , φj , fj). We find loca-
tions of key points in the input video frame by searching
for matching key points from multiple manually calibrated
keyframes. To perform the matching, we employ two ho-
mographies

mi,k = HH−1k Mi (10)

where Mi is the 3D position of the key point, Hk is the ho-
mography mapping Mi to a manually calibrated keyframe
k, mi,k is the corresponding key point in the input video
frame, and H is the homography between keyframe k and
the input video frame.

We use SIFT matching between the keyframe and input
video frame to estimate H. To filter out noisy correspon-
dences, we employ the method of Hess et al. [11] and syn-
thesize an overhead view image of the basketball court by
combining multiple calibrated frames. A database of six
keyframes was constructed using the method of [5] to ob-
tain accurate camera parameters. Finally, we warp the over-
head image to the vantage point of each keyframe using the
homography matrix Hk. Because the warped overhead im-
age has almost no clutter (such as players), matches to an
input video frame typically have few outliers. We calculate
the homography matrix H between the input video frame
and each keyframe using SIFT [14]. We greedily select
the keyframe with the minimum sum of squared differences
(SSD) between the warped overhead image and the input
image based on where we expect to see court markings.
Figure 4 shows an example of keyframe matching. For a
long video sequence, we linearly interpolate [θ, φ, f ]T for
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Figure 5. Reprojection Error Distribution. The reproduction er-
rors of our model have smaller variance and bias.
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Figure 6. Projection Center Distribution. The distribution of the
projection centerC relative to its average C̄ for the two calibration
methods. We constrain the projection center’s location relative to
the center of rotation which results in more plausible calibration
estimates.

frames where calibration fails (typically because of motion
blur when the camera is moving quickly).

Figure 5 shows the projection error distribution of our
revised PTZ model and the typical pinhole model. The data
is from 26 images in which the correspondences were man-
ually identified. The RMS error of our method is 3.1px,
whereas the pinhole model is 4.6px. Since our method as-
sumes c̃ is a linear function of focal length, the c̃x and c̃y
components can account for linear variations in the princi-
pal point. As a result, our model can also model the shift
of the principle point as f varies. Figure 5 illustrates how
our average projection error is very close to (0, 0) while the
pinhole model is significantly far from (0, 0) implying the
principal point is not always exactly at the center of the im-
age. We also tested our model on two additional basketball
broadcast datasets [3, 15]. In both cases, our model outper-
forms the standard pinhole model (see Table 1).

Figure 6 shows the distribution of C relative to its aver-
age location C̄ for both the pinhole model and our model.
The data is from 389 calibrated frames which were uni-
formly sampled from the recorded video. Because the pro-
jection center cannot be outside the camera body, the results
of the pinhole model look unrealistic. Our model, on the
other hand, constrains the projection center to a reasonable
range.

Pinhole Our model
Dataset #points RMS median RMS median

Ours 296 4.6 2.1 3.1 1.6
CMU [3] 233 4.2 3.2 3.9 2.8
NBA [15] 412 2.6 1.8 2.0 1.4

Table 1. Reprojection Error Comparison. Our model has lower
reprojection error (measured by RMS and median pixel distance)
on all three basketball datasets.

Method Feature
Centroid Heat Map Spherical Map

Train Test Train Test Train Test

LSQ 6.6 3.9 7.1 5.1 7.4 4.8
SVR 6.2 4.3 3.2 3.1 3.9 2.9
RF 6.1 4.6 0.9 3.0 1.8 2.7

Table 2. Regression Methods. The RMS error (in degrees) of
predicted pan angles for various regression methods and feature
combinations. The lowest test error for each feature is emphasized.
Training error is reported on the entire training set after selecting
optimal parameters.

4. Learning

Having extracted a set of tracking features {xt} and cor-
responding exemplar pan angles {yt}, we now describe how
we learned a regressor h(·) to predict pan angles {ŷt} for
new game situations {xt}. We considered three well es-
tablished techniques: linear least squares regression (LSQ),
support vector regressor (SVR) and random forest regres-
sion (RF). For each learning method, we investigated the
three feature representations discussed in Section 3.1. We
used about 16 minutes of video (at 60fps) to generate 60,496
training examples. We employed ten-fold cross validation
to determine the optimal soft margin in SVR, and out-of-
bag testing to decide the optimal number of trees and tree
depth in RF1. An additional one minute of video was held
out and set aside for use as 3,562 testing examples. Because
our goal is to mimic a human operator, the ground truth la-
bels for the test set are the pan angles of the human operator.
The centroid feature is our baseline, as it is effectively the
method of [3].

Table 2 shows the RMS error for each regression method
and feature combination. For the low-dimensional centroid
feature, least squares regression achieved the best perfor-
mance with an average RMS error of 3.9◦. However, for the
high-dimensional heat map and spherical map features, the
more complex regression algorithms were able to achieve
substantially lower RMS errors of 3.0◦ and 2.7◦ respec-
tively (performance improvements of ∼ 20% and ∼ 30%

1See the supplemental material for additional details.
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Figure 7. Error Distribution. The cumulative fraction of the test
data where the prediction error is less than a specified threshold.
Better predictors will populate the top-left corner of the plot.

compared to predictions based on the centroid feature us-
ing LSQ). In both cases, RFs achieved slightly better per-
formance relative to SVR. Figure 7 shows the cumulative
fraction of test data that fell within a specified error toler-
ance for each regression algorithm and feature combination.
Methods which have a substantial number of small errors
will quickly approach a high fraction (i.e. the top left cor-
ner of the plot). RF using spherical maps achieved the the
best result, but RF using heat maps and SVR using spherical
maps were almost equally as good. However, all methods
clearly have a small number of occasions (less than 10%
of the test data) where there are large >10◦ discrepancies
between the predicted pan angles {ŷt} and the actual pan
angles {yt} of the human operator.

There are several factors which may lead to inaccurate
predictions, such as errors in detecting and tracking play-
ers. However, in our test sequence, we have considered the
human operator’s actions as ground truth, which results in
two implicit assumptions: (1) there is a single optimal pan
angle y∗t for a particular situation xt, and (2) the human op-
erator never makes a mistake — i.e. yt ≈ y∗t . On closer
inspection of the data, we find neither of these assumptions
is always true.

Multivalued Function Figure 8 shows two similar distri-
butions of players. The computed spherical map features
(inset) are roughly equivalent. However, in the first situa-
tion the camera is panned to the left, while in the other the
camera is panned significantly to the right. Although the
features xa ≈ xb are similar, the pan angles ya 6= yb are
not. As a result, h(xt) is not strictly a single valued func-
tion. The same formation of players may have multiple pos-
sible correct pan angles — i.e. h(xt) 7→ {yt, y′t, y′′t , . . . }.

(a) (b)
Figure 8. Multivalued Function. (a) and (b) show two roughly
similar distributions of players at different times in the game. The
resulting spherical maps (inset) are also quite similar. However,
the pan angles of the human operated camera are substantially dif-
ferent.
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Figure 9. Human Variability. The gray area shows a two stan-
dard deviation confidence interval (average uncertainty is ±2.2◦).
The inset image in the lower right shows the human operator with
a poorly framed shot (half of the image is of an unoccupied area of
the basketball court). The inset in the top left show the predicted
framing from the learned regressor. In this situation, the predic-
tion error is quite large, but the discrepancy is the result of a poor
ground truth label, and not a bad prediction.

Human Variability Our approach contains an underlying
assumption that the human operator has perfect control of
the camera. Figure 9 shows the empirical variance learned
by the RF regressor. The variance arises from two sources:
player tracking errors which result in noisy feature repre-
sentations, and variation in how the human has operated
the camera during similar formations of players. Frequent
small variations arise from control errors — i.e. the operator
is putting the camera in roughly the same configuration, but
not exactly the same configuration. Larger variations oc-
cur when a camera operator incorrectly anticipates how the
action will unfold, and ends up with an incorrect framing.
As a result, our ground truth (what the human operator did
with the camera) is only an approximation of the what ide-
ally should have been done with the camera. Furthermore,
large errors in our predicted pan angles {ŷt} may in fact be
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Figure 10. Smoothed Predictions. The raw predictions are
smoothed using a first-order Savitzky-Golay filter. These revised
predictions are used to generate the synthetic video for qualitative
analysis.
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Figure 11. Image Overlap. We asses how well each algorithm
is able to mimic the human operator by counting the number of
missed pixels when synthesizing how the autonomous algorithms
would have filmed the same scene. An algorithm which closely
mimics the human should populate the top-left corner of the plot.

valid predictions that simply coincided with human opera-
tor error (such as the circumstance depicted in Figure 9).
Therefore, in the next section, we investigate an alterna-
tive comparison technique which evaluates what the human
operator did with the camera versus what an autonomous
planning algorithm would have done with the camera in the
same situation.

5. Evaluation

Smooth motion is critical for aesthetic camera work [18].
Therefore, we use a first-order Savitzky-Golay filter [20] of
33 frames (0.5s) to smooth the predicted pan angles. Fig-
ure 10 shows the smoothed prediction of baseline (centroid)
and our method (spherical map). The prediction error of
our method (1.7◦) is substantially smaller than the baseline
(3.0◦).

Finally, we evaluate the various prediction algorithms us-
ing re-cinematography [9], which generates new video by
resampling previously recorded video. When resampling
the recorded broadcast, we fix the focal length and tilt angle
as ground truth, and set the pan angle to the predicted value
ŷt. Since the prediction ŷt is generally different from the
ground truth yt, the resampled video will have missing pix-
els because the resampled frame will go beyond the bounds
of the recorded video. As a result, we can gauge how well
an algorithm mimicked the human operator by the magni-

tude of missing pixels in the synthesized video. Figure 11
shows the cumulative fraction of missing pixels present in a
resampled video. Our method has significantly smaller er-
rors compared to the baseline. For qualitative comparisons,
please consult the supplementary material.

6. Discussion
In this work, we proposed a data-driven method to pre-

dict the pan angle of PTZ camera from the distribution of
players on a basketball court. To the best of our knowl-
edge, we are the first to pose camera planning as a super-
vised regression problem. More importantly, our method
provides realtime predictions which closely resemble the
work of a human operator for the same game situation. In
order to learn from exemplar recorded video, our method
also includes a new calibration algorithm for obtaining re-
liable pan-tilt-zoom camera parameters from long video se-
quences.

We have demonstrated our approach on basketball using
noisy realtime player tracking data. Although ball detection
would be useful, our results indicate that it is not absolutely
necessary (the formation of the players often implies the lo-
cation of the ball carrier [21]). Figure 12 illustrates how the
learned regressor is able to keep the ball in view during the
setup of a half court press. In contrast, the centroid method
focuses on a vacant region of the court because the distribu-
tion of players is bimodal.

Currently, we have only evaluated our method on bas-
ketball. However, we expect a similar approach will work
for other sports as well (possibly using additional features).
In future work, we plan to evaluate our method on different
sports and different competitive levels. We will also investi-
gating mimicking the auxiliary cameras which are used for
cut-aways in a multi-camera production.
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Centroid

Learned Regressor
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