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ABSTRACT
Turn-taking decisions in multiparty settings are complex, es-
pecially when the participants are children. Our goal is to
endow an interactive character with appropriate turn-taking
behavior using visual, audio and contextual features. To
that end, we investigate three distinct turn-taking models:
a baseline model grounded in established turn-taking rules
for adults and two machine learning models, one trained
with data collected in situ and the other trained with data
collected in more controlled conditions. The three models
are shown to have different profiles of behavior during si-
lences, overlapping speech, and at the end of participants’
turns. An exploratory user evaluation focusing on the deci-
sion points where the models differ showed clear preference
for the machine learning models over the baseline model.
The results indicate that the rules for language interactions
with small groups of children are not simply an extension of
the rules for interacting with small groups of adults.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: [Audio in-
put/outputs]; H.5.2 [User Interfaces]: [Natural Language]

Keywords
Multiparty turn-taking; multimodal inference; child speech
behavior; overlapping speech; character-child interaction.

1. INTRODUCTION
Turn-taking is an essential mechanism in human language

interactions [19]. Our ability to determine whether and
when to respond to each other is largely unconscious and ef-
fortless, despite relying on a mix of contextual, verbal, and
gestural cues that unfold over time. Smooth and natural
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exchanges are also desirable when humans talk with virtual
characters or social robots [5, 7], and inappropriate turn-
taking behavior by the character may undermine the user’s
sense of engagement. Adult behavior suggests three essential
rules for managing the turn, which can be paraphrased: take
the turn promptly when addressed, don’t talk when some-
body else is talking, and don’t leave long, uncomfortable
silences. Most adults follow these rules easily in dyads and,
with some effort, fairly successfully in group situations. A
character implemented with a turn-taking model that cap-
tures these rules, then, will be able to interact effectively
with adults in a wide variety of circumstances. The same
model might be ineffective in character-child interactions,
however, as children have been shown to deviate from adult
turn-taking rules in significant ways, particularly when they
are in groups [13, 12].

The domain we work in–language-based games played by
small groups of children–is an example of a situation in
which the adult model seems inadequate. When hosting
an interactive game, an animated or robotic character has
one overarching goal: to make play effective and fun. The
character must know when it has the opportunity or obli-
gation to speak for play to be effective, but it must also ac-
commodate a certain amount of “inappropriate” turn-taking
behavior (e.g., talking at the same time) for play to be fun.
If two children have overlapping speech, to whom should the
character respond? The first speaker? The loudest speaker?
The speaker who has played the least? Should the character
wait until nobody is speaking to take the turn? Should it
wait even if it is responding to the earlier speaker? Game
play is not the only environment in which these questions
arise; a character who answers children’s questions at a mu-
seum exhibit or one who guides small group exploration in
a classroom must address them as well.

In our game a human wizard answers such questions im-
plicitly, making turn-taking decisions as a side-effect of per-
forming the character’s speech processing. His goal, like the
character’s, is to make game play effective and fun. Thus, in
making decisions to act or wait, he implements an unarticu-
lated policy that both serves that goal and provides training
data for learning autonomous behavior. Such a solution also
has problems, however: the wizard may rely on features of
the environment (e.g., eye gaze) that he can sense but the
character cannot. Moreover, in our highly dynamic environ-



ment, the wizard’s reaction time can be both variable and
long enough to introduce significant noise into the data.

In the remainder of this paper we briefly review existing
approaches to turn-taking, then compare the performance of
three models with respect to the audio-visual data collected
from groups of children playing our game. The baseline
model makes turn decisions while trying to enforce the three
adult rules. The second model uses features that encode the
participants’ contextual, verbal, and gestural cues over time
to learn turn decisions based on the wizard’s behavior in
situ. The third model also uses multimodal features and
learns to make turn decisions, but is designed to overcome
the wizard’s reaction time lag by training on post hoc human
annotations collected at strategic moments in the game. We
find that the three models have different profiles of behav-
ior during silences, overlapping speech, and at the end of
participants’ turns. We then report on a user study which
shows preference for the learned models’ performance over
the baseline’s, and discuss future work.

2. RELATED WORK
Seminal research on turn-taking in adults can be found

in the areas of linguistics and conversation analysis [19, 21,
11]. This work has shown that there is an inherent structure
behind turn-taking and that people employ several verbal
and non-verbal cues to ensure minimal overlaps in a con-
versation. However, the analysis of turn-taking in children
suggests that these regularities are not always observed, or
at least they differ from the ones studied in adults [12, 13].

Regularities in turn-taking by human adults motivated
the development of several computational models of turn-
taking for embodied virtual agents [5, 3], social robots [4,
7] and dialogue systems [20, 22, 18, 24]. Fluent turn-taking
behavior has been shown to improve the perceptions of life-
likeness and fluidity of interaction [5], or even increase task
efficiency [7].

Most of the existing turn-taking models and studies are
focused on dyadic interactions with adults. For turn-taking
in a multiparty setting, Bohus and Horvitz [3] proposed a
decision-theoretic approach to balance the tradeoffs between
waiting and taking the floor with the goal of minimizing the
gaps in the interaction between a conversational agent and
two adult participants. The model’s cost function was re-
fined with a post hoc data collection, in which a small group
of annotators were asked to identify turn-taking errors of
the system. The Ymir Turn Taking Model (YTTM) also
works in multiparty settings [23]. YTTM includes parame-
ters such as urge-to-speak and yield tolerance based on mul-
timodal perceptions of each participant, and was evaluated
using a virtual simulation of 12 agents interacting coopera-
tively with each other. In contrast to our approach, these
two examples presume that turn-taking is cooperative and
“polite,” assuming, for instance, that no one interrupts the
participant who is holding the floor.

Recognizing the end of a speaker’s turn or the addressees
in a conversation are examples of turn-taking related phe-
nomena that have been investigated in multiparty settings.
Matsusaka and colleagues [16] proposed a framework for si-
multaneously predicting dialog acts and addressee types.
Work by de Kok and Heylen [10] employed a probabilis-
tic approach to predict end-of-speaker turns using prosody,
gestures, and focus of attention. More recently, Nakano and
Fukuhara [17] analyzed multimodal data, including gaze and

turn-taking behavior, to build a linear regression model that
estimates conversational dominance in a group. They found
that more dominant participants tend to take more (and
longer) turns in a conversation. In a corpus of children play-
ing an interactive game with a virtual character, Hajishirzi
et al. [15] investigated the question of deciding whether or
not a child’s utterance was directed to the character using a
set of visual, prosodic, and behavioral features.

Despite the large body of prior research on turn-taking
in adults, only a few authors have explored turn-taking in
groups of children [2, 14]. Blomberg et al. [2] deployed a
robotic head that interacted verbally with groups of chil-
dren and adults in a public space. Some simple turn-taking
mechanisms were implemented in the robot; for example,
when a visitor approached the installation, the robot would
take the turn and ask the visitor a question. The analysis of
the collected data raised the need for developing appropriate
turn-taking and speech recognition mechanisms tailored for
children. In this paper, we extend this line of research by de-
veloping and evaluating turn-taking models for an animated
character that interacts with groups of children, where the
timings, overlap tolerance and social cues for taking, hold-
ing or releasing the floor may differ from those dynamics in
groups of adults.

3. TASK SCENARIO
Our work is done in the context of Robo Fashion World

(RFW), an interactive game designed to facilitate the collec-
tion of audio and visual language data from young children
in small groups. The data set reported here represents games
played during the summer of 2011 by 65 compensated chil-
dren (31 males, 34 females) and seven parent volunteers. All
children were native English speakers and ranged in age from
four to ten (M = 6.8, SD = 1.9 years). Participants were
assigned to groups based on the convenience of scheduling
for the family, resulting in 29 groups of one to four children
with or without a parent or adult experimenter. The aver-
age group size was 3.2 (2.4 children), and about 60% of the
groups combined children across families.

RFW is a game in which children dress up a fashion model
in the center of the screen with silly clothing items and ac-
cessories available on a board (see Figure 1). The game
is hosted by Edith, an animated robot character, who is
responsible for mediating the interaction and making the
costume changes. After a brief introduction that includes
choosing a model, Edith explains the two main game ac-
tions: requesting a change to the model by naming one of
the clothing items or accessories on the board and requesting
a picture of the model to be printed and taken home after
the game. Play then enters the choice cycle where, dur-
ing each of 20 iterations, a valid reference to a board item
is made, the model changes, and a replacement item ap-
pears on the board. Participants stood side-by-side approx-
imately six feet away from a large screen where the game
was displayed. The interactions were video recorded using
one frontal and two lateral cameras. Sound was captured
using both individual close-talk microphones and a linear
microphone array located under the screen.

During game play, a human operator performed Edith’s
language understanding in a Wizard-of-Oz design. An in-
terface allowed the wizard to signal a clear reference to each
of the board items, a request for a picture, an utterance di-
rected to Edith that was unclear, a pause that was too long,



Figure 1: A screenshot of Robo Fashion World.

or multiple voices speaking at once. Only one of the events
could be chosen at a time, and choosing an event would al-
ways result in some action by the character. Thus, even
though the interface has fewer than a dozen options, decid-
ing when to take the turn is complicated: some events can
co-occur (e.g., multiple children can call out different board
items at once), a single, clearly-spoken object reference may
be hard to resolve because children sometimes use their own
vocabulary (a king hat rather than a crown), and object
references that occur as part of side conversations need to
be understood but not reacted to. The wizard’s decision to
signal an event or wait was based on his tacit understanding
of the rules of turn-taking in this kind of interaction, the
children’s behavior, and the general criteria that the game
should move along effectively and be fun. Log files contain-
ing the timing and content of wizard actions, the behaviors
employed by the character as a result, and the changing
state of the game board were generated automatically.

Parents who volunteered to play were instructed to sup-
port their children’s participation in whatever way felt nat-
ural for their family. Experimenters who participated in
groups with young children made game choices only when
the group’s turn-taking behavior warranted it. As a re-
sult, the activity was largely controlled by the children, who
spoke to the character about 80% of the time (2025/2535
utterances) and took about 84% (2535/3034) of all conver-
sational turns. The children also tended to do most of the
gesturing, with 80% of the total clapping, head nodding,
pointing, and emphasis motions. Parent utterances (157 to-
tal) were addressed equally often to the character or chil-
dren; experimenter utterances (342) were addressed to the
children about three quarters of the time. All participants
displayed situational attraction [1], the tendency to orient
physically toward the screen rather than each other during
some or all of a non-character directed utterance.

Although audio and visual regularities at the level of sin-
gle utterances are important when building a turn-taking
model, the turn-taking style of the group as a whole is also
critical. We formalize the differences among our groups by
defining the chaos factor in a game as the percent of par-
ticipant utterances that begin while another participant is
talking. Chaos factors ranged from 3% to 36% (median of
12%). It is not surprising that chaos is highly correlated
with both total group size (r = .52, df = 27, p < .01) and
the number of children in the group (r = .64, df = 27, p <
.01); the more participants (or children), the more opportu-

nity there is for overlapping speech. It is a bit surprising,
however, that groups that included parents, groups that in-
cluded experimenters, and groups that included neither fell
at both the high and low ends of the range. In other words,
some groups self-organized their turn-taking to be quite or-
derly while others gravitated to more chaotic play, and which
kind of turn-taking occurred could not be predicted by the
presence or absence of an adult. The wizard was able to ac-
commodate this variability; an autonomous Edith must be
able to do so as well.

4. TAKE OR WAIT? THREE MODELS
To replace the wizard with a fully-autonomous charac-

ter, Edith must know when a participant is speaking, when
the speech is addressed to her, what was said (and meant),
and when she should take the turn to respond. We con-
ceive of the autonomous agent as a set of sensors and semi-
independent modules that map audio and video inputs into
features that combine with task context to make these high
level decisions. Features have been chosen based on analy-
sis of the participants’ behavior, prior research on addressee
identification and turn-taking in adults, and the constraint
that features must be detectable in our physical environ-
ment. The detectability constraint means, for example, that
we rely on head orientation as a substitute for eye gaze; al-
though eye gaze is known to predict the release of a turn, it
cannot be tracked in our groups.

Because we want to distinguish the adequacy of the fea-
ture set from the adequacy of particular feature detectors,
our models are built initially using labels generated by hu-
man annotators. Annotated models represent the ability of
a given set of features to capture regularity given human lev-
els of sensing and create an upper bar for performance with
automatic detectors. Table 1 describes each feature and its
origin. Language annotations were derived using the video
and close-talk microphone audio, and segmented into utter-
ances based on pauses of at least 500 msec. Gesture and
head orientation were derived from the front-camera video.
Rather than impose an a priori duration or angle for hu-
man judgments of head orientation, annotators were told to
use turn-away/turn-back labels, and to mark a turn when it
was associated with meaningful interaction with a person or
object, but not to mark brief, incidental head movements.
Further details, including a discussion of inter-annotator re-
liability are given in [15].

Our goal is to develop a model that determines whether
Edith should take the turn or wait at every moment of the
interaction. We expect implemented feature detectors to
run in a distributed fashion, however, so models based on
feature vectors that combine output across modalities will
require synchronization. In anticipation of this, we map the
extracted features into 500 msec time slices, where the value
of a feature at the synchronization boundary reflects what
happened in the majority of the interval. Thus, a hand-
annotated feature will be true in the vector exactly when
the annotator’s label extended over at least 250 msec of the
interval. As the top of Figure 2 shows, the time slice map-
ping makes it appear to the model as if every utterance stops
and starts on a 500 msec boundary. Power and pitch are also
coerced to a single value for a time slice, mapping the av-
erage power/pitch in the interval to one of low, medium,
or high. We define three turn-taking models on top of this
common underpinning.



Feature name Description Source

Head Orientation Facing Edith or away Hand annotated
Gestures Presence of head shakes, pointing or emphasis motions Hand annotated
Voice Activity Whether a participant is speaking Hand annotated
Addressee Identification Whether speech is to Edith Hand annotated
Yes-No Words Use of yes, no or synonyms in an utterance Hand annotated
Valid Asset Word Use of picture or word(s) that refer to a board item Hand annotated + log files
Pitch Pitch of the participant’s speech signal Automatically extracted
Power Volume of the participant’s speech signal Automatically extracted
Prompt Whether Edith’s last utterance required a response Log files

Table 1: Features used to train the turn-taking classifiers.

4.1 Baseline Model (MB)
In a game where multiple children may be calling out their

choices simultaneously, each trying to produce the change to
the display that he or she prefers, the host can try to keep
the game moving by simply responding to the first utterance
in each choice cycle that it can understand. The baseline
model, MB , encodes this minimal functionality, taking the
turn at the end of any utterance that is addressed to Edith,
irrespective of other considerations. Keeping the game mov-
ing also requires that Edith takes control at some point dur-
ing a long pause. MB takes the turn after 3.5 seconds of
silence, a value that has been used in a multiparty game
with adults [3].

Despite the simplicity of the algorithm, the kind of be-
havior an implementation of MB would exhibit in situ may
seem variable and complex. If the group is chaotic and
speech recognition is poor, Edith is likely to appear quite
passive, essentially waiting until only one speaker can be
heard clearly. Children might notice this and respond by
self-organizing their behavior to be less chaotic or might
grow frustrated because the character seems unresponsive
to too many valid choices. In less chaotic environments,
non-verbal cues could enable Edith to grab the turn despite
some degree of overlap among participants, giving the im-
pression that she is just as boisterous as the rest of the group.
Whether all combinations of participants can play effectively
and have fun under such a model is unclear.

4.2 Wizard’s Model (MW )
In constrast to MB ’s purely rule-based design, MW is

purely data-driven, based on the turn-taking decisions made
by the wizard. We created a Support Vector Machine (SVM)
binary classifier [8] using the features described in Table 1
and take-or-wait labels derived from the wizard’s actions
in the log files. Because turn-taking within a group un-
folds over time, we explored a set of models with access
to group information over varying amounts of past history.
Each SVM in the set was trained on an extended feature
vector that included the features for all the participants in
the group in the current time slice as well as the features for
all participants from some number of previous time slices.
Performance plateaued after four time slices, thus MW was
trained using the LibSVM implementation [6] with a Radial
Basis Function (RBF) kernel, mapping features for every
participant over a two second history to one of the two out-
puts: take or wait. Because Edith’s speech and actions are
not currently interruptible, time slices during which Edith
executed her turn were not used during training or subse-
quent tests. In total, MW was trained at 13,067 decision
points.

The wizard was able to create a turn-taking environment
in which children were effective and had fun, so MW holds
some promise that it can reach the same goal by encoding
the wizard’s behavior. It may fail to meet that goal, how-
ever, for two reasons. First, the model may be unable to
capture the inherent motivations behind the wizard’s turn-
taking decisions because the feature set is inadequate. It
does not, for example, encode how many turns each child
has taken at a given point in the session, a factor the wizard
might have used in deciding to wait and see if delay would
encourage a younger child to participate. The list of such
possible features is long; our intent here is less to argue that
our feature set is complete than to explore whether a set
that has been well-documented as important in adults will
be useful for children as well.

The second limitation of the model is more problematic.
The wizard had the relatively complex task of mapping the
behavior of the group–the shouting, the movement, the af-
fect, etc.–into a single interface event. As a result, his re-
sponse time was variable and often crossed multiple 500 msec
boundaries. Although we can tell from the log files when
Edith acted, we cannot tell when the wizard formed the in-
tent to take the turn; but it is exactly the features that
existed at the moment of intent that the model should asso-
ciate with the take. Features that exist one or two seconds
later may be quite different, particularly in a chaotic envi-
ronment. We can see the negative effect of the lag between
intent and action by measuring the model’s internal consis-
tency with K -fold cross-validation, testing performance in
each session with a model trained on the other 28. When
we compare the predictions of MW against the wizard’s ac-
tual data, performance is poor: Max F1 = 0.40 and the Area
Under ROC Curve (AUC) = 0.51.

Our final model was designed to overcome the inherent
lag in the wizard’s response and give a clearer picture of the
adequacy of the feature set for turn-taking in small groups
of children.

4.3 Annotators’ Model (MA)
MA, the annotators’ model, reflects a hybrid approach,

sitting somewhere between the purely rule-based (MB) and
purely data-driven (MW ) ends of the spectrum. In essence,
we asked a set of annotators to behave as wizards in a ver-
sion of Robo Fashion World where time could be stopped at
theory-driven moments and the only interface option was to
answer the question: should Edith take the turn now?

In particular, annotators watched brief segments taken
from the choice cycle portions of all sessions, with video
of the children from the front camera shown side by side
with what the children saw on the display. The annotators



were able to watch the segment only once and were directed
to answer immediately the forced-choice question that ap-
peared when the video stopped. The end points of the seg-
ments were selected from theory-driven moments for taking
the turn and waiting, and were based on the boundaries in
the original hand annotations, not on the synchronization
boundaries that define time slices for the models. In par-
ticular, annotators were questioned at decision points that
were generated in the following manner:

• End of Utterances (EOU): a decision point was
generated at the end of every child’s utterance plus
50 milliseconds (to eliminate the perception that the
utterance was clipped). There were 2,015 segments of
this type.

• Middle of Utterances (¬EOU): to build an accu-
rate model, both positive and negative instances are
needed in the training set. Thus, we included video
segments for which the expected turn-taking decision
would be wait by randomly selecting one time slice
in the middle of every utterance that was longer than
500 msecs such that the ¬EOU interval did not co-
occur with an EOU from another utterance. There
were 1,642 decision points of this type.

• Silences (SIL): for each silence larger than one sec-
ond (the average silence length across all sessions), we
randomly selected one point in the first half of the
silence and another point in the second half of the si-
lence. The task contained 1,292 video segments of this
type.

The 4,949 video segments described above always began
immediately after a board change and ended at one of the
generated decision points. Four annotators with prior ex-
perience in human behavior analysis, three female and one
male, were recruited for this task. Video segments were
distributed so that each was rated by two annotators and
each pair of annotators had the same number of segments
in common. There was no contact among annotators after
training; inter-annotator reliability across the full data set
was significant (κ = 0.739, p < 0.001).

As we did with MW , we can ask how well a model trained
with the annotators’ data captures their consistency. To
train MA we used the same implementation of LibSVM, the
time slices during which annotators made their turn-taking
decisions (two decisions per time slice), and a history of two
seconds. In 29-fold cross-validation against the annotators’
ground truth, MA faired considerably better than MW : Max
F1 = 0.77 and AUC = 0.58.1

In summary, then, MB implements a policy for turn-taking
that is completely consistent with respect to the feature
space but which may or may not correspond to what any
human would do when hosting the game. We expect that
if MB is implemented with human levels of feature detec-
tion it would be adequate to keep the game moving without
turn-taking inappropriately or adding to the general level of

1We also ran a model using only the decision points where
annotators agreed, resulting in: Max F1 = 0.82 and AUC =
0.67. We chose to continue working with the larger model
(all annotator points) because it more accurately reflects
the annotators’ indications that there are, in fact, moments
where either choice is acceptable.

chaos, but may or may not result in play that is fun. MW

is intended to implement the decision making of the wizard
who performed the sensing functions in our sessions. MW

is based on behavior that allowed a fun and effective expe-
rience but does not seem to reflect that behavior accurately
because of the variable lag introduced by the wizard’s reac-
tion time. Finally, MA is an attempt to capture what the
wizard would have done if he had really been acting as the
host of the game, rather than merely as a set of sensors lim-
ited to making categorical judgments through an interface.
MA is trained on less human data overall, but specifically
on those moments where turn-taking decisions are likely to
be made. In the next section we compare and evaluate the
models’ behaviors.

5. COMPARING THE MODELS
To choose a single model to control Edith’s turn-taking,

we use the set of 13,067 time slices from our 29 sessions as
a common basis for comparison. This data set represents
all the time slices in which Edith does not hold the turn
or, alternatively, all the time slices in which the wizard had
to decide. To make the comparison, the feature vectors for
each participant at each time slice are mapped to a take-
or-wait decision for each model. Effectively, this procedure
asks each model, “If the character is placed at a moment in
time in which this set of features is available to it, what will
it do?”

5.1 Analyzing the Models’ Behaviors
We generate a full set of decisions for MW after training on

all the intervals using two seconds of history. The resulting
behavior of the model can be understood as a straightfor-
ward generalization of the wizard’s behavior. Similarly, we
generate MA’s decisions after training on all the annotators’
data with two seconds of history. Since MA is trained on
annotators’ decisions for a carefully selected third of the in-
tervals, it generalizes its basis more broadly than MW .

Generating decisions for MB also requires some general-
ization. A straightforward application of the algorithm is
problematic because it would generate a wait during every
interval between the time MB would take and the wizard
did take the turn. In Figure 2, for example, MB would take
in timestamp 9 but be forced to wait in timestamp 10. The
role of MB , as a baseline, is to respond unambiguously to the
first person addressing the character in the choice cycle by
taking the turn immediately after a character-directed utter-
ance, regardless of whether there is another person talking.
Since a one second delay is still considered an “immediate”
response [9], we generalize this intent by allowing MB to take
the turn with a delay of up to one second (two timestamps),
but only if nobody else is talking during that time.

We analyze the performance of the three models as a func-
tion of the context in which a take can occur. The synchro-
nization boundary of every time slice falls into one of four
categories, examples of which are given in the Category band
of Figure 2:

1. Non-chaotic end-of-utterance (EOU&¬CHAO):
the interval follows the end of an utterance with no
overlapping speech (timestamp 9). A take at the end
of an EOU&¬CHAO interval will give the appearance
of the character smoothly taking the turn.



Figure 2: Participant and character behavior mapped to time slices.

2. Chaotic end-of-utterance (EOU&CHAO): the in-
terval boundary follows an end of utterance and con-
tains on-going speech from another participant (time-
stamps 3 and 7). A take at the end of an EOU&CHAO
might be perceived as grabbing the turn, interrupting,
or boisterous, depending on context.

3. Non-end-of-utterance (¬EOU): one or more peo-
ple are in the middle of speaking. A ¬EOU take will
give the appearance of interrupting if only one person
is speaking (timestamps 5 and 8), but may seem less
rude if multiple people are speaking (timestamps 2 and
6) because the person who technically holds the floor
(the one who began speaking first) has already been
interrupted.

4. Silence (SIL): no speech during the interval (time-
stamps 1, 4, and 10). A take during silence can be
associated with a reprompt by the character, which
would either be perceived as helpful or impatient, de-
pending on context.

Figure 3 contrasts the behavior of the models in terms of
the percentage of takes in each of the categories, showing
clear differences in turn-taking style.

EOU&¬CHAO: MA and MW are about equally likely
to take the turn at the end of a non-chaotic utterance and
more likely to do so than MB . Recall that MB always
takes the turn after an utterance that the feature annota-
tors said was character-directed. Therefore the extra takes
by MA and MW must occur after utterances that the fea-
ture annotators labeled non-character-directed. Most non-
character-directed utterances fall into one of two classes:
evaluative/emotional comments such as “That’s funny look-
ing,”which are directed to everyone (or to oneself but spoken
aloud), and side conversation utterances about whose turn
it is or what a board object should be called. In a previous
data set [15] we found that even humans may disagree about

Figure 3: The percentage of takes by each model as
a function of category.

addressee for evaluative comments. So both the wizard and
the annotators whose judgments created MA may simply
have disagreed with the “ground truth” addressee feature
for some of the evaluative comments.

The side conversation utterances are more problematic.
In particular, naming conversations involve the use of terms
that may be meaningful references to objects on the board.
Where situational attractors like the board demand it, par-
ticipants’ body language at these moments may be indis-
tinguishable from their body language during true requests
for a board change. As MW and MA generalize across the
feature space, there will be times that they incorrectly view
some of these side utterances as requests, and take the turn
to change the board. If this happens often enough, Edith
may be viewed less as an engaging character and more as
a computer. Alternatively, participants might compensate
for Edith’s inappropriate takes by adopting behaviors that
are natural–lowering the voice, speaking behind a hand, or
turning away from the screen–and lead to more successful
play.

EOU&CHAO: The difference between this category and
the previous one is that someone is still talking when an end
of utterance occurs. Again, MB takes if the utterance is
character-directed, responding promptly to one person even
though it means interrupting another. So the extra takes
by MA can be understood by the analysis given above. The
behavior of MW has changed, however; MW is not taking the
turn at the end of all character-directed utterances. It is not
possible to know whether MW takes less often because the
wizard could not react quickly enough to take in a chaotic
moment, or whether the wizard simply chose to let the chaos
die down before making a decision. It is clear, however,
that the annotators whose data created MA were not willing
to wait; they (and their model) are aggressive in chaotic
circumstances, choosing either to respond to the request or
to manage the chaos immediately.
¬EOU: Because letting the speaker finish is considered

to be a basic rule of turn-taking, MB never interrupts in
the middle of an utterance unless it must respond to a di-
rect request. As the figure shows, neither MW nor MA fol-
lows the rule, with MA, again, taking the most aggressively.
Some of MW ’s takes are likely caused by overgeneralization
of delayed takes in other circumstances. To understand the
remainder of MW ’s takes and all of MA’s takes in this cat-
egory, consider timestamps 6 and 8 of Figure 2. At 6, one
person has begun to talk when another chimes in; if the
video is stopped here, a take can occur if the wizard or an-
notator wants to warn the children not to talk at once. At
8, only one person is speaking, but that person has already
said enough to indicate his or her choice. The annotators
tended to take the turn at such points, and MA generalized



Percent of agreement
Weighted sum

Judge1 Judge2 Judge3

MA 64% 61% 53% +955 pts
MW 62% 52% 60% +785 pts
MB 40% 39% 59% -685 pts

Table 2: Judges’ agreement with the models, with
and without strength as a factor.

that tendency to other situations in which an item reference
occurred early in the utterance.

Silences: The three models behave identically in the first
second of silence–taking as if those intervals marked EOUs–
but behave quite differently after that. In contrast to its be-
havior elsewhere, MA almost never jumps in during silences
longer than one second. This suggests that the annotators
were willing to wait as long as it took for a child to take
the turn or an adult in the group to prompt a child. MW

often takes the turn after the first second, but the number
of takes decreases as the length of the silence increases, with
only a few takes after 3.5 secs. This suggests that the times
MW does take may result from lags in the wizard’s reaction
time at the end of an utterance. Finally, MB takes turns in
all silences longer than 3.5 secs as suggested by [3].

Figure 3 makes it clear that the models perform quite
differently. Indeed, the three models agree about what to
do in only about 60% of the time slices. What is unclear is
whether one of them performs better.

5.2 Which is better?
To investigate this question, we conducted a user study

to compare turn-taking decisions at points where one of the
models disagrees with the others. Our goal was to discover
whether one model would gather a clear consensus.

5.2.1 Procedure
About 20% of the time slices where the turn-taking de-

cisions differ were randomly selected for this study. In an
interface similar to the one used to collect the data for MA,
a new group of three judges (two female and one male)
watched each of 1010 video segments. Each segment started
at the beginning of a choice cycle and ended at the 500 msec
boundary where the models disagreed. Annotators who con-
tributed to MA made a simple yes/no decision after the ques-
tion “Should Edith take the turn now?” Judges contributing
to the evaluation were given the same prompt but asked in-
stead to choose among five options: (1) definitely take the
turn, (2) take the turn, (3) either one is OK, (4) wait or
(5) definitely wait. The scale was used both to represent
the judges’ confidence in their decisions and to exclude from
the analysis ambiguous moments in which individuals, them-
selves, could not decide.

All judges used the five-point scale with similar distri-
butions of responses and few either-one-is-OK values, sug-
gesting that all were comfortable with the distinctions being
made and none was much more or less confident in his/her
decisions than the others.

5.2.2 Ranking the Models
The first three columns of Table 2 present the percent-

age of agreement between the outcomes of the models and
the decisions of the judges. Note that no model garnered
overwhelming consensus, and no judge agreed with any one
model’s decisions more than two-thirds of the time. Judges

1 and 2 had similar profiles, preferring both MA and MW

over MB , while Annotator 3 had no clear preference.
To factor in strength of agreement, we ranked each model

according to the following criteria: if the model’s predic-
tion was in line with the turn-taking decision provided by
the judge, the model received +2 or +1 point if the answer
was, respectively, a definitely take/wait or a take/wait. If
there was a mismatch between the model’s prediction and
the judge’s response, the model received a penalty of -2 or -1
following the same rule. If the judge’s rating was either-one-
is-OK, the response was ignored. The weighted sum column
of Table 2 shows that with respect to the decisions where
the models differed, the behavior of the two SVM models
was preferred to the rule-based model, with MA somewhat
preferred to MW .

Since the behavior of the models differs as a function of
the contexts explained above, we also considered whether
judges were agreeing or disagreeing with taking or waiting
in each context. Table 3 summarizes the results. Because
we sampled randomly from the disagreements, each cate-
gory is represented according to its prevalence in the full
set: 56 points from EOU&¬CHAO, 30 from EOU&CHAO,
543 ¬EOU, and 381 silences.

In end of utterance intervals, EOU, the judges do not
agree with most of the extra takes by MW and MA, fa-
voring the rule-based model, which waits at the end of non-
character-directed utterances. It is important to stress, how-
ever, that MB ’s decisions rely on the hand annotations for
the utterance boundaries, and that automatic prediction of
end-of-utterance (or end-of-turn) is still a very hard prob-
lem, especially in multiparty settings [10]. The SVM mod-
els are essentially learning to detect the end of an utterance
from the presence of other features, particulary features in
the two seconds of history. It is unclear whether an imple-
mented version of MB–one that could not rely on human
levels of sensing–would retain its advantage in this category.

With respect to ¬EOUs, the judges disagree with MB ’s
decision to wait during the disputed segments. Both MW

and MA received positive points for taking the turn in the
middle of the utterances; MA jumped in more often, so it re-
ceived the most points. Like the group of annotators whose
data informed MA, these judges are willing to take the turn
as soon as they hear a valid reference to a board item, even
if that means interrupting the speaker.

Finally, the judges are quite clear in their dislike for takes
that occur in Silences greater than one second. MA fares
best since it has the fewest of these. MB–which always takes
the turn after silences longer than 3.5 seconds, as suggested
for adults–is clearly the wrong behavior when interacting
with children in our environment. There is, no doubt, a
“magic number” after which even these judges would con-
sider a silence to have gone on too long, but in our game
that moment rarely occurred.

MW MA MB

T W T W T W

EOU&¬CHAO -39 29 -58 10 -3 65
EOU&CHAO -20 -6 -11 3 23 37

¬EOU 215 -22 234 -3 0 -237
SIL -230 858 -154 934 -829 259

Table 3: Weighted sums for each models take (T) or
wait (W) decisions as a function of category.



The judges overall preference for MA is interesting for
three reasons. First, it sanctions aggressive interrupting by
the character in order to minimize stretches of chaos and
keep the game moving with rapid changes to the visual dis-
play. Second, it tolerates stretches of silence up to at least
five seconds without acting. Both of these characteristics
tacitly acknowledge that the rules for language interactions
with small groups of children are not simply some trivial
extension of the rules for interacting with small groups of
adults. The third reason the preference for MA is interest-
ing is that MA had to generalize considerable more from
its training data than MW did. This suggests that focusing
on the moments where the wizard would have, in theory,
formed the intent to take or wait allowed the model to learn
a consistent and appropriate set of audio and visual fea-
tures. Whether those features can be sensed autonomously
with the necessary accuracy to preserve MA’s behavior and
whether the behavior, itself, will be fun and engaging for the
children remains to be seen.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the issue of when an interac-

tive character should take the turn in game play with small
groups of children, with or without adults. We investigated
three different approaches to making take-or-wait decisions
based on multimodal features that encode the group’s be-
havior over time. The three approaches resulted in three
distinct turn-taking models: a rule-based model (MB), a
data-driven model trained with the turn-taking decisions
made by the wizard during game play (MW ), and a hy-
brid model (MA) based on annotators’ post hoc decisions at
theory-driven moments in the video record. Cross-validation
of the two machine-learning models with respect to their
own ground truths revealed that the annotators (and MA)
behaved more consistently than the wizard (and MW ). The
most likely explanation for the poor performance of MW is
the variable delays between when the wizard made his de-
cision to take the turn and when he signaled that decision
in the interface. In an evaluation of the moments where the
models differed, human judges preferred the behavior of the
SVM-based models to the baseline.

Despite the similarities in the rankings of MA and MW ,
the turn-taking behavior of these models is quite different.
Under MA, Edith would take the turn aggressively, often
interrupting a speaking child as soon as the child’s game
choice becomes clear. Under MW , Edith would seem more
polite and willing to wait for children to finish speaking be-
fore responding. Our next step is to implement the models
in an autonomous version of the character to test whether
children have as much fun with either model as they had
when the wizard was leading the interactions. We are also
planning to apply the same methodology to build a comple-
mentary hold/release model, so that Edith is able to stop an
ongoing action and release the turn to the other participants
if conditions suddenly change.
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[14] J. Gustafson and K. Sjölander. Voice transformations for
improving children’s speech recognition in a publicly
available dialogue system. In Proc. of ICSLP/Interspeech,
pages 297–300, 2002.

[15] H. Hajishirzi, J. F. Lehman, and J. K. Hodgins. Using
group history to identify character-directed utterances in
multi-child interactions. In SIGDIAL, pages 207–216, 2012.

[16] Y. Matsusaka, M. Enomoto, and Y. Den. Simultaneous
prediction of dialog acts and address types in three-party
conversations. In ICMI ’07, pages 66–73, 2007.

[17] Y. Nakano and Y. Fukuhara. Estimating conversational
dominance in multiparty interaction. In ICMI ’12, pages
77–84, 2012.

[18] A. Raux and M. Eskenazi. A finite-state turn-taking model
for spoken dialog systems. In NAACL’09, pages 629–637.
Association for Computational Linguistics, 2009.

[19] H. Sacks, E. A. Schegloff, and G. Jefferson. A simplest
systematics for the organization of turn-taking for
conversation. Language, pages 696–735, 1974.

[20] R. Sato, R. Higashinaka, M. Tamoto, M. Nakano, and
K. Aikawa. Learning decision trees to determine turn-taking
by spoken dialogue systems. In INTERSPEECH, 2002.

[21] E. A. Schegloff. Overlapping talk and the organization of
turn-taking for conversation. Language in Society, 29:1–63,
2000.

[22] E. O. Selfridge and P. A. Heeman. Importance-driven
turn-bidding for spoken dialogue systems. In ACL, pages
177–185, 2010.
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