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Abstract— We explore online reinforcement learning tech-
niques to find good policies to control the orientation of a
mobile robot during social group conversations. In this scenario,
we assume that the correct behavior for the robot should
convey attentiveness to the focus of attention of the conversation.
Thus, the robot should turn towards the speaker. Our results
from tests in a simulated environment show that a new state
representation that we designed for this problem can be used
to find good policies for the robot. These policies can generalize
across interactions with different numbers of people and can
handle various levels of sensing noise.

I. INTRODUCTION

Mobile social robots are being designed to operate in
human environments, with and around groups of people.
For example, Cobots [1] navigate university buildings and
perform tasks in collaboration with nearby users. Frog [2]
has operated as a museum tour guide, often guiding groups
of visitors from one place to another. Even though these and
other projects within the robotics community have improved
robot capabilities in human environments, autonomous robot
motion during group conversations has been understudied.
Most efforts to control the spatial behavior of robots in
these situations have relied on tele-operation [3], [4], [5].
A few exceptions are rule-based approaches [6], which tend
to generalize poorly to new situations, and generative models
of proxemic behavior [7]. The latter models worked for
adapting a robot’s position with respect to a single user, but
have not been tested with more people.

Inspired by the success of reinforcement learning (RL)
in robotics [8], we explore RL techniques to find good
policies to control the orientation of a robot during social
group conversations. Body orientation is important because
it is often considered as communicative and meaningful
by users [9]. For robots with a small number of degrees
of freedom, like Cobot [1] or Frog [2], body orientation
controls the direction of important social features, such
as their faces, as well as the directions of many of their
sensors. Thus, their orientation can significantly affect users’
interpretations of their actions and their sensing capabilities.
Furthermore, body orientation can be used to induce spatial
reconfigurations during interactions [10]. This is a subtle and
effective strategy for redirecting the focus of a conversation.

We approach the problem of controlling the orientation of
a robot during group conversations using the Oz of Wizard
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Fig. 1. Simulated group conversation between a robot and four people.
The red and green circles on top of the agents identify the speaker and
addressees, respectively. The big gray circle represents the o-space of the
group’s F-formation.

methodology [11]. Our efforts are focused on evaluating RL
approaches in simulated group conversations (Fig. 1) as a
precursor to future work with real users. The simulation
offers the opportunity to systematically study the effect of
sensing noise on the performance of the robot as well as the
generalization of learned policies to other group interactions.
This is a first step towards automatically optimizing robots’
spatial behavior during situated conversations with users and
reducing the amount of engineering required for this task.

One of our main contributions is a robot-centric state
representation for reinforcement learning that is agnostic to
the number of people in the conversation. This means that the
same representation can be used to control the robot while
it interacts with 2, 3, 4 or more people and that the learned
policies can easily generalize across these scenarios.

Even though robots may take a turn to speak during
conversations, we concentrate our evaluation on situations
in which the users are the active speakers and the focus of
attention. These situations are interesting to study from a
control perspective because the robot does not have control
of the interaction dynamics in them and, thus, must adapt
to the flow of the conversation. Under these circumstances,
we assume that the correct behavior for the robot is to turn
towards the speaker to convey attentiveness to this person
and maintain awareness of the focus of attention.

The rest of this paper is organized as follows. Section
II describes our general approach to control the orientation
of a robot with reinforcement learning. Section III presents
background models from social psychology that informed the
design of our simulation environment and details the inter-
action dynamics and sensing mechanisms that we modeled
for this work. Section V and VI then describe our empirical
evaluation and results. Finally, Section VII discusses the
limitations of our work and the implications of our findings.



II. GENERAL APPROACH

We model our motion control problem as a sequential
decision-making process. At any time-step t, the robot (or
agent) receives some representation of the environment state
st and executes an action at. Executing this action triggers
a transition to a following state, represented by st+1, and
results in an immediate reward rt+1. The goal of the robot is
to choose actions that maximize the discounted total reward
that it receives while it interacts with the world. That is,
maximize

∑∞
t=0 λ

trt+1 with λ ∈ [0, 1] a discount rate.
Out of the many RL techniques that exist, we focus on

evaluating popular online approaches that estimate an action-
value function Q(s, a) to try to find solutions to the motion
control problem. The function

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+1+k|st = s, at = a

]
is an estimate of how good it is to choose action a in a given
state s and then follow policy π. Readers interested in more
details about this function are encouraged to refer to [12].

Online approaches are advantageous for our task because
they improve as the robot interacts with people and they can
adapt quickly to specific interaction dynamics. The latter is
particularly advantageous when the social context changes,
e.g., when some of the members of the conversation leave
or others join the interaction.

III. GROUP SIMULATION

We developed a simulated environment to test control
policies for a robot. The simulation was inspired by models
from social psychology that explain human spatial behavior
during free-standing group conversations [13], [14].

A. Background

When people stand freely in open, public spaces, they
tend to maintain distinct spatial organizations known as face
formations, or F-formations in short. F-formations maximize
the opportunities of the interactants to monitor one another
during a conversation and maintains their group as a spatially
distinct unit from other nearby interactions.

Face formations begin when the members of a group
position themselves such that their transactional segments
intersect (Fig. 2a). These segments extend in front of each
person and encompass the physical space that they are using
for their current activity.

For group conversations, the intersection of the transac-
tional segments is known as the o-space of the corresponding
F-formation. In the case of pairs, the o-space is between the
members of a face-to-face arrangement (as in Fig. 2a) or in
front of them in a side-by-side or “L” arrangement (Fig. 2b
and 2c). This pattern can also be observed for bigger groups,
which tend to form semi-circular or circular arrangements
(Fig. 2d and 2e). Experimental evidence suggests that the
notion of transactional segments and o-spaces can be applied
to social robots as well [14], [10]. Figure 1 provides an
example in the context of our simulation.

Fig. 2. Various spatial arrangements that may appear during human
conversations. The top sketch in (a) shows the transactional segments of two
people. The intersection of these segments is known as the o-space (dashed
circles). The bottom sketch in (a) indicates the stride of the o-space, which
is one of the main parameters of our simulation (see Sec. III-C).

B. Main Loop

Our simulation modeled a free-standing group conversa-
tion with an established F-formation. To start, the simulation
placed the interactants in a circular arrangement and ran-
domly chose the first speaker and the addressee(s) (either
one person or the whole the group). The simulation then
repeated the steps below:

1) Update the simulated clock.
2) Update the state of the robot with the latest action that

was chosen by the RL agent that controls it.
3) Choose new speaker and addressee if the previous

speaker finished talking.
a) Set desired head orientation for the speaker.
b) Set desired head orientation for the people who are

listening.
4) Update the states of all the people in the conversation.
5) Compute the reward for the robot.
6) Update the robot’s internal representation of the state of

the conversation based on its sensing capabilities.
7) Return the reward and new state representation to the

RL agent so that it can choose the next action.

The set of actions that the robot could execute were
angular velocity commands that changed its orientation with
respect to the group. The robot’s representation of the state
of the conversation is later described in Sec. IV.

In terms of head orientations, speakers turned their heads
towards their addressee or towards the center of the o-
space if they spoke to the whole group. The other people
in the conversation turned their heads towards the speaker,
as described in the next section. In general, heads rotated
at a fixed angular velocity towards their respective target,
typically during multiple simulation steps.

For this work, we never allowed the robot to take a turn
to speak. As a result, it had to adapt to the flow of the
conversation set by the rest of the group.



C. Main Simulation Parameters
The main parameters that controlled the spatial arrange-

ment of the group and the dynamics of the interaction were:
Number of interactants: The number of people in the con-
versation, including the robot.

O-space center: The location of the center of the o-space
in the world-coordinate frame of the simulation.

Stride: The expected distance between the center of the o-
space and the interactants (as depicted in Fig. 2a).

Time step: Time elapsed between simulation updates.

Robot actions: List of angular velocity commands that
could be executed by the robot. In particular, we used the
set [−15.0,−7.5, 0.0, 7.5, 15.0] (in deg/sec) for this work.

Speaking time distribution: Normal distribution that mod-
eled how long a person typically spoke for. In general, we
used N (5.0, 2.0), but prevented sampled values from being
smaller than 0.5 secs to avoid very short speaking times.1

Look-at noise: When a person i in the simulation looked at
the speaker, his or her head was set towards the angle βi:

βi = arctan(dy/dx) + εi with εi ∼ N (0, σ2
i ) (1)

where d = [dx dy]T denotes the direction towards the
speaker from person i. The noise term εi in eq. (1) controlled
how accurately the person looked at the speaker, depending
on the standard deviation σi. Note that when σi made the
head turn more than 90 degrees from the front of the person,
we clamped βi to prevent the head from turning backwards.

D. Robot Perception
We modeled the robot as a platform with a small number

of degrees of freedom, similar to Cobot [1] or Frog [2]. The
robot had a camera and a microphone array fixed to the front
of its body. The camera could be used to detect the position
of people, as well as their head and body orientations. The
microphone array provided the angular directions toward
nearby speakers from the robot’s perspective.

The sensors had configurable fields of view. People within
these fields of view could be sensed with some probability;
those outside were not detected at all. The specific values
that we used for these parameters are provided in Sec. VI.

E. Reward
In this work, we assumed that the correct behavior for

the robot was to turn towards the speaker. Consequently, the
reward rt+1 that the environment provided to the robot for
taking an action at was:

rt+1 = exp(−ϕ2) + b (2)

with b =

{
1 if abs(ϕ) <= τ and at == 0.0

0 otherwise

1We acknowledge that this model is a crude approximation of real group
conversations because people often speak for significantly longer than 5
secs. We opted for short speaking times, though, because longer speeches
simplify the control problem by reducing the number of speakers in any
given interaction.

The angle ϕ ∈ [−π, π] was the difference between the ori-
entation of the robot and the angle representing the direction
towards the speaker from the robot’s position. The bonus b
was given to reward zero angular velocity commands when
the difference ϕ was small. In general, we used 10 degrees
for τ to prevent oscillatory motions.

F. Limitations

Even though the simulation was useful to explore rein-
forcement learning techniques for motion control, it is by no
means a perfect model of the real world. Our simulation
did not capture all the complexity and variability of hu-
man behavior during group conversations nor sensing noise.
Nonetheless, our efforts are an important first step towards
testing RL techniques for the problem under consideration.
The policies learned from our simulation can be considered
as prior knowledge for learning better behaviors with real
users. Furthermore, the simulation allowed us to explore the
sensitivity of several methods to particular types of noise,
something that is hard to accomplish during human-robot
interaction experiments [11].

IV. STATE REPRESENTATION

Our key contribution in this work is a state representation
that is well suited to solve our motion control problem with
RL techniques. This representation was composed of six
features:
f1. Continuous feature in [−π, π] representing the rotation
that the robot needed to execute to direct its body towards the
speaker. This value is the same as ϕ in eq. (2) if the speaker
was within the field of view of the robot’s microphone array
and the sensor detected the audio signal coming from this
person. Otherwise, f1 was set to zero by convention.

f2. Binary feature indicating if f1 is valid or not. This
feature was zero when no audio signal was detected by the
microphone array; otherwise, f2 was one.

f3. Continuous feature in [−π, π] representing the rotation
that the robot needed to execute to direct its body towards
the location of maximum social saliency induced by the
visible people in its group. Social saliency encoded gaze
concurrences and was estimated using the primary gaze rays
of the people detected by the robot’s camera, as described in
[15] and illustrated in Fig. 3. When multiple locations were
socially salient and had equal contribution from the primary
gaze rays of the visible people, ties were broken randomly
and only one location was used to compute f3. When a single
person was detected by the camera and no gaze concurrence
could be computed, we uniformly sampled possible social
saliency locations along the primary gaze ray of this person
and used their average for f3. If nobody was visible, then f3
was set to zero by convention.

f4. Binary feature indicating if f3 is valid. This feature was
zero if nobody was detected through the robot’s camera and,
thus, social saliency could not be computed. Otherwise, f4
was set to one.



(a) (b)

Fig. 3. Example of the primary gaze rays (l1 and l2) used to compute
the point of maximum social saliency (a) and the resulting feature f3 used
in our state representation (b). The point of maximum social saliency is
marked with an × and surrounded by a light-colored circle. The primary
gaze rays were estimated only for persons 1 and 2, who were visible through
the robot’s cameras. These rays were estimated based on the position and
head direction (v) of each person.

f5. Continuous feature in [−π, π] representing the rotation
that the robot needed to execute to orient its body towards
the center of the o-space of its conversational group. We
computed an estimate c of the true o-space location using
an exponential moving average of center proposals:

c = (1.0− n ∗ a)c + a

n∑
i=1

pi + s ∗ ui︸ ︷︷ ︸
center proposal

(3)

where n was the total number of people visible through the
robot’s camera, a was a small number that controlled the
contribution of every proposal under the constraint n ∗ a ∈
[0, 1], s was an expected value for the stride of the o-space,
pi was the position of the i-th person that was visible, and
ui was a unitary vector pointed in the same direction as the
front of the body of person i. The model used to generate
o-space center proposals (p + s ∗ u) was inspired by prior
work [16], [17] and was used to initialize c with the proposal
corresponding to the first person detected by the robot when
the simulation started. Before any person was detected, f5
was zero by convention.

f6. Binary feature indicating if f5 is valid. If no o-space center
had been estimated, then f6 was zero. Otherwise, f6 was one.

A. Properties

Our state representation is agnostic to the size of the group.
This means that the same features can be used to describe
conversations with a few people or with more interactants.

Because the features are computed from the perspective
of the robot, their descriptive power depends on the perfor-
mance of the robot’s sensors. For example, the more people
are detected at any given time, the more the estimate of the
o-space center converges to the true value. The more people
are detected, the closer the point of maximum social saliency
is to the place where most gaze directions converge. This
place is typically the location of the speaker.

V. EVALUATION

We performed a series of experiments to evaluate several
RL agents in our simulated environment. Our goal was

not to prove the superiority of one method, but rather to
evaluate empirically what kind of approach may be better
suited for our particular task and whether the proposed state
representation generalized as expected. More precisely, our
experiments focused on addressing:

1) whether a robot could quickly learn reasonable policies
for the orientation task in our simulated environment;

2) how the performance of the RL agents under consider-
ation degraded with noisy measurements;

3) how their performance could be affected by atypical
human behavior; and

4) whether learned policies could generalize to conversa-
tions with more or fewer interactants.

To address the first goal above, we studied the amount
of reward that several agents received as a function of time,
as well as how quickly their performance saturated. This
test included agents that estimated action values for discrete
versions of the state space or that approximated them using
linear regression. For the second and third goals, we studied
how measurement noise and variability in human motion
affected the performance of the agents that, on average,
learned good policies faster. For the last goal, we tested
policies that were learned from interacting with 4 people
in other group conversations.

A. Agents

We considered several agents for our evaluation. First,
we decided to test model-based RL methods because they
tend to be more sample efficient than model-free approaches
when good transition and reward models can be learned
quickly. These methods included TEXPLORE [18], which
was designed for the robotics domain, and DYNA-2 [19],
which can leverage prior experience while learning. Because
the latter architecture uses Sarsa [12] to estimate the action-
value function Q, then we also decided to test Sarsa by itself
as a model-free method. Brief descriptions of the specific
versions of the agents that we considered in our evaluation
are provided below for completeness.
Sarsa(λ): Baseline on-policy learning agent [12]. This im-
plementation discretizes the continuous features of the state
space (Sec. IV) and estimates the action-value function
Q using a tabular representation. With any new tuple
(st, at, rt, st+1, at+1),

Qt+1(s, a) = Qt(s, a) + αδtet for all (s, a) (4)
with δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)

where α is the learning rate, γ is the discount factor, and et
is the (accumulating) eligibility trace [20]:

et =

{
γλet−1 + 1 for (st, at)

γλet−1 for all other state-action pairs
(5)

which represents the credit assigned to state-action pairs for
subsequent errors in evaluation.
For action selection, this agent uses the common ε-greedy
policy, which chooses the best actions arg maxaQ(s, a) with
a probability of 1− ε. Otherwise, it selects a random action.



Sarsa(λ) with tile coding and adaptive learning rate: Sarsa
agent with linear function approximation [21]:

Q(s, a) = φ(s, a)T θ (6)

where φ is a function that transforms the state-action pair to a
large binary vector with tile coding [22] and θ is a collection
of weights. The weights get updated by the rule θt+1 =
θt + αδtet, with the eligibility traces being et = γλet−1 +
φ(st, at) and α being updated automatically according to
[23]. This agent also uses an ε-greedy policy.

DYNA-2: RL architecture that combines sample-base learn-
ing with sample-based planning [19], as described in Al-
gorithm 1. The agent has two “memories” that encapsulate
all of the features and parameters used to estimate the value
function. The permanent memory (φ, θ) is updated from real-
world experiences and is used to compute the best overall
estimate of the action-value function Q(s, a) = φ(s, a)T θ
(“learn” procedure of Alg. 1). The transient memory (φ̄, θ̄)
is updated during simulations to track a local correction to
the permanent memory (“search” procedure). This update is
achieved with the combined action-value function Q̄(s, a) =
φ(s, a)T θ + φ̄(s, a)T θ̄.

Algorithm 1: Main steps of DYNA-2
Procedure learn (st, at, rt, s′t+1)

Store (st,at,rt,st+1) to update dynamics model
search (st+1) and pick next action at+1 = π(s, Q̄)
// update permanent memory (Sarsa)
θt+1 = θt + α[rt + γQ(st+1, at+1)−Q(st, at)]et
return (at+1)

Procedure search (s)
for k = 1 to num rollouts do

Initialize ē0 = 0 and s0 = s
Pick action a0 = π̄(s0, Q̄)
for t = 0 to max steps− 1 do

(st+1, rt) = queryDynamicsModel(st, at)
Pick next action at+1 = π̄(st+1, Q̄)
// update transient memory
θ̄t+1 = θ̄t + ᾱ[rt +γQ̄(st+1, at+1)−Q̄(st, at)]ēt

The main difference between Alg. 1 and its description by
Silver and colleagues [19] is that we apply DYNA-2 to a non-
episodic scenario with discounted returns (γ < 1). Moreover,
we use Sarsa(λ) with tile coding and an adaptive learning rate
to estimate θ and θ̄. For the transition and reward models,
we use regression forests, as described in the next paragraphs
for TEXPLORE. Whenever enough samples are collected to
learn a new model, we clear DYNA’s transient memory so
that it quickly adapts to the new dynamics.

TEXPLORE: Model-based architecture that uses sample-
based planning [18]. In particular, this architecture uses
a regression forest to estimate the transition and reward
functions from real experience. Every time a query is made
for planning, a random tree from the forest is chosen to make
the prediction. This tree can be considered as one possible
hypothesis of the true model of the domain. For planning,

this architecture uses the UCT(λ) algorithm with discretized
states-action spaces. Sample actions are selectively chosen
using Upper Confidence Bounds [24].
In contrast with the original description of TEXPLORE
[18], our implementation does not generalize action-values
across depths in the search tree nor runs the act, plan, and
model threads in parallel. The first modification was made
because generalizing values resulted in poor performance
in our particular domain. The second change simplified our
implementation. Even though speed is important for robotics
applications, such as ours, it was not a crucial factor for the
present work.

B. Other Implementation Details

We used RL-Glue2 as the interface between our simulated
environment with the agents under consideration. For the
Sarsa(λ) agent with tile coding, we used PyRL’s implemen-
tation.3 For the rest, we used our own implementation in
Python, as described in the previous section. Moreover, we
used the same model approximator for Dyna-2 and TEX-
PLORE. The approximator was a collection of independent
regression forests for each of the dimensions of the state
space and for the reward function, as proposed by Hester
[18]. Our code extended the functionalities of the regression
forest model of the Scikit Learn library4 with an option to
query the prediction of a randomly-chosen tree in the forest.

VI. RESULTS

Unless otherwise noted, the results presented in this sec-
tion are averages over 10 runs of 18000 steps (equivalent to 1
hour of interaction time) and actions were executed every 0.2
seconds. We set the field of view and detection probability
of the microphone array on the robot to 100 degrees and 0.9,
respectively. For the camera, we used 80 degrees and 0.75.
These values were set based on our prior experience with
off-the-shelf sensors of this kind.

The simulations had a total of 5 interactants (including
the robot) which were arranged in a circular formation with
a stride of 1.25 meters, as illustrated in Fig. 1. In general,
future rewards were discounted with γ = 0.7.

Whenever the state space was discretized by an agent, we
used 24 bins for each of the continuous angular features.
For Sarsa(λ) and the ε-greedy policies, we set λ = 0.4 and
ε = 0.1, respectively. For the discrete Sarsa agent, α = 0.7;
for the continuous version, we used 64 tiles to approximate
the Q function. In the case of DYNA-2 and TEXPLORE, we
used regression forests with 15 trees to estimate a model of
the dynamics. This model was updated every 300 samples
(i.e., once a minute). For sample-based planning, we used
16 rollouts with 3 look-ahead actions. These parameters
provided good results in our simulated environment.

2http://glue.rl-community.org
3https://github.com/amarack/python-rl
4http://scikit-learn.org

http://glue.rl-community.org
https://github.com/amarack/python-rl
http://scikit-learn.org


A. Learning to Orient

First, we studied how quickly the RL agents under consid-
eration learned to orient towards the speaker. We considered
the same look-at noise distribution N (0, σ2) in eq. (1)
for all the people in the simulation, where σ was set to
0.0, 0.3, 0.6, 0.9, or 1.2 radians (which is equivalent to 0.0,
17.2, 34.3, 51.5, and 68.8 degrees). In the particular case
where σ = 0, no noise was added to the head orientations.

In general, all the agents converged to good policies within
1000 to 2000 steps (i.e., within 3.3 to 6.6 minutes) except for
the baseline version of Sarsa with a tabular Q representation.
The poor performance of this version of Sarsa with respect to
the other agents can also be observed in Figure 4. This plot
shows the number of speakers towards whom the robot failed
to orient with an angular velocity of 0.0 rad/sec and with
abs(ϕ) in eq. (2) less than 10 deg. These can be considered
speakers the the robot failed to acknowledge properly. The
fact that all the agents but the baseline version of Sarsa found
good policies quickly suggests that generalizing Q estimates
across states is beneficial for our task.

Figure 5 shows the proportion of steps in which the agents
achieved good behavior and received a bonus b = 1.0 as part
of their reward (see eq. (2)). In general, model-based agents
performed the best in terms of orienting properly towards the
speakers. This result reinforces the idea that random forests
are sample efficient when it comes to estimating dynamics
models [18]. Furthermore, Fig.5 shows that the more people
look away from the speaker, the worse the agents tend to
perform. This reduction in performance happens because
higher σ values lead to fewer gaze concurrences, which is
precisely what social saliency tries to estimate. One option
to counter-act this effect is to estimate σ for every person
during the conversation and incorporate this information into
the estimate of social saliency (see Section 3.2 of [15]).

Figure 6 shows the cumulative reward that the agents
obtained during the 18000 steps of interaction time. TEX-
PLORE clearly outperformed the other agents in this respect,
likely because of its better policy in comparison to ε-greedy.

B. Sensitivity to the Detection Probabilities

Because multiple factors can affect robot perception, such
as background audio or illumination, we decided to fur-
ther investigate how different detection probabilities for the
robot’s sensors affected its performance. In particular, we
focused on evaluating DYNA-2 and TEXPLORE in this
experiment, given that they performed the best previously.

We evaluated two detection probabilities for the micro-
phone array (0.75 and 0.90) and three for the camera (0.60,
0.75 and 0.90). As before, this experiment was repeated 10
times per agent until it completed 18000 steps. We used
N (0, 0.62) for the look-at noise distribution of all the people.

Figure 7 shows the proportion of steps in which the robot
received a positive reward with the different detection proba-
bilities. The results were affected by the detection probability
of the microphone array: the lower the probability, the fewer
times the robot received a positive bonus. Interestingly, the

Fig. 4. Proportion of speakers towards whom the agents failed to orient as
a function of the look-at noise (lower is better). “Disc. Sarsa” is the discrete
version of Sarsa(λ) with tabular Q; “Cont. Sarsa” is the continuous version
with tile coding. Error bars represent standard errors. (Best viewed in color)

Fig. 5. Proportion of steps (out of 18000) in which the agents received
a reward with a positive bonus. Results are groups by look-at distribution.
Error bars represent standard errors. (Best viewed in color)

Fig. 6. Average cumulative reward for σ = 0.0. The shaded areas around
the curves represent the standard error. Similar trends were obtained for the
other look-at noise distributions. (Best viewed in color)

results did not vary much with lower detection probabilities
for the camera.

These findings are encouraging for future tests in real
human-robot interactions because audio detection using mi-
crophone arrays tends to be more reliable than people de-
tection with computer vision approaches. It is worth noting,
though, that the wide field of view of the microphone array
that we modeled for the robot and the lack of false positive
detections likely influenced these outcomes.

C. Individual Behaviors

So far, we have considered situations in which the people
in the conversation are all affected by the same look-at noise
distribution and do not move. Of course, this not realistic.



(a) Mic. detection prob. of 0.75 (b) Mic. detection prob. of 0.90

Fig. 7. Proportion of steps (out of 18000) in which the agents received a
positive bonus as part of their reward. The left/right plots shows the results
when the detection probability of the microphone array was 0.75/0.90.

People often exhibit individual behaviors that differentiate
them from others. To study these types of situations, we
investigated the performance of DYNA-2 and TEXPLORE
when one person was affected by more look-at noise than the
other people and when people slightly adjusted their position
with respect to the rest of the group.

1) Non-Uniform Look-At Noise: For this test, we set the
look-at noise distribution of one person to N (0, 1.22) and
the rest to N (0, 0.62). Because there were four people in the
simulation, we tested all four combinations with one outlier.

We found that the outlier look-at noise distribution did
not affect the performance of the agents; the results were
similar to those obtained for the experiment of Sec. VI-A.
In particular, the proportions of steps in which the robot
received a bonus reward were 0.58 (STE < 0.01), 0.58
(STE < 0.01), 0.59 (STE = 0.01) and 0.59 (STE = 0.01)
with DYNA-2. With TEXPLORE, the proportions were 0.72
(STE = 0.01), 0.73 (STE < 0.01), 0.73 (STE < 0.01),
and 0.73 (STE = 0.01). This result is not surprising given
that the agents relied more on audio detections than visual
information, as discussed in Sec. VI-B.

2) Changes in Location: We modified our simulation to
induce small re-configurations of the people in the conver-
sation. Every time a new speaker was selected, as described
in Sec. III-B, we flipped a coin with a success probability
pt for every other person in the conversation. If the outcome
of a flip was a success, we set a desired new position p′i for
the corresponding person i and updated his or her position
towards this location at a constant velocity. In particular,

p′i =

{
pi + ti if ‖pi − pinii ‖ < 0.5 meters
pinii otherwise

(7)

with pinii the initial location of person i at the beginning of
the simulation, pi their previous location, and ti a translation
drawn from a 2D normal distribution with mean 0 and
covariance [0.01 0.0; 0.0 0.01]. In this manner, equation (7)
induced controlled re-configurations of the spatial arrange-
ment while preventing dissolving the group’s F-formation.

For the test with translational motion, we considered four
success probabilities pt (0.1, 0.2, 0.3, and 0.4). In general,
we used a constant look-at noise distribution of N (0, 0.62)
and set the detection probabilities of the microphone array
and the camera to 0.9 and 0.75, respectively.

Even though DYNA-2 and TEXPLORE learned good
policies with translational motion, we found that this motion
slightly reduced the learning speed of DYNA-2 in compar-
ison to using pt = 0.0 (as in Sec. VI-A). This outcome is
illustrated in Figure 8. Each of the plots of this figure show
the absolute angular difference between the robot and the
direction towards the speaker from its location (abs(ϕ) in eq.
(2)). The baseline DYNA-2 (without translational motion)
converged to an absolute offset of about 0.2 radians (11.5
degrees) after 12000 steps, whereas DYNA-2 took longer to
converge with pt > 0.0. TEXPLORE seemed to perform
slightly better with translational motions, likely because its
policy was better suited for our problem.

Fig. 8. Absolute angular offset (in radians) between the robot’s direction
and the direction towards the speaker. Results were averaged over windows
of 600 contiguous steps and over 10 runs for each agent. The shaded areas
behind the DYNA-2 and TEXPLORE lines represent std. errors. Baseline
results correspond to pt = 0.0, i.e., no translational motion. (Best viewed
in color)

D. Generalization To Other Groups

Finally, we decided to test how well pre-trained agents
performed in other conversations with different numbers
of people. For this test, we exposed the DYNA-2 and
TEXPLORE agents that were trained with 4 people for the
experiment of Sec. VI-A to interactions with 2, 3, 5 and 6
people. For interactions with less than 4 people, we used
a stride of 1.25 meters, as in the other experiments. When
more people conversed with the robot, we increased the stride
to 1.5 meters to accommodate the extra participants. For
this experiment, we also let the agents adjust their Q value
estimates in an online fashion. Each run lasted a total of
3000 steps (10 minutes of interaction time).

Figure 9 shows the average number of steps for which
the agents received a bonus reward in the new environment.
As expected, the agents that were pre-trained outperformed
agents that started to learn from scratch. This result shows
the generalization power of our state representation.



Fig. 9. Proportion of steps (out of 3000) in which the robot got a reward
with a positive bonus. Pre-trained agents interacted with 4 people prior to
this test; other agents learned from scratch. Error bars represent std. errors.

VII. DISCUSSION

We explored reinforcement learning methods to control the
orientation of a robot during simulated multi-party conversa-
tions. Our main assumption throughout this work was that the
robot should turn towards the speaker to convey attentiveness
and maintain awareness of the focus of attention.

The state representation that we designed for the RL
task encodes the likely direction of the speaker from the
perspective of the robot, as captured by a camera and a
microphone array on the platform. This representation is
agnostic to the number of people in the conversation and,
thus, can be used to generalize learned behaviors across
social contexts.

Limitations. Our simulated environment was inspired by
models from social psychology that describe spatial behavior
during group interactions, but did not fully capture all the
complexity of real world conversations nor sensing noise. For
example, only one person spoke at a time in the simulation,
even though people sometimes speak simultaneously during
conversations. Furthermore, the sensors that we simulated
either detected people correctly or didn’t detect them at all.
Real sensors, however, typically provide detection scores and
suffer from false positive detections.

Implications & Future Work. Our findings suggest that
RL has potential to succeed in motion control tasks during
social conversations. In comparison to manually designing
a policy to control the orientation of a robot, RL methods
tend to scale more easily as the dimensionality of the state
space increases. That is, RL methods can incorporate more
easily additional aspects of the interaction in the decision
making process. As we move forward towards controlling
a real platform, this increase in dimensionality will likely
be necessary to deal with the added complexity of real
interactions. For example, we expect that using the detection
probability of the microphone array in the state representa-
tion, rather than using a binary feature for whether or not a
detection was successful, would lead to more robust policies.
Similarly, incorporating a score for how many people gaze
towards the point of maximum social saliency would help
identify important social saliency locations from minor foci
of attention. Of course, we pay a price for this flexibility:

RL methods need data to learn from. To reduce the amount
of data that we will need to train a robot in real life, we
plan to improve our simulation and use the policies learned
from it as prior knowledge. We expect this prior to reduce
the time needed to learn good policies in practice.
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