Linux Light Bulbs: Enabling Internet Protocol Connectivity
for Light Bulb Networks

Stefan Schmid
Disney Research & ETH Zurich
8006 Zurich, Switzerland
stefan.schmid@disneyresearch.com

Stefan Mangold
Disney Research Zurich
8006 Zurich, Switzerland
stefan.mangold@disneyresearch.com

ABSTRACT

Modern light bulbs based on Light Emitting Diodes (LEDs)
can be used to create smart indoor environments: LED light
bulbs provide a foundation for networking using visible light
as communication medium. With Visible Light Commu-
nication (VLC), LED light bulbs installed in a room can
communicate with each other and other VLC devices (e.g.,
toys, wearables, clothing). The vision of the Internet of
Things requires that light bulbs and VLC devices communi-
cate via the Internet Protocol (IP). This paper explores how
the IP stack and other networking protocols can be hosted
on Linux-based VLC devices. The VLC link layer for Linux
consists of a VLC network driver module on top of a previ-
ously developed VLC Medium Access Control (MAC) and
Physical (PHY) layers. The network driver provides the
necessary interfaces to couple the IP networking protocols
and the VLC layers. Performance and interaction between
network driver and the existing MAC and PHY layers are
analyzed and evaluated for different networking topologies
and scenarios. The evaluation results suggest that the se-
lected IP stack and the proposed VLC protocols are flexible
enough to inter-operate.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network
Architecture and Design— Wireless Communications

Keywords

Visible Light Communication; Free-Space Optics; Smart Light

Bulbs; TCP/IP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

VLCS’15, September 11, 2015, Paris, France.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-3702-1/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2801073.2801074.

Theodoros Bourchas
Disney Research & ETH Zurich
8006 Zurich, Switzerland
bourchast@gmail.com

Thomas R. Gross
ETH Zurich
8092 Zurich, Switzerland
thomas.gross@inf.ethz.ch

~

Figure 1: (© Disney, concept art: VLC devices and LED
light bulbs communicating with each other.

1. INTRODUCTION

Visible Light Communication (VLC) based on Light Emit-
ting Diodes (LEDs) has several attractive properties, and
recently developed LED-based light bulbs provide a cost-
effective path to bring VLC to every room. But so far, the
endpoints in VLC networks often use a simple protocol that
is appropriate for the Medium Access Control (MAC) and
Physical (PHY) layers but does not directly support net-
working. As the nodes in a VLC network are required to
communicate with nodes in the Internet, a necessary con-
dition for the Internet of Things (IoT), the Internet Pro-
tocol (IP) stack must be supported. Also, when bringing
the VLC protocols together with an IP stack, many already
existing protocols for the IP layer and above can be reused
without changes.

This paper describes a prototype realization of an IP-
based VLC system. The foundation is a communication
firmware: a software-based VLC PHY layer and a listen-
before-talk VLC MAC layer protocol with contention exe-
cuted on an 8-bit microcontroller [1,2]. This software sup-
ports LED-to-LED VLC networks, where nodes commu-
nicate with each other over free-space optical line-of-sight
channels, achieving a network throughput of up to 1kb/s at
distances of a few meters. Due to the limitations that single
LEDs pose to the range of the communication, light bulb
prototypes based on consumer LED light bulbs, integrat-
ing the aforementioned technology, have been developed [3].
LED light bulbs, with their wide presence in indoor envi-

ronments, can communicate with each other or with VLC-
enabled devices like smartphones, wearables, or toys. They
can be used to broadcast beacons enabling indoor localiza-
tion and can create smart lighting networks. The building
blocks to devise a mesh network of light bulbs that route and
forward network traffic through their VLC carrier interfaces
are therefore available.
This paper presents the following contributions:

e A hardware design of a Linux- and VLC-enabled light
bulb: A consumer light bulb acts as a basis and is mod-
ified with additional electronics and casing. The hard-
ware design is kept simple and low-cost (Section 2).

e A Linux kernel driver module integrating the VL.C pro-
tocol’s PHY and MAC layers into the Linux network-
ing stack: The VLC firmware is kept on a separate mi-
crocontroller and communicates with the Linux plat-
form over a serial interface (Section 3).

An evaluation of the system for various network topolo-
gies: Traffic of the Internet Control Messaging Proto-
col (ICMP), the User Datagram Protocol (UDP), and
the Transmission Control Protocol (TCP) are evalu-
ated and analyzed (Section 4).

2. LIGHT BULB HARDWARE DESIGN

This section describes the modification of the previously
introduced VLC light bulb design [3]. Commercial off-the-
shelf LED light bulbs are used as a starting point and mod-
ified to host a System-on-a-Chip (SoC) running Linux, a
VLC controller module, and an additional power supply for
the added electronics. The system architecture is further
explained in the following section.

2.1 System Architecture

The VLC firmware and protocols [1,2] implement the PHY
and MAC layers and enable low-level networking between
multiple devices. To make use of higher level network pro-
tocols, the VLC controller is extended with a SoC running
a Linux distribution for embedded wireless systems [4]. Fig-
ure 2 shows the overall system architecture. The micro-
controller running the VLC firmware is connected via the
Universal Asynchronous Receiver Transmitter (UART) in-
terface to the SoC. On the Linux side, the VL.C controller is
abstracted as a regular Ethernet interface, implemented as
a kernel driver module. Therefore most applications using
TCP or UDP sockets will work out of the box and can make
use of the VLC link.

Since the VLC firmware is real-time critical, it is kept
on a dedicated device, in the same way as Wi-Fi modules
or any other networking devices. Another approach is to
implement the VL.C protocols directly on top of Linux using
General-purpose Input/Output (GPIO) [5]. However, such a
system works only as long as the operating system workload
is kept low; as soon as the Linux host is used for other
tasks (which motivated the addition of an operating system
to VLC), timings might deviate and consequently influence
the behavior of the VLC layers.

2.2 System Components

The system is built from parts of the original light bulb
and additional custom-built parts, circuitry and casing. In
the following the most important parts are discussed: LED

wv
Atheros SoC Mcu K 3
AR9331 <:> ATmega328p g
OpenWrt VLC firmware
1 2 3 4 5

Figure 2: Light bulb architecture: (1) Wi-Fi-enabled SoC
module, (2) communication interface between SoC and
MCU (UART), (3) MCU running VLC firmware, (4) photo-
diodes and signal amplification, (5) LED plate.

plate, power supply, sensors and amplification circuitry, VLC
controller, SoC board, and casing.

2.2.1 LED Plate

The LED plate included in the original light bulb is reused
together with the diffuse bulb that is covering the LEDs. It
distributes the light in all the directions and therefore makes
it possible to send data to devices all around and not only
in a single direction. This diffuse bulb also distributes the
light intensity in every direction and makes receiving a clean
signal at a distance of several meters challenging (see light
sensor section). Furthermore, a heat sink is attached to
the LED plate, since the LEDs produce not negligible heat
when powered on. The original light bulb uses the socket
as a heat sink, but since the LED plate was moved to a
different location, it needs to be cooled differently.

2.2.2 Power Supply

The bulb built-in power supply outputs around 40V DC
(when loaded) and is used to power on the sixteen LEDs
placed in series. It is dimensioned so that it provides just
enough current for the LEDs. Therefore another power sup-
ply is needed for the additional electronics (VLC and SoC
board). Figure 3 (1) shows the employed power supply, con-
sisting of a grid voltage to 9V AC/DC converter with a
custom-built board attached to the bottom. The attached
board hosts a voltage regulator providing a low-ripple 3.3V
source providing power for the additional electronics. The
low-ripple source is specifically important for the analog am-
plification circuitry (see sensor section).

2.2.3 Light Sensors and Amplification Circuit

Every light bulb is equipped with four photodiodes (Os-
ram SFH213) to sense incoming light from every direction.
The incoming signal is DC filtered and amplified. Every
photodiode is connected to its own amplifier to keep paths
on the board as short as possible and the signal therefore less
prone to noise and interference. The amplified signals are
fed into the ADC inputs of the VLC controller where they
are further processed. Figure 3 (3) shows the PCB. The sen-
sors connect to (3a) respectively to the foreseen locations in
the other corners of the PCB. The pin headers (3c) build the
socket for the VLC controller described in the next section.

2.2.4 VLC Controller

The VLC PHY and MAC layers [1, 2, 6] are software-
based and hosted on an 8-bit Atmel microcontroller (AT-
mega 328p). The microcontroller board connects directly to
the amplification PCB. Since the four sensors are individu-
ally sensing the incoming light, the VLC firmware can also

Figure 3: (1) Power supply for electronics with regulator
(1a) for low-ripple voltage; (2) SoC (2c) breakout board with
connectors to VLC controller board (2a), to the power sup-
ply (2b), and to the LEDs (2d); (3) VLC controller and
sensor board with connector for sensors (3a), connector to
the SoC host board (3b) and pin headers (3c¢) to mount the
VLC microcontroller.

provide information about the originating direction of the
signal. The controller uses the serial (UART) interface to
communicate with the SoC board running Linux.

2.2.5 SoC Board

Each light bulb features a SoC. The module consists of
an Atheros (AR9331) SoC with built-in 802.11g/n Wi-Fi
including an on-board antenna. It also provides 20 GPIO
pins and a serial interface (UART).

The SoC can run OpenWrt [4], an embedded Linux dis-
tribution specifically for routers and other networking de-
vices. Since it is a Linux distribution it ships with the en-
tire Linux network stack, providing a complete network- and
transport-layer for VLC. A Linux kernel driver module (fur-
ther explained in the next section) interfaces with the VLC
controller and the Linux network stack.

The Wi-Fi interface provided by the SoC is very useful for
a testbed environment. The wireless radio channel can be
used as a control channel. The devices can be deployed and
later configured and reprogrammed remotely. Also, mea-
surements can be started and data can be collected without
removing the bulbs again. It is important to know that the
objective was not to built light bulbs that interconnect using
Wi-Fi. The light bulbs interact with each other using VLC
only.

Further, it is possible to use the SoC as a programmer for
the VLC controller. This means that a new firmware image
can be transferred wirelessly to the bulb and then flashed
to the controller. Figure 3 (2) shows the board hosting SoC
from both sides. (2c) shows the SoC and (2a,b,d) depict
different connectors going to the sensor and VLC controller
board, to the power supplies, and LEDs.

2.2.6 Casing

The off-the-shelf light bulbs are tightly packed. To create
additional space for the modifications, 3D-printed casings
are added to the bulb socket providing room for all the elec-
tronics. Figure 4 shows the different parts. The bottom
part (1) hosts the power supply (1c), sensors (1b), VLC
controller board (1a), and on the top the SoC module. It
can be screwed directly to the bulb socket (3). On top sits
an additional part (2), containing the LED plate (2a) and
the heat sink (2b). Additional slits (2c¢) provide improved
air flow. The diffuse bulb is screwed on top of the LED plate

c)——L‘ /

Figure 4: (1) Bottom casing hosting the additional power
supply (1c), the light sensors (2b) the VLC controller board
(1a) and the SoC board; (2) the top casing housing the LED
heat sink (2b) and LEDs (2a), further providing additional
air flow through slits (2c); (3) original light bulb socket with
integrated power supply for the LEDs.

Figure 5: Fully assembled VLC-enabled light bulb.

and held in place by a 3D-printed thread. Figure 5 shows
the assembled light bulb.

3. LINUX INTEGRATION

The transparent integration of the VLC communication
channel based on the software-defined VLC firmware into
the Linux networking stack demands the implementation of
a VLC-enabled data link layer. As illustrated in Figure 6,
the VLC data link layer consists of three core functional
blocks: (1) VLC network driver, (2) VLC firmware MAC
protocol, and (3) VLC-UART interface, which interconnects
the two aforementioned blocks through UART. In this sec-
tion, we describe the design and implementation features of
the Linux-based VLC network driver.

3.1 Design Considerations

The VLC network driver resides in the kernel space of
OpenWrt with root execution privileges. It controls data
transfer within the CPU, and handles asynchronous inter-
rupts triggered either by the network device (VLC firmware)
through the UART interface or by the higher levels of Linux
network stack. It is designed as a loadable kernel module.

The VLC network driver deals with making the MAC
layer of the VLC library available to the network protocol
suite of OpenWrt, by exposing a VLC-enabled Ethernet-
class network interface, which is in charge of sending and
receiving data packets. The network interface registers it-
self within specific kernel data structures, to be invoked
when packets are exchanged with the outside world. It re-
sponds to asynchronous requests received from the outside
(incoming packets from the VLC library), as well as to re-
quests triggered by the kernel for outgoing packets to the

Linux Network Stack Linux Network Stack
13

[ret device] |k buft

— Q
% VLC Network Driver VLC Network Driver £iQ
3 i 11 2
£ VLC-UART Interface §im
= - VLC UART API & 95;
® MAC Layer & UART RX/TX

=] 3

il £ 11

= i UART TX/RX ol o
[] o =
= PHY Layer =N VLC UART API SN
5 S N Sim
= N I Eiw
3 N i
= Visible Light AN MAC Layer Qi g
a >Si<

Figure 6: VLC Data Link Layer: VLC network driver, VLC-
UART interface, and MAC layer (left). Linux Network Stack
interaction with driver and VLC controller is shown on the
right.

MAC/PHY layers, without knowing how individual trans-
actions mapped to the actual packets are being transferred.

A core part of the VLC network driver’s functionality is
the communication of the VLC firmware through the VLC-
UART interface. The serial interface is the communication
channel between the SoC that hosts the network driver and
the microcontroller where the VLC PHY/MAC layers are
implemented. It must be ensured that both, the network
driver and the VLC firmware, exchange data packets that
are compatible with the format that the other end expects
to receive.

3.2 Driver Implementation

The interface of the VLC network driver to the Linux net-
work stack consists of two functional blocks, which are in-
herent in every Linux-based network driver; the net_device
and the sk_buff data structures.

The net_device represents the driver module in the upper
layers. It is used to initialize and disable the network de-
vice, and through this structure a number of device parame-
ters can be set and initialized. Among others, the interrupt
number (IRQ) that is mapped to the device is specified, the
hardware address and the name of the network interface as
it is exposed to user space is set, and a number of operations
on the network device are enabled. The sk_buff represents
the network packet that arrives from the upper networking
layers.

The serial communication on the side of the network driver
is controlled by means of an interrupt handler. When there
is a new data packet (sk_buff) in the transmission queue of
the driver, a job to forward the packet content over UART
to the VLC controller is scheduled and is executed immedi-
ately when the processor is available (outside the interrupt
context). If the VLC controller is not available to receive,
due to concurrently running tasks of the VLC firmware, the
data is scheduled to be transmitted later. On the other side,
during reception, a data packet is received through consec-
utive interrupts and pushed to the network stack, wrapped
in a sk_buff structure.

4. EVALUATION

The performance of the data link layer was evaluated with
a single LED as transmitter and receiver. The described
light bulbs have been measured to produce better results,
also for larger communication ranges, due to the fact of

1 2 1" Hop 2" Hop N™ Hop
Sender Receiver Sender';""‘n‘ ‘ ~ " Receiver
©—Direct Link—Q . . —— =
@) (@) @)
X @ ‘
o

Figure 7: (1) Direct link topology; (2) multi-hop topology,
N intermediate nodes between sender and receiver.

higher emitted light intensity and the addition of a pho-
todiode with amplification circuit. Therefore results of the
same quality if not better are to be expected. The evalu-
ation section consists of measurements for direct link and
multi-hop topologies and different types of network traffic
(ICMP, UDP, TCP).

4.1 Direct Link and Multi-hop Topology

In networking terminology, the term “hop” refers to the
number of intermediate nodes a data packet passes through.
The diagram in Figure 7(2), shows a path with N hops:
in a multi-hop topology, N + 2 nodes participate, one is
the transmitter, one is the receiver, and any data packet
sent from the transmitter to the receiver must hop over N
intermediate nodes. In a direct link topology, only two nodes
participate without any hop in between (Figure 7 (1)).

4.2 1ICMP Network Traffic

ICMP network traffic is used to measure the Round Trip
Time (RTT) of a network packet between a sender and a
destination node. In Figure 8 (1), the RTT is evaluated for
different ICMP packet payloads and for different distances.
It is shown that for distances up to 130 cm and for the same
ICMP packet payload, the RTT has the same value but
shows high deviations for distances larger than 130 cm. With
the LED-to-LED setup, the transmission range is limited
to 130cm, and for larger distances, the two VLC-enabled
platforms cannot communicate at all, making the RTT infi-
nite. Therefore RTT for distances larger than 140 cm is not
shown. Measurements are also reported for 1-hop and 2-hop
topologies (Figure 8 (2)).

As expected, the RTT for multi-hop topologies is signifi-
cantly higher and the larger the packet payload, the longer
the RTT. All measurements were conducted without a “Re-
quest to Send/Clear to Send” (RTS/CTS) scheme enabled,
since there will be always only one packet in transit. This
scheme is a commonly used technique in wireless networks to
anticipate the problem of hidden stations. It is also worth
mentioning that the maximum VLC payload that can be
transmitted is 200 byte, due to memory limitations and low
symbol rate of the VLC controller platform.

4.3 UDP Network Traffic

This section describes measurement for UDP datagram
traffic. Experiments for different UDP packet sizes, commu-
nication distances and network topologies are reported.

Figure 8 (3) shows that the UDP protocol overhead limits
the overall throughput, and this effect is more pronounced

ICMP Payload = 158 Byte / VLC Payload = 200 Byte
—=—|CMP Payload = 108 Byte / VLC Payload = 150 Bytg
5| —¢—ICMP Payload = 58 Byte / VLC Payload = 100 Byte
—s—|CMP Payload = 18 Byte / VLC Payload = 60 Byte
@4
()
E
=
o3
=
- T
c
=]
o
T 2ras - o
Y
® 5 X
* $
1k
ol i i i
110 50 100 130 140
Distance (cm)
3 1000 :
UDP Payload = 158 Byte|
900 —=— UDP Payload = 108 Byte[]
—— UDP Payload = 58 Byte
80or —— UDP Payload = 18 Byte ||
o 700F 1
=g ool a” :]
<=
S5 s00 . .]
53 | '
a & 400/ 1
<
Sk
3001 8
2001 % he 8
1001 1
ol 1 1 . §
110 50 100 130 140
Distance (cm)
5 1000 T T T
Static TCP Sender Window = 134 Byte|
900 | —— static TCP Sender Window = 84 Byte
800l | —#— Static TCP Sender Window = 34 Byte|
o 700f
=
o)
=5 600
£s
£2 so0r
o=
Z3 00
SF I
[= - |)

110 50 100 130140
Distance (cm)

T T T T

7 1000
900
800
700
600
500

400

TCP Network Traffic
Throughput (b/s)

300
200

100

TCP Byte Stream = 13400 Byte
—=—TCP Byte Stream = 8400 Byte|
——TCP Byte Stream = 3400 Byte

110 50 100 130140
Distance (cm)

4

UDP Network Traffic
Throughput (b/s)

6

TCP Network Traffic
Throughput (b/s)

8

TCP Network Traffic
Throughput (b/s)

Round Trip Time (s)
=

—s— 2-hop/ End-to-End Link = 30cm (10cm/link]
——1-hop/ End-to-End Link = 20cm (10cm/link|
10 —— Direct Link (10 cm)

®
T

18/60 58/100 108/150 158/200

ICMP/VLC Payload (Byte)

1000

0

o

S
T

©

S

S
T

——— Direct Link (10 cm)
—— 1-hop/ End—to-End Link = 20cm (10cm/link)
—=&— 2-hop/ End—to—End Link = 30cm (10cm/link)

~
S
S

[[Solid Line: RTS/CTS OFF

o
1=}
=)

|| Dashed Line: RTS/CTS ON |

%

o

=)
T

n ; ; i
18/60 58/100 108/150 158/200
UDP/VLC Payload (Byte)

1000

900 [

800 -

700

600 -

500

400

300

200

100 -

—— Direct Link (10 cm)
—=— 1-hop/ End-to—End Link = 20cm (10cm/link)
—&— 2—hop/ End—to—End Link = 30cm (10cm/link)

1000

34/100 84/150 134/200
TCP Sender Static Window Size (Byte)

900

800 [

700

600

400 [

200

100

Direct Link (10 cm)
—¢— 1-hop/ End—to—End Link = 20cm (10cm/link)
—=— 2-hop/ End-to—End Link = 30cm (10cm/link)

Solid Line: RTS/CTS OFF
Dashed Line: RTS/CTS ON

Bz prasiomon 1
F———-- — —

8400 13400
TCP Byte Stream (Byte)

Figure 8: Result graphs for ICMP (1-2), UDP (3-4) and TCP (5-8) measurements.

for small payloads. The throughput drop at 130 cm shows
again the limited communication range.

Figure 8 (4) shows UDP traffic for multi-hop scenarios.
As it is expected, RTS/CTS in direct link topologies adds
more delay and decreases throughput. In 1-hop and 2-hop
topologies, a small improvement in the performance with
enabled RT'S/CTS is visible. Despite the fact that UDP
traffic inserts only one packet stream in the network and
traffic moves only in one direction at a time, collisions seem
to happen and RTS/CTS is reducing the packet collision
probability.

4.4 TCP Traffic

Given the bottleneck imposed by the speed of the VLC
link, the TCP parameters are examined and adjusted so
that they correspond to the capabilities of the VLC link
layer. In particular, the policy concerning the TCP sender
window is examined for direct link and multi-hop network
scenarios. The TCP sender window defines the number of
bytes the transport layer can inject into the network layer
without having received any acknowledgment (ACK). The
sender window size is modified and the network performance
is evaluated with respect to the resulting TCP throughput.
The main limitation comes from the VLC library, as it can-
not handle packets larger than 200 byte. This limitation
restricts TCP’s Maximum Segment Size (MSS) to 134 byte
(200 byte minus the TCP header size). In addition, to limit
complexity, a TCP policy is applied so that there is only
one TCP stream between two nodes, and only one network
packet is in transit in the network at any given moment
(TCP window size of one).

Figure 8 (5) shows that larger TCP sender window sizes
lead to higher TCP throughput up to the communication
range of 130 cm.

Figure 8 (6) shows TCP throughput with a static TCP
window, measured for the direct link, 1-hop, and 2-hop
topologies. It can be observed that even in multi-hop topolo-
gies, the use of RTS/CTS decreases the TCP throughput
and this is more eminent when using a larger sender win-
dow. This effect is due to the specific nature of the static
TCP window and the specific scenario of one TCP stream.
Despite the multi-hop topologies, the end-to-end connection
keeps the sender waiting for an ACK for every TCP segment
transmitted and only then proceeds to the next transmis-
sion. Thus, there are no collisions and RTS/CTS adds more
delay, decreasing the throughput. For other scenarios, where
multiple streams are involved, the use of RT'S/CTS is highly
recommended. Since this scenario is not very likely for light
bulb mesh networks, also experiments with a dynamic TCP
setup are reported.

Given the maximum of 134 byte MSS that the VLC li-
brary imposes, with a dynamic TCP sender window, we
inject multiple TCP segments in the VLC network driver
buffer. The network performance for different sizes of TCP
streams using a dynamic TCP window in a direct link topol-
ogy is depicted in Figure 8 (7). As expected, in a direct link
with a dynamic TCP sender window, the TCP throughput
is between 380-400b/s, almost the same performance as in
the scenario with a static TCP window size of 134 byte.

Figure 8 (8) depicts network performance for multi-hop
topologies using a dynamic TCP sender window. Without
RTS/CTS there is no mechanism to detect simultaneous
transmissions from hidden stations and thus consequently

larger delays and lower throughputs are measured. Enabling
RTS/CTS decreases the TCP throughput in the direct link
topology, while in multi-hop topologies a slight improvement
in the network performance is visible.

S. CONCLUSIONS

IP multi-hop networking is an important feature for VLC,
as it enables the communication between light bulbs and
smart objects, without relying on additional radio technol-
ogy (ZigBee, Wi-Fi, etc.). This paper describes how an IP
stack can operate on an LED-based VLC node, using the
OpenWRT light-weight variant of Linux. Endpoints can
be light bulbs or other platforms that provide LED-based
communication equipped with a compatible IP stack. The
initial prototype has not been optimized for performance,
and a number of important issues deserve further investiga-
tion, but the system provides a proof of concept that indeed
the IP stack and the proposed VLC protocols are flexible
enough to inter-operate.

The ubiquitous presence of LED-based light bulbs that
can be enhanced with VLC functionality, and the availabil-
ity of low-complex LED-equipped devices that can engage in
VLC, unleashes a wide range of opportunities and applica-
tions. As we are flooded with light everywhere, VLC-based
localization services using the existing lighting infrastruc-
ture can be a viable alternative to alternative localization
solutions based on radio signals. In addition, controllable
LED lighting, identification, and indoor tracking opportu-
nities can be grown using the dedicated VLC channel per
light bulb. Communication with light enables a true Inter-
net of Things, as consumer devices, such as toys equipped
with LEDs, are transformed into interactive IP communica-
tion nodes — an interesting low-complex feature for what we
refer to as the Internet of Toys.

6. REFERENCES

[1] S. Schmid, G. Corbellini, S. Mangold, and T. Gross,
“LED-to-LED Visible Light Communication Networks,”
in MobiHoc, 2013 ACM, Aug. 2013.

S. Schmid, G. Corbellini, S. Mangold, and T. Gross,

“Continuous Synchronization for LED-to-LED Visible

Light Communication Networks,” in Optical Wireless

Communications (IWOW), 2014 3rd International

Workshop in, pp. 456—49, Sept 2014.

[3] S. Schmid, J. Ziegler, G. Corbellini, T. R. Gross, and

S. Mangold, “Using Consumer LED Light Bulbs for

Low-cost Visible Light Communication Systems,” in

Proceedings of the 1st ACM MobiCom Workshop on

Visible Light Communication Systems, VLCS 14,

pp. 9-14, ACM, 2014.

OpenWrt, “OpenWrt,” May 2015. https://openwrt.org.

[5] Q. Wang, D. Giustiniano, and D. Puccinelli,
“OpenVLC: Software-defined Visible Light Embedded
Networks,” in Proceedings of the 1st ACM MobiCom
Workshop on Visible Light Communication Systems,
VLCS ’14, pp. 15-20, ACM, 2014.

[6] S. Schmid, G. Corbellini, S. Mangold, and T. Gross,
“An LED-to-LED Visible Light Communication System
with Software-based Synchronization,” in Optical
Wireless Communication. Globecom Workshops (GC
Wikshps), 2012 IEEE, pp. 1264-1268, Dec. 2012.

2

o

