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Figure 1: Our algorithm creates spatio-temporal 3D sheets (left) from curves extracted from video, and uses these to render a
line-drawing style animation following different artists’ styles. Example of two frames in three styles are shown on the right.

Abstract
We present a method to automatically convert videos and CG animations to stylized animated line-drawings.
Using a data-driven approach, the animated drawings can follow the sketching style of a specific artist. Given an
input video, we first extract edges from the video frames and vectorize them to curves. The curves are matched
to strokes from an artist’s library, while following the artist’s stroke distribution and characteristics. The key
challenge in this process is to match the large number of curves in the frames over time, despite topological and
geometric changes, allowing to maintain temporal coherence in the output animation. We solve this problem using
constrained optimization to build correspondences between tracked points and create smooth sheets over time.
These sheets are then replaced with strokes from the artist’s database to render the final animation. We evaluate
our tracking algorithm on various examples and show stylized animation results based on various artists.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Although labor intensive to produce, hand-drawn anima-
tions have an appeal that has not yet been replicated by
computerized rendering techniques. Some of the appeal of
hand-drawn animation comes from the natural “noise” of

the medium, including small frame to frame changes in the
lines and silhouettes and even frame-to-frame imperfections
in the drawings. This noise creates a sense of liveliness that
computer-rendered animations sometimes lack because of
their perfect and clean look.
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Figure 2: Three sets of curves in three consecutive frames: due both to motion and edge detection problems (e.g. note the blur
in the example on the left) curves can appear, disappear, change their position, shape and topology. Our method succeeds in
simultaneously tracking such complex curve-sets over an entire video.

In this work, we concentrate on animations created as line
drawings. We present a method to automatically convert live
action footage or rendered animation (the “input video”), to
what appears to be a hand-sketched animation. Furthermore,
we match the sketch-style of a specific artist by taking as
input a small set of static sketches by the artist that allow us
to model the artist’s style. Following the work of Berger et
al. [BSM∗13], we create a library of the artist’s strokes and
gather statistical measures. However, in contrast to Berger
et al., we use them to render a dynamic animation as output
(see Figure 1, right).

The biggest challenge in rendering such dynamic line-
drawing animations is maintaining and controlling temporal
coherence. Temporal coherence demands continuity in shape
and movement throughout the animation. Without sufficient
temporal coherence, the animation will become too “noisy”,
and may contain perceptually troublesome artifacts such as
flickering and popping.

Our method first converts the frames of a given input
video to vector curves by using edge detection and vector-
ization on each frame. Ignoring temporal coherence, each
curve in each frame can be matched and replaced indepen-
dently by strokes from the artist’s library. However, this re-
sults in very noisy animation output (see examples in ac-
companying video). To create more coherent results, curves
should be tracked across frames, and replaced by the same
stroke from the library, applying local changes such as ro-
tation and translation to fit the curve motion. However, over
time, curves can also change shape and topology in an arbi-
trary manner – they can appear or disappear, as well as split
and merge. Tracking a large set of curves over time becomes
a serious challenge (see Figure 2).

We present a method that can simultaneously track a large
set of curves over time. We convert the tracking problem
to pairwise matching, and guide the matching of curves by
matching points. The point matching problem is solved us-
ing constrained optimization. In addition, our approach of-
fers control over the tradeoff between style and coherence

by using a single parameter to determine the duration of typ-
ical tracked curves.

The contributions of this work are first, a matching algo-
rithm for a large set of curves, that is used to construct long
sequences of tracked curves through time, which we call
sheets (see Figure 1, left). Second, a fully automatic method
to create animations in line-drawing style from input videos,
using a set of static sketches as examples and controlling the
tradeoff between style and coherence (see Figure 1, right).

We evaluate our curve-set tracking algorithm on various
inputs where movements range from simple and smooth to
erratic, using a statistical measure – the histogram of the du-
ration of the curves. We demonstrate the power of our video
stylization approach by modeling the style of six different
real artists and a few “artificial” ones (using strokes delib-
erately drawn in a unique manner) on a number of videos
originating from both live footage and graphics rendering.

2. Previous Work

Motion pictures and short films have already used computer-
assisted techniques for Rotoscoping (converting live action
footage to animation, for example, in “A Scanner Darkly”,
“Waking Life”, and “Le Congress”). The effect created is
highly engaging and the approach allows modifying the orig-
inal imagery as well as adding new visual layers. However,
these hybrid techniques still demand extensive manual pro-
cessing on the frames of the video themselves, while we tar-
get a more automatic stylization technique.

Our work falls into the broad category of video styliza-
tion [KCWI13], where one of the main challenges is tem-
poral coherence. A good overview of the temporal coher-
ence problem in various approaches for video stylization is
given in [BTC13]. Several of these stylization techniques ad-
dress rendering styles of the whole frame such as comic-
style in [WXSC04, WCH∗11, WOG06] or painterly render-
ing in [OH12].

Our technique can be considered as “segmentation” styl-
ization as we first extract edges from the frames and then
convert them to temporal sheets. Collomosse et al. [CRH05]
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define a similar construct called “stroke surface” and use
them for video stylization in Video Paintbox [CH05]. How-
ever, these surfaces are boundaries between segmented re-
gions, and better methods for video segmentation exist such
as [GKHE10]. Boundaries of video segmentation regions
can be more temporally stable than edges extracted from
frames, but they cannot be used for our purpose as they do
not detect and cannot track open curves. Open curves con-
stitute a large percentage of our sheets and are important for
the style and appearance of our animations (see Section 7).

Other contour tracking methods that support open curve
tracking in video exist [PM08,GS11]. However, these works
usually track a single, or a small number of designated
curves through time, while we have a large set of curves that
form many-to-many relations and include many topological
changes. Xu et al. [XSQ13] extract ridges, valleys and sil-
houette curves in 3D animations and optimize the matching
between them. Their method relies on 3D geodesic distances
of the curves (paths) on the objects, which cannot be simply
extended to video curve tracking. Another possible approach
is to use snakes [KWT88]. In SnakeToonz [Aga02], snake
loops are defined over the video and tracked over time, ar-
riving at a video segmentation that can then be used to create
cartoon animations. However, such approaches rely on track-
ing of points over a motion field defined from the video, they
often need manual intervention, and must include special
handling for topological changes of the curves. In [BLC∗12]
real-time stylized rendering of 3D objects is presented. Line
features are extracted from every frame and tracked using
active strokes, which are snake-like curves. However, their
method targets 3D scene rendering, and cannot handle the
videos used in our examples, which are more complex and
include “imperfect” lines that are less stable over time. There
are other methods for tracking silhouettes in 3D scenes but
they also rely on 3D information. Kalnins et al. [KDMF03]
track 3D positions of silhouette samples and project them
back on the next frame, while Buchholz et al. [BFP∗11]
build space-time surfaces from animated lines (curves) us-
ing a similar graph construct as ours but track topological
events in 3D.

The closest method to our curve tracking is presented
in [AHSS04]. Their approach adds automatic tracking to
a user-driven keyframe system. User-defined curves on
keyframes are interpolated to in-between frames by opti-
mizing a space-time energy function containing both shape
and image terms. The user can define constraints on the op-
timization by manipulating control points on any frame in
the sequence. However, scaling such an optimization so-
lution to handle our large sets of curves in a fully au-
tomatic manner would not be easy. More recently, Be-
tweenIT [WNS∗10] defined a method to match the curves,
which are termed “strokes”, in two line-drawing keyframes
to create in-between strokes (curves). However, they match
the strokes (curves) directly in a greedy manner based on
length and proximity (the area between the strokes), and

(a) (b) (c) (d)

Figure 3: Converting a video frame to line drawing anima-
tion: (a) Original frame (b) Extracted edges (c) The set of
curves in the frame (c) Final rendering of the strokes replac-
ing the curves using a specific artist’s stroke library.

would have difficulty addressing the numerous topological
changes occurring in our sets of curves. In their method,
when a curve in one keyframe maps to two curves in the next,
it must be duplicated. This method was used in [NSC∗11] to
control the level of noise in a sketchy animation. The trade-
off presented there between noise and coherence is similar
to our tradeoff between style and coherence.

Apart from [BSM∗13], all the above mentioned works
demonstrate procedural stylistic effects and do not address
the question of replicating a specific artist’s stroke style.
There are other works that learn specific styles of strokes in
drawings such as [FTP03] and [LYFD12] for line drawing,
or [KNBH12] for hatching. These works use data-driven ap-
proaches, but build a procedural or parametric model that
is used when rendering the output. Similar to Berger et
al. [BSM∗13], we use the strokes of artists directly and
statistics learned from their drawings, allowing us to mimic
the actual style of an artist by reusing his or her strokes in a
new image.

3. Overview

Drawing a video in the style of a line-drawing animation by
hand is a painstaking process. The key idea of our work is
to use some sample drawings of an artist to automatically
convert a video to an animation resembling the line-drawing
style of that artist. We utilize the data-driven approach pre-
sented by Berger et al. [BSM∗13], where sample drawings
of an artist are used to build a library of strokes defining the
line-drawing style of the artist.

Berger et al. collected a database of portrait sketches from
several artists by displaying a reference photograph of a face
to the artists, and asking them to sketch the portrait digi-
tally using a stylus pen. All sketches were captured using
a Wacom tablet, allowing the artist to modify the brush pa-
rameters but not allowing erasing or undoing strokes. Each
stroke was captured as a parameterized directed curve along
with the pen parameters, and stored as a transparent bitmap.
In our work, we use their stroke libraries and statistics along
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with new data defining some “artificial” styles to render our
animations.

Given an input video of length T frames, we first con-
vert each frame ft at time t (1 ≤ t ≤ T ) to a set of curves
Ct =

{
ct,i
}

using edge detection and vectorization. We use
the methods of [KLC07] for edge detection, and [NHS∗13]
for vectorization, although other methods could be used as
well (see supplemental video for examples). To render a line-
drawing of frame t, each curve ct,i ∈Ct can be converted to
a set of strokes based on the characteristics of a given artist
and using his/her strokes library (see Figure 3). Converting
the set of curves of each frame to strokes separately leads to
noisy and incoherent animation results. To promote coher-
ence, the same strokes must be used over time by adapting
them to replace similar curves in a continuous sequence of
frames. Therefore, our main challenge is to define a tracking
algorithm for a large set of curves over time.

Our method (Section 4) constructs long sequences of
tracked curves over time by building a match between the
sets of curves in pairs of consecutive frames. Each tracked
curve creates a sheet in a 3D space-time cube. However,
instead of matching curves between frames, we match the
points that define the curves, while constraining only con-
tiguous parts of the curves at t−1 to be mapped to contigu-
ous parts of the curves at t (see Figure 4). This step is formu-
lated as a constrained optimization problem between every
pair of frames (Section 4.1). We take advantage of motion
continuity by predicting where the points of frame t−1 will
move to in frame t (Section 4.2). Instead of the actual points,
we match the prediction of the points of frame t− 1 to the
points in frame t, resulting in a more accurate matching that
relates curves and sub-curves through time.

To construct the sheets (Section 4.3), the curve-to-curve
relations can be read from the point-to-point matchings
found. First, the point matches are used to construct a trel-
lis graph of the whole video sequence. Second, the graph is
converted to a set of simple paths, each one defining a sheet,
which represents one tracked curve through time. To render
an animation (Section 5), each sheet is replaced by a stroke
(or a set of strokes) from a designated stroke library, adapt-
ing it through time, thus maintaining temporal coherence and
creating a smoother animation. Our method also allows con-
trol over the amount of coherence vs. style of the animation
allowing to create different stylistic effects.

4. Tracking Sets of Curves

To track a large set of curves Ct =
{

ct,i
}

extracted from ev-
ery time frame t separately, we transform the problem into
one of matching. We only match curves between pairs of
consecutive frames, although we also utilize motion depen-
dencies based on previous frames. We compose these pair-
wise matches together to track curves along the whole se-
quence. There are two competing principles at play in this
task. On the one hand, to create coherent results, we want

Figure 4: Given two sets of curves (red and blue in these ex-
amples), matching only based on point distances (see Eq. 1)
can create non-consecutive mapping as in (a) and (b). Our
constrained optimization (see Eq. 2) prefers continuous so-
lutions as in (a’) and (b’).

to match as many curves as possible. On the other hand,
matching curves that are too different in shape means that the
strokes used for rendering might not fit the different curves
well. Curves can change dramatically between frames be-
cause, in addition to geometric and shape changes, a curve
can undergo topological changes when moving from one
frame to the next (see Figure 2):

1. A curve can appear or disappear.
2. A curve can split into several curves.
3. Several curves (or parts of curves) can merge into one

curve.

The problem is to find a valid mapping between the set of
curves (and sub-curves) of Ct−1 and the set Ct . This map
must cover as many curves as possible and must map curves
to similar curves (or parts of curves) undergoing various
topological changes.

At first glance, this problem appears to be a variant of
the perfect matching problem with the additional require-
ment that we can have many-to-one and one-to-many match-
ings. Using a distance measure between curves, we could
find a matching that minimizes the average distance between
the two sets of curves. The many-to-many mapping could
be solved, for instance, using multiple copies of each ele-
ment on both sets (see [AKJO07]). However, such a solu-
tion is not sufficient for our application because solving the
matching problem at the level of curves will not tell us how
sub-curves match to each other, or how to split them when
needed. Complex cases for mapping sub-curves often occur
when topological changes take place (see example in Fig-
ure 6d). Moreover, the definition of a good curve-distance
is by itself a challenge, especially when curves can undergo
various deformations through time.

Our key idea is to formulate this problem as a point match-
ing problem instead of a curve matching problem, but lever-
age the curve structure: the neighbors-relation and ordering
of points both spatially on the curves, and temporally across
frames. This formulation allows continuous sub-curves to be
matched and eliminates the need for a curve distance mea-
sure.
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4.1. Two-Frame Point Matching

We solve the point-to-point matching problem by formulat-
ing and solving a minimization problem. Each curve in Ct
and Ct−1 is defined by a set of sample points. We need to
produce a matching between the individual points in frame
t − 1 and the individual points in frame t. However, such
a match must follow certain guidelines to produce a good
matching between curves later. First, we want to match
points in the two frames whose spatial position is close. Sec-
ond, we want to match as many points as possible and prefer
a one-to-one mapping because each point represents a part
of a curve. Last, but not least, we want to promote match-
ing consecutive points belonging to the same curve in frame
t− 1 to (consecutive) points belonging to the same curve in
frame t (Figure 4), because we want to bias the solution to-
wards matching full curves (or sub-curves).

Without loss of generality, assume that the matching
is between frame f1 and frame f2. f1 has a set of n1
points {p1, p2, ..., pn1} and f2 has a set of n2 points
{q1,q2, ...,qn2}. We write i ∈ f1 ( j ∈ f2) when we want to
refer to the point in f1 ( f2) with index i ( j) and coordinate
pi (q j). These points are arranged into two sets: C1 of m1
curves in f1 and C2 of m2 curves in f2. For simplicity of no-
tation, we assume each curve c in C1 (C2), is represented by
an ordered set of indices that index contiguous points in the
frame f1 ( f2). For example, c = {5,6,7,8} can define the
curve passing through points {p5, p6, p7, p8}.

The point-to-point matching problem can be defined as
an optimization problem on a bi-partite graph. The nodes on
each side of the graph represent the points in the two frames
respectively. The weighted edges of the graph connect any
pair of points (i, j), i ∈ f1, j ∈ f2 with a cost(i, j) = ‖pi−
p j‖. For efficiency, we remove edges whose cost(i, j) >
MaxDist, for some MaxDist> 0 (we use 5% of the diagonal
of a frame). The optimization is defined as an integer pro-
gram over three sets of binary variables {w(i, j)}(i, j)∈{0,1},
{ei}i∈{1,...,n1} and {d j} j∈{1,...,n2}. wi j = 1 indicates that ith

point in f1 is matched to the jth point in f2, and it is 0 oth-
erwise. Variable {ei} ({d j}) is 1, if point i (j) in f1 ( f2) re-
mains unmatched, or 0 otherwise. Note that wi j = 1 implies
that ei = 0 and d j = 0.

We use a matrix notation to describe our optimization
problem. We define a cost matrix M ∈ Rn2×n1 whose en-
tries at position (i, j) are cost(i, j) if cost(i, j) < MaxDist,
or ∞ otherwise, a matrix W ∈ Rn1×n2 whose entries are
the variables w(i, j), and vectors e ∈Rn1 and d ∈Rn2 whose
entries are the variables e j and di respectively. Using these
notations we define an integer program as follows:

MinimizeW,d,e{tr(MW)+α‖e‖1 +α‖d‖1}

such that W~1 =~1 and W>~1 =~1
(1)

The first term minimizes the cost of the edges used for
matching. The second and third terms make sure we match

as many points as possible (otherwise matching none would
be optimal). In this case, integer solutions can be found
by solving a relaxed version obtained by replacing the bi-
nary constraint on the variables [...] ∈ {0,1} by inequal-
ity constraints 1 ≥ [...] ≥ 0. Note that, even without round-
ing values, the relaxed optimization problem produces only
{0,1} solutions because the constraints are totally unimodu-
lar. However, this solution only provides the least costly as-
signment between two sets of points with no relation to the
curves. Points in one frame will match their closest point in
the other frame, disregarding the curve structures (see Fig-
ure 5).

Following the above guidelines, we add additional terms
and (soft) constraints so that neighboring points on a curve in
f1 will match neighboring points on the same curve in f2. We
further define two point membership matrices B1 ∈Rn1×m1

and B2 ∈Rn2×m2 whose entries b1(i,k) = 1 if point i in frame
f1 belongs to curve k in C1, and b2( j,k) = 1 if point j in frame
f2 belongs to curve k in C2, or 0 otherwise. Note that the
product of WB2 produces a matrix in which entry (i,k) is 1
if point i in frame f1 connects to curve k in frame f2, and 0
otherwise. Similarly, (B1

>W) is a matrix whose entry (k, j)
is 1 if point j in frame f2 connects to curve k in frame f1,
and 0 otherwise.

Lastly, we define block-structured matrices H1 ∈Rn1×n1

and H2 ∈Rn2×n2 , where for each set of k points defining a
curve we have a block of dimensions k× k of the form:

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 0

 .

Multiplying a matrix with matrices H1 and H2 will take con-
secutive differences between rows that belong to the same
curve. Hence, if W is a matching matrix, wi, j ∈ {0,1}, then
the product H1WB2 is a matrix with the following proper-
ties. (a) The rth row is ~0 if point r and point r + 1 on the
same curve in f1, match the same curve in f2 or no curve at
all. (b) The rth row has exactly one 1 and one −1 (all other
entries being zero) if the points r and r+1 match to different
curves in f2. (c) The rth row has only a single ±1 (all other
entries being zero) if one of the two points has a match and
the other does not. Therefore, the L1-norm of each row of
H1WB2 is either 0, 1 or 2, and is only 0 when all consecu-
tive points on the same curve in f1 match the same curve in
f2, or both match to nothing. If we use the notation ‖ · ‖1 on
matrices to mean the sum of the absolute values of all entries
instead of the regular L1-norm, then ‖H1WB2‖1 is a proxy
for the number of times that curves in frame f1 switch their
matching to curves in frame f2. Similarly, ‖B1

>WH2‖1 is a
proxy for the number of times that curves in frame f2 switch
their matching to curves in frame f1. We now write our full
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optimization problem in its relaxed form:

MinimizeW,d,e{tr(MW)+α‖e‖1 +α‖d‖1+

β‖H1WB2‖1 +β‖B1
>WH2‖1},

subject to W≥ 0, e≥ 0, d≥ 0,

W~1+ e =~1, W>~1+d =~1.

(2)

The fourth and fifth terms penalize matching consecutive
points in f1 ( f2) to points on different curves in f2 ( f1). The
first three constraints force the relaxed variables to be pos-
itive and the last two constraints make sure that, in its 0/1
representation, each point is matching to a single point (note
that some points can still remain unmatched in both frames).
α and β scale the terms to be of the same magnitude and can
be used to weigh the different terms. This relaxed problem
can be reduced to linear programming (see Appendix A), but
we must round the variables in the end to 0 or 1. This scheme
produces a solution that is suboptimal, but in practice works
well for our application. Note that although we can compute
the cost coefficients using different metrics, it is important
to use the L1-norm in the last two terms, instead of L2, as
it concentrates the error in a small number of places instead
of distributing it. In our case, this term limits the switches in
matching to different curves to a small number of places.

4.2. Leveraging Curve Dynamics

Because the points we match belong to curves that move and
deform through time, we can leverage the curve dynamics
similar to the use of Kalman filters [GA93] to enhance the
matching and to account for unmatched points. Instead of
matching the points of ft−1 to points of ft , we extrapolate
the curves of ft−1 based on k previous frames to predict how
these curves will move in the next timestep t, and then match
the predicted positions of points of frame ft−1 to the actual
points of frame ft .

For most points pi ∈ c in each curve c ∈ Ct−1, we can
fit a polynomial P(·) ∈ R2 through the sequence of k points
that were matched up until point pi (we use k=5). Using this
polynomial, we can predict p′i , the position of point pi at
frame t, and compute the vector ∆pi = p′i − pi. Next, we
define the predicted position of point pi as p̃i = pi + µ∆pi,
where µ ∈ [0,1] is a weighting factor pre-specified by the
user (we use µ = 0.5). Applying the same procedure for all
points in curve c ∈Ct−1 that have previous matches, we get
a prediction of where the curve c would move at frame t
and can use it to better match the points along c to points in
Ct . We can also predict the positions of missing points on c
(for example, points that did not have previous matches), by
interpolating their position using the points on c that have a
predicted value.

We use this procedure to find ∆pi for all curves that con-
tain more than 30% matched-points. For all other curves,
we move their points using the average delta vector of all
curves in the frame. Finally, instead of computing the pair-
wise matching between frames t − 1 and t as described in

Figure 5: Tracking sets of curves leveraging curve dynam-
ics and curve structure. In the top row are four frames of
two curves moving through time, where one curve is faster
and crosses the other. The curves in each consecutive pair
of frames need to be matched. The actual matching uses the
predicted positions of the curves, shown in blue in the second
row based on our method. Note how this prediction brings
the curves closer to the position of the curves in the next
frame (depicted in red in the last two rows). Setting β = 0
(which amounts to using only Eq. 1 for optimization) creates
the least costly assignment between the two sets of points
disregarding the curves structure (third row). Note that the
blue curves are not in the same position because the match-
ing also affects the predicted extrapolation. Our full opti-
mization (Eq. 2) creates better matching and better predic-
tions, allowing correct tracking of the curves (fourth row).

Subsection 4.1, we compute a matching between C̃t−1, the
predicted curves of frame t − 1 and Ct . Because there is a
one-to-one mapping between the points of C̃t−1 and Ct−1,
this match also provides the matching between Ct−1 and Ct .

An example can be seen in Figure 5. The green curves are
the original curves, Ct−1, and the blue curves are their pre-
dicted positions C̃t−1 based on our optimization. These blue
curves are matched to the red curves, which are the curves
at time t. Compared to simple point-based matching (using
Eq. 1), our full optimization (using Eq. 2) creates a match
between the points that better preserves the curve structures,
and also supports a better prediction of the curves’ motion.
This feedback is a key characteristic of our method: better
matching supports better prediction, and better prediction
supports better matching.

4.3. Sheets Construction

Using the point correspondences, we define a trellis graph
where each slice is a frame containing one node for each
curve in that frame (Figure 6(a)). Two nodes in two consec-
utive slices are connected if they have a large enough match-
ing overlap (5% of their length) that is long enough (10 pix-
els). Our goal is to convert this graph into a set of simple
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(a) (b) (c) (d)

Figure 6: Converting the curves-matching trellis graph to simple paths using a two-pass greedy approach. We traverse the
graph (a) first from left to right (b), and then from right to left (c). In each pass, we split nodes (and their respective curves) that
have more than one incoming edge. Because our matching optimization prefers consecutive matchings, each curve can be split
into simple consecutive parts as in (d).

Figure 7: Visualization of sheets: each sheet is displayed in
a consistent color through time.

paths of connected nodes through time. Each path will de-
fine one sheet, which is a tracked curve through time.

Because of our optimization constraints, we can split
curves at time t to sub-curves that match a single sub-curve
at t + 1, and vice versa (Figure 6(d)). Consequently, we can
use a simple greedy approach to convert the graph into sim-
ple paths. We traverse the graph first from left to right, and
then from right to left. In each pass, we either split the nodes
that include more than one incoming edge or remove an edge
(Figure 6(b-c)). Every node split imposes a split on its re-
spective curve between the two points where the matching
changes. We split a node only if the sub-curves created are
long enough (10 pixels) and constitute a large enough part
of the curves (again, 5% of their length).

Once we have simple paths, we can define each graph path
as a sheet (Figure 1, left), which spans a continuous subset
of frames. Figure 11 shows the distribution of sheet dura-
tion in the male dancer movie example. We re-parameterize
all curves in a sheet by sampling them using cord-length to
have the same number of points and a one-to-one mapping
between the points. The intersection of a sheet with a spe-
cific frame it spans is a curve belonging to that frame that
should be rendered (Figure 7).

5. Line Drawing Stylization

To create line-drawing animation in a given style, we replace
the curves found in the previous steps by a set of strokes
from a specific artist’s library. We also follow the statistics
gathered from the artist’s drawings on average curve length

and amount of overlap between strokes to fit his/her drawing
style. To achieve temporal coherence, curves belonging to
the same sheet will use the same set of strokes.

We use the curve-skeleton of the strokes to match the
curves in the frame. The matching descriptor vector com-
bines the curve length, a histogram of the shape con-
text [BMP02], and a histogram of the curvature along the
curve. Each curve is sampled uniformly (we use 400 sam-
ple points, unless the distance between two points is smaller
than a pixel). The shape context descriptor is calculated for
each sample point, using 12 logarithmic bins for distances
and 12 bins for orientation. All shape context descriptors of
all points are combined to a normalized 2D histogram. The
curvature of all sample points is calculated and gathered into
a histogram with 12 bins. The length of the stroke is calcu-
lated by summing up the lengths of the segments between
each two sample points.

Matching the first curve in each sheet to a stroke and fit-
ting this stroke to the sheet over time (e.g. using ICP and
rigid transformations) can achieve high temporal coherence
(as the same stroke is rendered over time), but will not fit
well the curves’ shapes over time. Hence, each sheet is re-
placed with several strokes: first, a stroke is matched not only
to the first curve but also to other curves in the sheet (while
still fitting them to all curves), and second, the curves of the
sheet are segmented to sub-curves, and each sub-curve is
replaced with a stroke. We also expand or reduce the sub-
curves (using extrapolation or interpolation), so that they
overlap a little. The sub-curve lengths, extrapolation and
amount of overlap are based on the statistics gathered for the
chosen artist. These enhancements create a richer rendering
style that mimics the look-and-feel of hand drawn sketches.

The greedy approach for curve splits defined in Sec-
tion 4.3, favors sheets that have a longer duration in time
at the cost of shorter length in space. Because the longer the
duration of the sheets is, the more splits will occur in curves
to conform to these sheets. Shorter curves are also simpler,
and are replaced by simple strokes, jeopardising the richness
of an artist’s style. Therefore, using the simple greedy ap-
proach promotes temporal coherence over artistic style. The
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Figure 8: Examples of sheet length histograms on three different movies (histograms are clamped at 90 frames). From left to
right: as tracking is more difficult, the percent of short duration sheets grows.

naive approach of rendering each frame separately, can be
interpreted as the other extreme – promoting artistic style
over temporal coherence.

To create results between these two extremes, we impose
a restriction on the duration of the sheets. We use a thresh-
old θ and use it as a soft limit for the duration of sheets.
During the graph traversal stage of our algorithm, we do not
extend a sheet if its current duration is longer than θ± r,
where r is some randomization factor per query (usually
0 ≤ r ≤ 0.15θ). This constraint maintains spatially longer
curves, that are replaced by more characteristic strokes of
the artist (see Figures 11 and 12 and discussion in next sec-
tion).

6. Evaluation

This section focuses on the curve tracking part of our al-
gorithm, before presenting our final results. We first evalu-
ate the robustness of our curve tracking with respect to the
speed of curve movement and the complexity of the scene.
More complex scenes will include a larger number of curves
as well as greater and more erratic movements. Next, we
present the effect of the θ parameter that governs the tradeoff
between temporal coherency and style preservation. Lastly,
we compare our edge-tracking approach to region-tracking
based on video segmentation.

Tracking Robustness. We conduct several experiments to
evaluate and demonstrate our curve tracking algorithm. We
use several examples demonstrating different conditions us-
ing different parameter settings and apply a statistical mea-
sure to examine the characteristics of the algorithm (all
movie examples can be found in the supplemental mate-
rial). Ground truth data is unavailable because matching two
given sets of curves is an ill posed problem: curves could
be matched in many ways, especially if there are topolog-
ical differences between the sets including birth, death and
splitting of curves.

The statistical measure we chose to examine is the his-
togram of curves belonging to sheets in a given duration in
a video. Histograms with larger portions of long-duration
sheets means that more curves are tracked over time and
better temporal coherency could be achieved. Histograms
with larger portion of short-duration sheets implies high
birth/death rate of sheets, and therefore less success in tem-
poral tracking. Figure 8 demonstrates this trend on three of

our example videos (see Table 1 and accompanying video): a
hand poses video that does not contain large movements and
curves can be tracked over longer periods creating a rather
uniform histogram of sheet durations, while a fish swimming
video contains a large number of short period curves that
split and merge at the water’s edge, creating a histogram of
many short duration and very few long duration sheets. A
video of a male dancer lies between these two extremes.

Movement Speed and Complexity. There are two key fac-
tors that affect the robustness of our (and any other) tracking
algorithm: the speed of movement and the complexity of the
movement. To factor out complexity and illustrate how speed
can affect the results, we create an artificial movie example
where the bunny model is rendered moving from left to right
in the frame. We use three speeds of movement and the re-
sults are shown in Figure 9. At slow speed (M1) the curves
are tracked more successfully and long sheets are created.
As speed increases (triple the speed at M3 and six times the
speed at M6), fewer curves are tracked successfully and only
short sheets are created.

The effect of unmatched curves can be diminished in our
algorithm using the MaxDist parameter. By expanding the
search range for matching points, more distant curves are
taken into account while solving the global optimization.
This strategy achieves better tracking at the cost of longer
computation times. In Figure 9, when increasing MaxDist
to 25% of the diagonal of a frame (instead of 5%), longer
sheets are created again even when using the bunny movie at
six times the original speed.

Complexity of movement is more challenging to evaluate.
We have used three examples of more complex videos to
demonstrate our algorithm. The first movie contains a scene
with many edges where the background is moving because
of camera movement, and the foreground is moving in a dif-
ferent manner (a man walking). Figure 10 (top) shows the
histogram of this movie using three different frame rates
(which is equivalent to speeds of movement). As can be seen,
speed is a factor, but the complexity of movement is more
of a challenge. By examining the tracking results one can
see that the background smooth movement contains most of
the longer sheets, while the foreground complex walk con-
tains most of the short sheets. A similar trend is shown in
the city example of Figure 10 (middle) where movements of
different objects are combined in one scene. The histogram
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Figure 9: The effect of speed on tracking: faster moving
objects are harder to track and fewer long sheets are cre-
ated (compare M1 to M3 or M6). When increasing MaxDist,
tracking is better at the cost of longer computation times.
Compare the curve matching colors of four frames between
M6 (top row) and M6 using large MaxDist (bottom row).

contains longer sheets for static edges (window frames) or
smoother movements (tram), and short sheets for more com-
plex movements (walking pedestrians). Lastly, in Figure 10
(bottom) we use an extreme example of a water waves movie
where the extracted edges are all erratic and very challenging
to track. As can be seen in this case, most curves are tracked
for only a few frames and almost no sheets longer than 30
frames are created.

The θ Parameter. As described earlier, our algorithm track-
ing depends on the parameter θ that governs the tradeoff be-
tween temporal coherency and style. Figures 11 and 12 il-
lustrate the effect of the θ parameter on the distribution of
curve length and sheet duration on the male dancer exam-
ple. When θ =∞, there is no constraint on the duration of
sheets, we get longer sheet duration, and the distribution of
duration is wide (this setting is the default used in all previ-
ously described experiments). On the other hand, the curves’
lengths tend to be shorter. When we constrain θ = 15 or
even θ = 5, we get shorter duration sheets but longer curve
lengths. Therefore, this parameter, θ, can be used to govern
the tradeoff between style and temporal coherence (see ex-
amples in the accompanying video).

Edges vs. Boundaries. Video segmentation has been sug-
gested as an alternative to edge detection, which tends to
be more stable over time on videos (see Collomosse et
al. [CRH05]). To illustrate why this is not the case, we com-
pare our edge detection algorithm to boundaries of segments

Figure 10: Examples for complex movement tracking: cam-
era movement along with object movement (top), different
object movements (middle), and erratic movement of edges
(bottom). Note that our algorithm succeeds in tracking the
smoother frame movements - creating long sheets, but cre-
ates only short sheets for erratic movements.

using a newer algorithm for video segmentation. Using the
same input video, we use our algorithm to extract edges, and
use Grundmann et al. [GKHE10] algorithm for video seg-
mentation. We define each boundary between two segments
found using Grundmann et al. as an edge. Let B(i) be the set
of pixels belonging to such boundaries in frame i, and E(i)
the set of pixels belonging to some edge using our algorithm
(see Figure 13 for an example of one frame). We define C(i)
as the set of common pixels that belong to both B(i) and
E(i). However, we do not simply use C(i) = B(i)

⋂
E(i). In-

stead, a pixel p is defined as a common pixel if p ∈ B(i) and
there is a pixel q ∈ E(i) in its k-neighborhood of pixels, or if
p ∈ E(i) and there is a pixel q ∈ B(i) in its k-neighborhood
of pixels. We used k = 1,2,3 in our experiments.

For k = 1, the average of the ratio C(i) : B(i) is 0.50,
and C(i) : E(i) is 0.22. For k = 2, the averages are 0.67
and 0.29, respectively, and for k = 3, the averages are 0.78
and 0.33. These numbers mean that even when we allow a
large tolerance, there are boundaries between segments that
are not edges and there are many edges that are not bound-
aries. Boundaries of segmentation in B(i) must be closed and
therefore contain parts that are not at all edges such as the
boundaries inside the hands and legs in Figure 13(d). On
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Figure 11: The number of curves belonging to sheets of a given temporal duration. The larger θ is, the longer the average
durations of a sheet is.

Figure 12: The number of curves in a given spatial length
(clamped at 170). As θ increases, more splits occur and spa-
tially shorter sheets (and curves) are created.

(a) (b) (c) (d)

Figure 13: Comparing the edges extracted in a movie frame
(a) to boundaries of region segmentation (b) clearly shows
that there are edges that are not caught by the boundaries
(c), as well as boundaries that are not at all edges (d).

the other hand, the edges in E(i) contain many curves that
are not closed such as the folds of the shirt in Figure 13(c).
Note that we specifically tried to create segments that are
as large as possible. When using more accurate segmenta-
tion, many more boundaries between segments appear that
are not edges. Therefore, using video segmentation may al-
low higher temporal coherency, but can destroy the style of
line-drawing animation.

7. Results

We have tested our algorithm on six artists using the artists
libraries from Berger et al. [BSM∗13]. We also created four
“artificial” styles by capturing a set of strokes in a prescribed

manner (wiggly, curly, zigzag and straight) and building a
strokes library from them. We chose several different input
videos: two dance video sequences, two videos of animal
movements: a fish and a butterfly, a hand wave video se-
quence, a moving train sequence and a computer rendered
jump sequence. Table 1 summarizes some statistics on these
sequences and provides timing results for the various stages
of the algorithm. The primary factor governing the process-
ing time is the number of edges in the sequence. The reason
is that the pairwise matching optimization stage, which is the
most costly stage in the algorithm, depends on the number
of curves in the frames.

The best manner to view our results is to refer to the ac-
companying video. For all examples we use the same set
of parameters β = MaxDist, α = 1

2 β. We demonstrate a few
examples of simple outputs of our algorithm, and some artis-
tic stylization examples using our algorithm such as combin-
ing several artists output together, compositing the strokes
with the original video, and overlaying the result on a static
background. We also compare results with different settings
of θ. A few examples of static frames are shown in Figure 14.

Recognition Study. To assesss our ability to mimic specific
styles, and measure the effect of our θ parameter, we con-
ducted an informal recognition experiment. We wanted to
test if people can correctly match the style of an animation
video to a static sketch. This task is a very difficult as the
mediums are different and style can be very subtle. We cre-
ated animations of the male dancer in five different styles of
real artists in three different settings. First, we used θ =∞
for maximum coherence. Second, we used θ = 15 to allow
more style preservation (while reducing coherence). Third,
we used the naive approach of rendering each frame sepa-
rately to create no-coherence maximum style results. In to-
tal, we had 15 different movies: three types of movies for
each of the five artists. Examples of the three types of movies
can be seen in the supplemental materials.

We separated the experiment into three batches according
to the different θ values. We ran the experiments on Me-
chanical Turk using 40 participants for each batch (partic-
ipant ages range from 19 to 78, with a similar number of
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No. of Res. Avg. No. No. of Avg. Edge Vect. Match Track. Rend. Total.
Sequence frames Curves Sheets Duration time time time time time time
Dance (F) 240 1080p 70 5283 5.2f 5m 33m 0:57h 5m 0:38h 2:13h
Dance (M) 273 1080p 50 3499 4.9f 6m 47m 1:39h 5m 1:44h 4:15h
Fish 401 720p 124 13238 5.2f 6m 103m 25:00h 7m 2:16h 29:06h
Butterfly 225 1080p 40 1979 4.6f 2m 29m 0:03h 3m 0:19h 0:54h
Hand 273 1080p 57 1341 18.9f 5m 38m 0:58h 7m 1:54h 3:37h
Train 254 1080p 161 16796 3.2f 7m 75m 27:00h 9m 1:47h 30:11h
Jump 600 1080p 25 2250 13.4f 4m 52m 1:04h 4m 0:22h 2:22h

Table 1: Statistics and timing results of all our examples. From left to right: the number of frames in the sequence (we are
using 24fps for all our examples), the resolution, the average number of curves per frame, the number of sheets of length > 1
created, and the average duration of each these sheet. Next, the breakdown of the running times of the algorithm: edge detection
time (minutes), vectorization time (minutes), point matching optimization time (hours), tracking, or converting the graph time
(minutes), average rendering time (hours), and total time to process the sequence.

male and female participants). We presented the viewer with
one movie at a time, and below displayed five face sketches
from the five different artists. The order of movies of differ-
ent artists was randomized as well as the order of sketches
presented in each question. We asked the viewer to choose
the one that resembles most the style shown in the movie.
The recognition rates were 40.5% for the max-coherence
study, 65.75% for the naive (no-coherence) study, and 61.4%
for the more style preservation study. For all three studies,
classification is well above the accuracy expected by chance,
which is 20%. Moreover, these results support the conjecture
that higher coherence can jeopardize style.

8. Discussion

The method we present converts video sequences to line-
drawing animations, mimicking the specific style of an artist
or some “artificial” style. Our goal was to retain the appeal
of hand-drawn animation in a fully automatic method. As in
other animation techniques, the key factor in this process is
temporal coherence. Our algorithm uses a single parameter
to control the tradeoff between coherence and style.

There are several limitations to our approach. First, not
every video is suited to this type of stylization. Videos with
motion blur where edges are not clear will challenge the
edge detection stage of the algorithm (see Figure 2). Videos
where differences between frames are too large, videos with
a large amount of noise, or videos with too many edges will
challenge the tracking stage. Our method is more suitable to
clean, clear motion (although the stochastic movement like
the water in our fish example also produces an interesting
effect). Our approach first extracts edges from frames and
then tries to match them to create sheets, a possible alterna-
tive would have been to devise a type of 3D edge detection,
but such an approach remains a future challenge. Another
serious limitation are the timing results. The largest factor in
the running time is the point-matching algorithm, which was
implemented in MatLab, and could be optimized to reduce
its running time considerably.

Our sheet construction algorithm is greedy in a sense that
we use only splits of nodes (curves). A more global solution
may allow merging of nodes (and curves) when converting
the graph to simple paths. In the rendering stage, we fit the
strokes to the sheet curves using rigid transformation. We
experimented with more advanced deformations for fitting,
such as Affine transformations, but found that such transfor-
mations can blur the bitmaps of the strokes. Building a para-
metric model of the artist’s strokes instead of using a direct
data-driven approach, would allow more complex deforma-
tions to better fit the curves in the sheets. Another option is
to try and define an “average” curve (see [HPR11]) from all
curves in the sheet instead of fitting individual curves, but
averaging tends to create curves that are too smooth.

Future Directions. The stroke libraries that we used orig-
inated from sketches of faces. We found the richness of
strokes sufficient for general videos but possibly having a
more general library of strokes could benefit the final results.
Alternatively, one could imagine creating a specific stroke
library for a given animation by drawing directly some of
its frames. Although our goal was to produce a fully auto-
matic method, one could imagine providing the artist with
more control over the final results up to the level of replacing
or modifying individual strokes. Our tracking method could
also be used to create in-betweening of frames and in other
applications such as tracking objects in videos.

Appendix A:

To see how to reduce our optimization problem from Eq. 2
to a linear program, notice that the objective function is
simply a sum of terms that are the absolute value of lin-
ear combinations of the variables. For illustration purposes,
a term can be of the form c · |w12 + w22 −w13 −w23| for
some c ∈ R. Each of these terms can be replaced by a new
variable in the objective and a new constraint. In our exam-
ple, we can replace the above term by a new variable q and
a new constraint that c · |w12 + w22 −w13 −w23| ≤ q. Fi-
nally, any constraint of this form can be represented as a
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Figure 14: Three examples of real artists’ stylization of animation and three examples of “artificial” animation styles. On the
right: the three faces are examples from [BSM∗13] data-set (with permission), the three bottom stroke collections are examples
from libraries created by choosing a specific manner to draw strokes. Please refer to supplemental material for the animations.
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set of linear inequalities. In our example, we can convert
the new constraint to c(w12 + w22 − w13 − w23) ≤ q and
−c(w12 +w22−w13−w23)≤ q. Because all the other con-
straints in Eq. 2 are already linear, this representation re-
duces the problem to a linear objective and a set of linear
inequality constraints.
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