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Abstract

Large scale structure-from-motion (SfM) algorithms
have recently enabled the reconstruction of highly detailed
3-D models of our surroundings simply by taking pho-
tographs. In this paper, we propose to leverage these re-
construction techniques to automatically estimate the out-
door illumination conditions for each image in a SfM photo
collection. We introduce a novel dataset of outdoor photo
collections, where the ground truth lighting conditions are
known at each image. We also present an inverse render-
ing approach that recovers a high dynamic range estimate
of the lighting conditions for each low dynamic range input
image. Our novel database is used to quantitatively eval-
uate the performance of our algorithm. Results show that
physically plausible lighting estimates can faithfully be re-
covered, both in terms of light direction and intensity.

1. Introduction
The field of 3-D reconstruction from photographs has

seen dramatic progress in the past few years. Benefiting
from tremendous improvements in structure-from-motion
(SfM) algorithms, both in terms of robustness and scala-
bility, these approaches have now been used to reconstruct
high-fidelity geometric models of very large portions of the
entire world. With the recent advent of real-time systems
that allow a casual user to run these algorithms on portable
phones [9], one can only expect their popularity to increase.

While much interest has been given to the problem of
reconstructing 3-D from photographs, we believe there is
much more we can do with these rich image collections.
These photographs capture the space of the appearance of
an object under a wide variety of illumination and viewing
conditions, thereby providing us with samples of the sur-
face BRDF. While earlier work has shown some promise in
this direction [6], many challenges still remain before we
can use image collections as BRDF estimation “devices”.
For example, one does not know—much less control—the
illumination conditions at each input photograph. Unfor-
tunately, estimating these illumination conditions is a very

Figure 1. From a collection of photographs (middle), we first lever-
age existing structure-from-motion pipelines to automatically re-
construct a 3-D model (top), and exploit it to estimate the high dy-
namic range illumination conditions at each image (bottom, shown
here as hemispherical sky maps).

challenging task since they typically vary from one image
to the next.

In this paper, we introduce an algorithm that faithfully
recovers the illumination conditions at each image in a SfM
collection (fig. 1). As opposed to existing methods [6, 20],
our approach recovers physically-plausible, high dynamic
range (HDR) lighting environment maps from low dynamic
range (LDR) inputs.

Our paper makes the following key contributions. First,
we introduce the “Light and Image Collections Database”,
which contains collections of images of 22 different land-
marks, along with the ground truth HDR lighting conditions
at each image. Our second contribution is the introduction
of a practical low dimensional parametric model that ac-
curately captures outdoor lighting. We exploit this model
to derive priors on the likely illumination conditions of a
scene. Our third contribution is a novel inverse lighting al-
gorithm which, by relying on those priors, reliably estimates
the lighting conditions for each image in a collection. Our
final main contribution is the first quantitative evaluation of
an inverse lighting algorithm on outdoor image collections.
Our results show that our approach is robust under a wide
variety of challenging illumination conditions, from over-
cast to full sunlight.
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Figure 2. Four example locations and subset of associated images and light probes from our novel “Light and Image Collections” database.
We exploit this database to build illumination priors to constrain our inverse rendering optimization approach in recovering likely illumi-
nation conditions, and use it to quantitatively evaluate its performance.

The paper is organized as follows. First, the “Light
and Image Collections Database” is introduced in sec. 3.
Next, sec. 4 presents a low-dimensional parametric model
that closely approximates the HDR light probes from the
database, which is then used in sec. 5 to build compact pri-
ors on likely illumination conditions. Finally, sec. 6 de-
scribes the main optimization approach, which is evaluated
empirically and quantitatively in sec. 7.

2. Related work

Our work takes inspiration from two main papers, which
have started to explore the challenge of lighting estimation
in image collections. First, Haber et al. [6] employ sophis-
ticated reflectance and illumination models in an inverse
rendering framework. While their results look promising,
their approach is extremely slow (it took 3 hours to process
a dataset of 6 images), and is susceptible to the inherent
reflectance-illumination ambiguity. For example, the results
obtained on the “Statue of Liberty” dataset yield a statue
that appears mostly white, with greenish illumination. In
our work, we are able to surmount this ambiguity by the use
of priors on both illumination and reflectance, trained on a
large dataset of image collections with their corresponding
lighting conditions.

Our second source of inspiration is the more recent work
of Shan et al. [20], who presented an efficient technique for
estimating vertex albedos and lighting parameters in very
large image collections. Their paper, aptly-named the “Vi-
sual Turing test”, focuses on relighting the 3-D model to
fool an observer into thinking that it is a real photograph.
To achieve this goal, it is very important that geometry and
albedo be accurately estimated, but approximate lighting
parameters can be tolerated. As such, they obtain impres-
sive relighting results, but report no result on the accuracy
of lighting estimation. In addition, they estimate a per-
pixel shadow map to model cast shadows, likely to compen-
sate for errors in sun direction estimation. In our case, we
model cast shadows geometrically via pre-computed visi-
bility functions for each vertex in the mesh. To the best of
our knowledge, our paper is the first to quantitatively eval-
uate lighting estimation performance in image collections,
and provide a novel dataset to spur research in this area.

Also related to our work is that of Laffont et al. [11],
who recover a per-pixel, per-view estimate of the illumi-
nation, as well as a per-vertex estimate of the reflectance
(also assumed Lambertian). As such, it does not recover a
physically intuitive model such as ours which captures the
sun position, sky color, etc. While they support the trans-
fer of lighting conditions from one image to another one,
their approach does not support general relighting. Another
related work by the same authors [10] estimate a full envi-
ronment map illumination model and per-vertex reflectance
from image collections, but requires all images to be cap-
tured very close in time, such that their illumination condi-
tions are virtually the same. They also require the explicit
capture of a metallic sphere to model the environment map.
Our approach estimates HDR lighting without the need for
a metallic sphere, and works on datasets of images captured
under different illumination conditions.

3. The Light and Image Collections Database
We introduce a novel dataset of image collections, where

each image is associated with its ground truth HDR lighting
conditions. In all, our dataset contains 1,850 images of 22
different outdoor landmarks, captured under 350 different
illumination conditions, see fig. 2. Each image has high
dynamic range, is radiometrically and geometrically cali-
brated, and is aligned with its corresponding light probe.
In this section, we describe how the dataset was captured,
calibrated and aligned. The dataset, software, and many ad-
ditional results are available on the project website [1].

3.1. Sky light probes

In this work, we assume that outdoor scenes are illumi-
nated by light emitted solely from the sun and sky, and ig-
nore local illumination effects such as light bouncing off
the ground or nearby objects. As such, we capture the out-
door lighting conditions with wide angle, HDR photographs
of the entire sky hemisphere. To do so, we follow the ap-
proach proposed by Stumpfel et al. [22]. We captured seven
exposures of the sky ranging from 1/8000 to 1 second, us-
ing a Canon EOS 5D Mark III camera installed on a tripod,
and fitted with a SIGMA EXDG 8mm fisheye lens. A 3.0
ND filter was installed behind the lens, necessary to accu-
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Figure 3. Dynamic range in our sky database. Four different expo-
sures of the same sky probe are shown, each expressed as factors
(indicated as insets) of a reference image (1). The left-most image
appears completely black, but zooming in (inset) reveals that the
sun intensity is captured without saturation.

rately measure the sun intensity. The exposures were stored
as 14-bit RAW images at the full resolution of the camera.
The camera was controlled using a Raspberry Pi via a USB
connection, and the setup was mounted on the roof of a tall
building to capture the entire sky hemisphere. The seven ex-
posures were captured every two minutes over a span of be-
tween three and ten hours on 25 different days spread over a
period of six months from June to December 2013. A total
of 3,380 different lighting conditions were captured.

The fisheye lens was radiometrically calibrated follow-
ing [22] (to account for chromaticity shifts caused by the
ND filter), geometrically calibrated using [19], and the re-
sulting light probes mapped to the angular environment map
representation [17] for storage in floating-point EXR for-
mat. We merged the seven exposures using [4] to create
one HDR sky probe per exposure set. Because the camera
may have shifted from one capture day to another, we auto-
matically align all sky probes to the world reference frame.
This was done by detecting the sun in at least 3 images for a
given day, and by computing the rotation matrix which best
aligned the detected positions and the real sun coordinates
(obtained with [16]). For days when the sun was never vis-
ible, the probes were manually aligned using other aligned
light probes as examples, and by matching visible buildings
close to the horizon. The second row of fig. 2 shows exam-
ples sky probes captured with our system. Note that while
the examples have been tone mapped for display, the actual
sky probes have extremely high dynamic range (see fig. 3).

3.2. Image collections

We augmented the sky database with ground-level im-
age collections of several landmarks, captured at the same
time as the sky probes. We identified 22 different man-made
landmarks within a 1-kilometer radius around the location
of the sky camera. Proximity is important to ensure that
the lighting conditions are the same at the sky camera and
the landmark at any given time. Landmarks were selected
to ensure a wide variety in geometry, surface appearance,
and orientations, while minimizing the traveling distance
so that all could conveniently be captured in a relatively
short time by a walking photographer. On the days when
the light probes were being captured, the photographer was

instructed to walk to each landmark and take multiple pho-
tographs of each landmark from different viewpoints.

The ground-level photos were captured with a second
Canon EOS 5D Mark III camera, equipped with a Canon
EF 24–105mm lens. The camera clock was synchronized
to the sky camera from sec. 3.1, and also set to capture 14-
bit RAW images at full resolution. After capture, landmark
photographs were automatically assigned to a light probe by
comparing recorded time stamps and ensuring that the time
difference was no greater than 60 seconds on days where il-
lumination did not vary rapidly, and 10 seconds otherwise.
Rapid illumination variation was automatically determined
when the relative sun intensity between two temporally ad-
jacent light probes was greater than a certain threshold (25
times brighter/dimmer worked well for this purpose). In all,
we captured a total of 1,850 images from different view-
points, under 350 different illumination conditions.

3.3. 3-D models

From the set of landmark images captured in the pre-
vious section, we followed the large-scale SfM approach
of [21, 2] to recover a sparse 3-D point cloud and camera
parameters. We also applied the multi-view stereo recon-
struction approach of [5], and finally reconstructed a tri-
angular mesh on the resulting dense point cloud using the
screened Poisson reconstruction technique of [8]. Large tri-
angles were removed from the Poisson reconstruction by
filtering out all triangles with average edge length greater
than 20 times the average edge length of the entire mesh
since they were typically created for filling holes. Be-
cause the number of images with available lighting infor-
mation was relatively low for accurate geometry reconstruc-
tion, we augmented each image collection with photos taken
without lighting information. In all, each SfM reconstruc-
tion was obtained from 250–750 images. Note that while
this is smaller than typical large-scale SfM reconstructions
(2,000–3,000 range [20]), our models are of sufficient qual-
ity for the purpose of accurate lighting estimation. The sky
probes were rotated in their corresponding camera refer-
ence frames using the parameters obtained with SfM. Fig. 2
shows four example locations and subset of associated im-
ages and light probes from our database.

4. Modeling outdoor illumination
The sky probes captured in sec. 3.1 are very rich, but

have too high dimensionality to be directly usable in an in-
verse rendering framework. Here, we seek to represent the
HDR sky probes with high accuracy, but with few parame-
ters. In this section, we describe a parametric model that
successfully attains this goal by modeling outdoor light-
ing as a sum of two light sources: the sun, which is bright
and collimated; and the sky, a low-frequency hemispheri-
cal light source. Throughout this paper, we refer to light



directions using boldface l, which can interchangeably be
written in cartesian or spherical coordinates, whichever is
most convenient.

4.1. Modeling the sky intensity

Several models of the sky have been proposed in the at-
mospheric optics literature, and many of them have success-
fully been used in computer vision and graphics applica-
tions. One of the better-known models has been proposed
by Preetham et al. [15], and models the relative luminance
of a light direction l as:

fsky(l) = ωcskyf(θl, γl, t) . (1)

where θl is the zenith angle of l, γl is its angular difference
with respect to the sun position lsun, and t is the sky turbid-
ity. As opposed to the original formulation [15], we do not
normalize (1) by zenith luminance, but instead fit its param-
eters directly to the observed sky data. Each color channel
(indexed by c) is modeled independently, but turbidity t is
shared across all channels. The weights ωcsky capture the
mean sky color.

4.2. Modeling the sun intensity

While there exists many alternatives to model the sky,
we found comparatively very few sun models in the litera-
ture. Typically, the sun is represented as a fixed-size disk
of constant intensity [15]. While this may work for clear
skies (where the sun scattering is accurately captured with
the sky model), we found that this does not generalize well
to more complex situations such as clouds. Here, we in-
troduce a novel empirical model that models the sun as an
exponential falloff in the log-intensity domain (hence the
double exponential):

f csun(l) = ωcsun exp (−β exp (−κ/ cos γl)) , (2)

where β, κ ≥ 0, and are shared across color channels c. We
found that this model allows us to closely fit the sun data
captured in sec. 3.1 [1].

4.3. Fitting the illumination model to light probes

Our 11-dimensional hemispherical illumination model
can concisely be written as the sum of its sun and sky com-
ponents, parameterized by vectors qsky = [ωcsky t], qsun =
[ωcsun β κ], and lsun = [θsun φsun]:

f ch(l;qh) = f csun(l;qsun, lsun) + f csky(l;qsky, lsun) . (3)

To obtain the values for qh = [qsun qsky lsun] that best match
a captured sky probe from sec. 3, a non-linear least-squares
fitting method is applied to find the parameters that mini-
mize the sum of squared errors:

q∗
h = argmin

qh

∑
l

wl

∑
c

(f ch(l;qh)− pc(l))2 , (4)
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Figure 4. Qualitative evaluation of our low-dimensional, hemi-
spherical illumination model. The top row shows example light
probes from the sky database (c.f. sec 3.1). The next two rows
show the sky and sun models obtained by minimizing (4).

where pc(l) is the ground truth light probe intensity along
direction l, and wl ∈ {0, 1} corresponds to a manually-
defined sky mask indicating whether a light direction l cor-
responds to an occluder or to the sky, respectively. Since
minimizing (4) may be susceptible to local minima, we em-
ploy a two-stage constrained optimization strategy. First,
the sun and sky colors are initialized to their average values
computed from p. We fix the sun position lsun to its ini-
tial (calibrated) location and optimize the other parameters.
Second, the sun is constrained to stay within 2◦ of its initial
position, and all parameters are jointly optimized. This two-
stage strategy was found to be more robust to local minima
than direct joint optimization. Each non-linear minimiza-
tion is performed using the interior point algorithm imple-
mented in Matlab. Note that (4) is performed independently
on each image in the database. Fig. 4 shows qualitative re-
sults for four examples from our database.

5. Image formation models and priors
One of the key components of our approach is the pro-

gressive refinement of the image formation models em-
ployed, starting from a simple one, and moving on to a more
complex (and more faithful) one later on. Before we de-
scribe our main illumination estimation algorithm in sec. 6,
we first describe both image formation models, as well as
useful priors computed from our database.

5.1. Directional lighting model

In the first two steps of our approach (see fig. 5), we
employ a simple directional lighting model similar to [20].
In this case, the predicted appearance Bi,j of vertex i in
image j is modeled as:

Bi,j = ρi(ajoi + djvi(lj)〈ni, lj〉+) , (5)
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Figure 5. Overview of our approach.

where oi and ni are the ambient occlusion and surface nor-
mal at vertex i respectively, and 〈·, ·〉+ denotes the (strictly
positive) dot product representing the foreshortening term.
Here, vi(lj) ∈ {0, 1} is a visibility function indicating
whether the light direction lj is visible by vertex i. The un-
knowns in (5) are ρi, the per-vertex albedos, qdj = [aj dj lj ]
the per-image ambient and direct light colors, and the light
direction (the subscript d refers to the directional model).

5.2. Hemispherical lighting model

In the later stages of our algorithm (see fig. 5), we em-
ploy the sky probe model from sec. 4, which accurately
captures outdoor lighting with a weighted combination of
low-dimensional sun- and sky-specific parametric models.
Under this model, Bi,j becomes:

Bi,j = ρi

∫
Ω

fh(l;qhj)vi(l)〈ni, l〉+dl . (6)

In practice, we discretize (6) into a sum of N = 5122 di-
rections, and represent both fh and the visibility functions
vi as environment maps. The integral in (6) can thus be
succinctly represented as a matrix multiplication:

bj = ρ ◦Tfj , (7)

where ◦ denotes the Hadamard product, and where bj and
ρ are column vectors where each row stores the pixel value
Bi,j and albedo ρi for vertex i respectively. fj is the light-
ing environment map for image j, linearized into a column
vector. Each row k in fj stores the light intensity along di-
rection lk. Finally, T is the (pre-computed) light transport
matrix, where the element at row i and column k stores the
visibility (point-wise multiplied by the foreshortening term)
of vertex i along direction lk.

5.3. Lighting and reflectance priors

We use the sky dataset from sec. 3 to compute three
different priors to constrain the optimization procedure in
sec. 6. In all cases, care is taken to ensure that no prior is
trained on data overlapping with the test set.

The first prior captures the likely hemispherical lighting
parameters qh. It is obtained by training a kernel density es-
timator (KDE) ψh with gaussian kernels on the set of light-
ing parameters from sec. 4.3. The second prior also captures

lighting, but this time for the likely directional lighting pa-
rameters qd. To obtain values for qd, we render each 3-D
model using the hemispherical model (7), and find the am-
bient and direct light intensities that best approximate the
rendered appearance. We then train a second KDE ψd on
the resulting parameters.

Finally, the third prior models reflectance. Since geom-
etry and lighting are known for each image in our dataset,
we can solve directly for ρi in (7) to get an estimate for the
albedo at each vertex. We aggregate all these values in a
third KDE ψρ, which models the likelihood of observing a
particular reflectance. Note that this estimate is biased since
there may be non-lambertian materials in our datasets. In
addition, we do not capture the full environment maps at
each vertex but approximate them with a global sky map.
This bias is not an issue here as the same one is also present
in our estimation procedure.

Our approach makes the following simplifying assump-
tions. First, we employ the lambertian reflectance model
throughout. We assume that the exposure and white balance
parameters of the cameras are either known or calibrated.
Finally, we assume that the local illumination effects such
as inter-reflections can safely be ignored.

6. Lighting estimation approach

Our approach is divided into the three main steps illus-
trated in fig. 5. First, we initialize our per-vertex estimates
for (Lambertian) reflectance from a set of automatically-
detected overcast images in the image collection. Sec-
ond, we estimate the lighting and reflectance information in
an alternating fashion using the directional lighting model
from sec. 5.1. After convergence, the third step is to convert
the resulting parameters to the full hemispherical lighting
model of sec. 5.2, and refine it using a similar alternating
optimization approach as in step 2. This section provides
more details on each one of these steps.

6.1. Initialization

Inspired by [20], we make the observation that in over-
cast images, the direct light intensity dj = 0, so (5) simpli-
fies to Bi,j = ρi(ajoi). While the approach in [20] solves
this bilinear equation using an alternating optimization pro-



cedure, we propose a simpler method based on the obser-
vation that taking the log makes the equation linear in both
unknowns ρi and aj :

logBi,j − log oj = log ρi + log aj . (8)

Each image defines an equation on ρi and aj , so given a suf-
ficient number of images, we build a linear system of equa-
tions, which can be solved very efficiently using a standard
least-squares solver. Note that the system can be solved
only up to scale, so we re-scale the outputs such that the
mean albedo is equal to the mean of our albedo prior ψρ.

To detect overcast images, we employ a technique simi-
lar to [12] and train a two-class SVM classifier on a set of
1,330 sunny and overcast images manually gathered from
the LabelMe dataset [18]. To compute the training features,
the geometric context algorithm [7] is first used to extract a
sky mask. We then compute 21-bin intensity and saturation
histograms of the sky and of the rest of the image, which
are concatenated into a 84-dimensional feature vector. The
SVM is trained with a histogram intersection kernel, and
calibrated to output probabilities using libSVM [3]. We se-
lect images with probability of being overcast is greater than
0.5 to initialize. More sophisticated techniques [13] could
also be used, but this worked well for our purposes.

6.2. Lighting and reflectance estimation

The initialization procedure of sec. 6.1 provided an ini-
tial estimate for the albedos ρ. The alternating optimization
approach that follows is inspired by [20], the main differ-
ences being that we explicitly reason about occlusions and
cast shadows (while they approximated it with a per-pixel
shadow map at each image), and we incorporate illumina-
tion and reflectance priors to guide the optimization. Fol-
lowing the notation in [20], we define the error function:

R(Θ) =
∑
i

∑
j

wi,j ||Pi,j −Bi,j(Θ)||2

+ λdψd(Θ) + λρψρ(Θ) ,

(9)

where Pi,j is the color of the (projected) vertex i in image
j, andBi,j(Θ) is its predicted appearance under parameters
Θ = [qd ρ] as given by (5). The λ parameters are weights
controlling the importance of each prior (we set λd = λρ =
.001). Each vertex is given a weight wi,j = min(Pi,j , 1 −
Pi,j) to reduce the influence of over- and under-saturated
pixels.

We optimize (9) by first keeping the reflectance ρ con-
stant and optimizing for the lighting parameters qd. In
this case, (9) can be split into independent equations (one
per image), each of which can be minimized in paral-
lel. Second, we fix the estimated lighting parameters, and
solve for ρ. Each optimization is performed using Matlab’s
fmincon function.
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This procedure is repeated until convergence, which is
obtained when the mean difference in albedo estimates be-
tween two subsequent iterations is less than 10%. Typically,
the procedure converges in less than 5 iterations.

6.3. Optimizing the hemispherical lighting model

After convergence, the directional lighting parameters of
image j, qdj , are expressed into their hemispherical lighting
model equivalents, qhj , by using the priors from sec. 5.3.
The k nearest neighbors of qdj in ψd are retrieved, and the
mean of their correspondences in ψh is computed to obtain
qhj . The resulting parameters are then optimized with a
strategy very similar to sec. 6.2, except that Bi,j(Θ) in (9)
is replaced by (7) with Θ = [qh ρ], and ψd by ψh. Note that
the sun position is kept fixed in this step, and the optimiza-
tion is performed again with fmincon in Matlab.

6.4. Implementation details

We pre-compute and cache the per-vertex visibility
vi(lj) for each vertex in the mesh by sampling 5122 light-
ing directions on the hemisphere, and by storing them as
environment maps. Visibility for other lighting directions
are obtained by linear interpolation. We also pre-multiply
〈ni, lj〉+ in the visibility map to avoid re-computing it at
run-time. We use an adaptation of the octahedral environ-
ment map format [14], where only the top half of the oc-
tahedron, corresponding to the sky hemisphere, is mapped
onto a square (see [1]). The resulting light transport maps
T are represented with Haar wavelets, and compressed by
keeping the top 20% coefficients.

7. Experiments
7.1. Sun position error

First, the accuracy in predicting the sun position is eval-
uated. Because the sun position only matters when the it
shines brightly on the scene, we compute the error only on
images where the sun intensity is greater than 1,000 (the



point at which shadows become noticeable in the images).
Results are reported in fig. 6, with a median error of 8◦ in
azimuth, 12.5◦ in elevation, and 17◦ overall. Fig. 6 also
plots the overall angular error as a function of the relative
azimuth angle of the sun with respect to the camera. As can
be expected, the error increases with azimuth difference,
since strong illumination cues are less likely to be visible
by the camera when the sun comes from the side. We no-
tice that the error increases significantly when the sun rela-
tive angle is above 90◦, which correspond to the sun moving
behind the landmark, and thus having very little effect on its
visible surfaces.

7.2. Sky probe prediction error

We now evaluate the full sky probe prediction, by com-
paring the predicted light probes with the captured ground
truth. Fig. 7 presents qualitative illumination estimation re-
sults for several images taken from four image collections in
our dataset, namely “Hamburg”, “UC2”, “D2”, and “Arts1”
(see [1]), and compares them with the ground truth HDR
light probes captured in sec. 3.1. While high-frequency de-
tails such as cloud textures are lost (the diffuse building
walls act as a low-pass filter), our method faithfully captures
the main characteristics of the sky hemisphere such as the
sun and sky color, and their general spatial variation. Also
note how the estimated sun position is less precise when the
sky is mostly overcast.

In addition to the qualitative results, fig. 8 shows a quan-
titative comparison of our estimated hemispherical model
with the captured ground truth. To compute the error,
we measure the ratio of total irradiance received by a flat
ground plane when lit by our estimate (rendered using (7))
over the irradiance when lit by the ground truth. A per-
fect match would therefore have a value of 1. The median
values oscillate close to 1 in all situations, indicating that
our estimates closely approximate the captured light probes.
The main reason explaining errors is that there are often not
enough cues in the images to identify lighting very robustly.
As such, many different lighting conditions may explain the
same image. We plan to explore the use of additional image-
based features to help disambiguate these challenging cases.

8. Discussion
In this paper, we presented a novel approach for auto-

matically estimating the HDR illumination conditions in
each image in a SfM collection of LDR input photographs.
We make the following key contributions. First, we pre-
sented the “Light and Image Collections Database”, a novel
dataset of HDR light probes and image collections contain-
ing 1,850 images of 22 different landmarks, where both the
landmark appearance and the ground truth illumination con-
ditions are simultaneously captured. Second, we introduce
a novel HDR parametric lighting model that accurately ap-
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Figure 8. Quantitative evaluation of the estimated illumination
conditions, for all images in our dataset. We define the error as
the ratio of total light irradiance received by a flat ground plane
when lit by our estimate, compared to the captured light probes.
A perfect match has a value of 1. In all three plots, the bars show
the errors of the hemispherical light models fit to the captured sky
probe using (4) (fit), and estimated using our approach (pred). The
three plots show, respectively, the error computed over: all the test
images (left), clear skies only (middle), and overcast skies only
(right). Error bars represent 25th and 75th percentiles.

proximates the real captured data. Third, we present an in-
verse lighting algorithm which leverages new illumination
and albedo priors trained on the database to reliably esti-
mate the lighting conditions independently at each image in
an outdoor photo collection. Our final contribution is what
we believe to be the first quantitative evaluation of lighting
estimation performance in the challenging case of outdoor
image collections.

The main limitation of our approach is that it can recover
precise lighting parameters only when lighting actually cre-
ates strongly visible effects—such as cast shadows, shading
differences amongst surfaces of different orientations—on
the image. When the camera does not observe significant
lighting variations, for example when the sun is shining on
a part of the building that the camera does not observe, or
when the camera only see a very small fraction of the land-
mark with little geometric details, our approach recovers
a coarse estimate of the full lighting conditions. In addi-
tion, our approach is sensitive to errors in geometry estima-
tion, or to the presence of unobserved, nearby objects. Be-
cause it does not know about these objects, our method tries
to explain their cast shadows with the available geometry,
which may result in errors. Our approach is also sensitive
to inter-reflections. Incorporating more sophisticated image
formation models such as radiosity could help alleviating
this problem, at the expense of significantly more compu-
tation. Finally, our approach relies on knowledge of the
camera exposure and white balance settings, which might
be less applicable to the case of images downloaded on the
Internet. We plan to explore these issues in future work.
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Figure 7. Qualitative evaluation of the estimated sky probes. For each group of results: the top row show several images taken from various
collections in our dataset; the second rows show the corresponding HDR light probe captured in sec. 3.1; and the third rows show the HDR
sky probes automatically estimated for the input image using our technique. While high-frequency cloud details are lost, note how the sun
direction and the general sky appearance is faithfully estimated only from the landmark appearance. More results are available in [1].
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