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Abstract
Word spotting, or keyword identification, is a highly challeng-
ing task when there are multiple speakers speaking simultane-
ously. In the case of a game being controlled by children solely
through voice, the task becomes extremely difficult. Children,
unlike adults, typically do not await their turn to speak in an or-
derly fashion. They interrupt and shout at arbitrary times, speak
or say things that are not within the purview of the game vocab-
ulary, arbitrarily stretch, contract, distort or rapid-repeat words,
and do not stay in one location either horizontally or vertically.
Consequently, standard state-of-art keyword spotting systems
that work admirably for adults in multiple keyword settings, fail
to perform well even in a basic two-word vocabulary keyword
spotting task in the case of children. This paper highlights the
issues with keyword spotting using a simple two-word game
played by children of different age groups, and gives quantita-
tive performance assessments using a novel keyword spotting
technique that is especially suited to such scenarios.

Index Terms: Word spotting, Keyword identification, Chil-
dren’s speech, Children’s games, Distant speech recognition,
Voice driven games.

1. Introduction
Keyword spotting in continuous speech involves detecting
whether and where in a recording a specified word occurs. Cur-
rently, depending on the task setting, there are four categories
of approaches that are mainstream for keyword spotting. The
most basic approach is to simply set the key-terms in opposition
to a generic garbage model and apply a likelihood ratio test to
identify the keywords [1, 2]. The second comprises performing
phoneme (or syllable, or other sub-word unit) recognition. Key-
word spotting is then done by searching for specific sequences
of phonemes in a recording and coalescing them into words
[3]. The third category comprises performing large-vocabulary
recognition with a language model, and searching for the de-
sired key-terms in the ASR system lattices [4].

In the fourth set of techniques, spoken examples of the
keywords are used to build specific word detectors. We re-
fer to these as example-based methods. Example-based meth-
ods model each keyword to be spotted in its entirety. While
phoneme-based methods are flexible, example-based methods
are generally more accurate or faster, e.g. [5, 6, 7]. Many
example-based methods basically mimic the phoneme-based
methods in that they attempt to first derive a phoneme sequence
or lattice, which is re-evaluated with the phonetic models in an
ASR system to generate word identities [8]. Such example-
based techniques also include those based on neural networks.
Lately, bidirectional neural networks [9], especially bidirec-
tional long-short-term memory (BLSTM) neural networks have

been employed with particular success for word spotting tasks
[10]. Word spotting with BLSTMs has focused on text- or
phoneme-sequence-based word specification: the word spotter
either scans the phoneme lattice generated with the BLSTMs
for the specified words [11, 12], or uses a second-level discrim-
inative classifier that employs features derived from the lattice
to detect the words [13].

In this paper we address the problem of keyword spotting
in the setting of a multiplayer children’s game. This setting is
challenging for multiple reasons. First, there is a much larger
inherent variability in the quality of children’s voices than for
adults. This is related to physiological issues [14]. In chil-
dren, the length of the vocal cord, and the shape of the vocal
tract changes more rapidly with age than in adults. As a result,
marked changes in voice characteristics are seen with smaller
age differentials in children [15], and a system cannot be triv-
ially set up to work optimally for all age groups with one set-
ting. In addition, through childhood, the length of the vocal
cords is not at the optimal adult length needed to discrimina-
tively pronounce each sound in the language. Children therefore
enunciate sounds in a much more varied fashion than adults do
[16]. In fact, children’s speech becomes clearer with increasing
age, although the pitch is higher on average in child speech, and
there is more energy in higher frequencies as compared to adult
speech. For all these reasons, training keyword detectors for
children’s voices is expected to be an inherently difficult task.

The second reason is related to stylistic issues that cor-
relate with developmental and emotional factors [17, 18, 19].
Children also generally do not adhere to turn-taking rules, and
even within a restricted vocabulary game, they often speak
concurrently. In the keyword-spotting scenario, multiple key-
words could be spoken by multiple children at the same time.
Thus any effective keyword-spotting algorithm used for a mul-
tiplayer scenario must also necessarily address the case where
keywords are simultaneously uttered by multiple players. The
stylistic issues are exemplified clearly in the context of a game
called “Mole Madness” in this paper. Mole Madness is a two-
dimensional side-scroller game, similar to video games like Su-
per Mario Bros R©. The goal of the game is to move a mole
character through its environment, capturing food and avoid-
ing dangers (see Figure 1). Two children work cooperatively to
move the mole, one child effecting horizontal movement with
the word GO, and the other controlling vertical movement with
JUMP. Without speech, the mole simply falls to the ground and
spins in place.

On the surface, the game presents a simple two-keyword
spotting task that should be easy to address with any of the
existing techniques mentioned above that are known to work
well for adult voices. However, stylistic issues with children’s
voices, especially when trying to stress function word sounds
[20], seriously confound the solutions. In addition to the ex-



Figure 1: A screen shot of Mole Madness. The mole (blue)
must GO and JUMP to scale the wall and avoid the cactii.

pected physiologically-variable pronunciations of participants
(ages 4 to 10), the following phenomena occur throughout:

1. Extreme variability in duration: On one hand, we find
the word “go” so contracted that multiple repetitions are
included in one rapid-fire instance, e.g. GOGGOGGO.
Note the skipped syllable. On the other hand, we
also find the word extremely prolonged in duration, e.g
GOOOOOOOOOOOOOOO. Figure 2 presents some ex-
amples.

2. Keyword merging: Under time pressure and in an ex-
cited state, children will subsume each other’s roles,
producing garbled, merged forms of the keywords e.g.
GJMP, JUMPGOOJJJJJUMP, etc.

3. Speech-on-speech: Areas of the game environment are
designed to make the children work together to acquire
a reward or overcome an obstacle, creating instances of
moderate to near-perfect overlap in speech. In such cases
the system must be able to detect that both words were
spoken. This is the main motivation for presenting the
algorithm in this paper.

4. Voice tremors and acoustic distortion: Jumping verti-
cally and horizontally while screaming causes acoustic
distortions in voice, more in adults but even in children.

5. Out-of-vocabulary words: Despite the desire to move the
mole quickly and achieve a high score, children will,
nevertheless, participate in social and strategic side-talk
[21], e.g. SAY GO, I SAID JUMP, NICE MOVE, etc.
This introduces out-of-vocabulary words that are not
merely resultant from mergings or contractions.

In the following sections we present an algorithm for key-
word spotting that is best suited for multi-person game scenar-
ios when overlaps are expected between spoken instances of
keywords. We compare the algorithm to state-of-art BLSTMs
modified for keyword spotting in a multi-person scenario, and
evaluate its performance in different environmental noise con-
ditions. Experiments show that the algorithm outperforms
conventional techniques in scenarios where the keywords are
phonemically and durationally altered or distorted, and espe-
cially when the keywords are overlapped.

GO: short GO: extended

JUMP: short JUMP: extended

Figure 2: Spectrograms showing durational variability of key-
words in Mole Madness.

2. Maximum-likelihood wordspotting with
heavy-tailed distributions

Let us consider a task where N keywords {w1, w2, . . . , wN}
are to be spotted. The recording environment includes multiple
speakers, any of who may speak the keywords. Speakers may
also speak concurrently. The task is to determine which of the
keywords were spoken. If multiple keywords are concurrently
spoken (possibly with partial overlap), all of them must be iden-
tified.

We process the incoming speech in overlapping blocks. The
width of the blocks and the overlap between adjacent blocks is
optimized empirically. The audio in any block is parameter-
ized into a sequence of feature vectors (Mel-frequency cepstral
vectors in our case), each representing one frame of the block.
We represent the sequence of feature vectors derived from any
audio block as F and the individual feature vectors in it by f .

Recalling that keywords may be spoken concurrently, one
or more of the keywords may occcur within each block. We
view every combination of keywords as a separate class of
events. Since there are N keywords, there are 2N classes,
representing the 2N possible combinations of keywords. For
notational convenience, we can represent the combination of
keywords in any block through an N -bit indicator Z =
z1z2 · · · zN , where each zi is a single bit indicating the occur-
rence or absence of the ith keyword. Z can take 2N possible
values, each indicating one of the 2N possible combinations of
keywords, and indexes the classes.

The features F derived from the audio for each combination
of keywords Z can be expected to have their own distinctive
statistical signature. In practice, however, there is potentially
infinite variation in the asynchrony between the utterance of the
individual words in the combination, resulting in a large vari-
ation in the temporal patterns in F . To effectively capture the

Figure 3: Generative model for F

asynchrony, we assume the generative model shown in Figure
3 for F . The model assumes every vector f in F to be statis-
tically independent of every other vector. In order to generate
any vector f , first the class Z is drawn from a prior distribu-
tion P (Z); subsequently the vector f is drawn from the class-
conditional distribution P (f |Z). In effect, the model assumes
that every vector in F may have been drawn from a different
class. The model implicitly accounts for the fact that when mul-
tiple keywords are spoken concurrently, different combinations
of these keywords may be active in any individual frame due
to the asynchrony between the keywords. This results in the
following probability distribution for F

P (F ) =
∏
f∈F

∑
Z

P (Z)P (f |Z)

Note that in this model P (Z) effectively represents the expected
fraction of feature vectors in F that were obtained from the
combination Z. If the class-specific distributions P (f |Z) are
known, the task of identifying the set of keywords active in any
block thus reduces to identifying the set of Zs that are most
dominant in the block, i.e., the Zs corresponding to the largest
P (Z) values.

This leads to the following algorithm for identifying key-
words.



• In a training phase, we learn a model P (f |Z) for the distri-
bution of feature vectors recorded under every combination Z
of keywords from appropriate collections of training data.

• In the test phase, for every block B of test-data audio repre-
sented by the features FB , we estimate the probability distri-
bution P (FB) =

∑
Z PB(Z)P (f |Z), where we have used

the subscript B in PB(Z) to denote that the distribution is
specific to block B. Since P (f |Z) is already known (from
the training phase), only PB(Z) must be estimated. We use
a simple EM algorithm to obtain a maximum-likelihood es-
timate of PB(Z). Subsequently, we compute the probability
that the ith keyword was spoken as the sum of the PB(Z)
values for all Zs in which the keyword was included.

PB(i) =
∑

Z:zi=1

PB(Z) (1)

PB(i) estimates the fraction of frames in FB in which the ith

keyword was active. The keywords with the largest PB(i)
values are returned as candidates for the block.

The procedure above places no explicit constraint on the
actual combination-specific distributions P (f |Z). Although, in
principle, conventional distributions such as Gaussian mixture
models may be employed, in mixed-speech scenarios, we have
found that the features are most effectively modeled by heavy-
tailed distributions [22]. In this work we have found it most
effective to model P (f |Z) as a mixture of Student’s-t distribu-
tions. The parameters of these distributions can be learned from
training examples, as given in [22]. Distributions for Z values
representing multiple concurrent keywords may be learned from
synthetic mixtures of the keywords. We refer to the mixture-
Student’s-t based models as M-TMMs. As a comparator we
have also modeled P (f |Z) by GMMs. We refer to this model
as M-GMM.

For large values of N , the total number 2N of keyword
combinations can become very large. In these situations, we
have found it effective to assume that no more than one (or a
small number K) of the keywords is spoken at any time, i.e.,
assume that individual frames are dominated either by a single
keyword, or no keyword at all. For the results reported in this
paper, however, N = 2, and the entire set of 2N possible com-
binations are considered.

3. The BLSTM comparator
As a comparator to our proposed method, we evaluated bidi-
rectional long-short-term memory networks (BLSTMs) for the
word-spotting task. These have been known to work well for
children’s speech [23]. BLSTMs capture both causal and anti-
causal recurrence, through a network that has both a forward
and a backward component; classification is performed using
information from both the networks. A BLSTM network is a
bidirectional recurrent neural network with LSTM cells in its
hidden layers. An LSTM neuron or cell is a unit comprising
a central memory unit and gates that determine when it must
consider an input, when it must remember a value, and when
it should output its value [24]. BLSTMs have been shown to
be highly effective at a variety of speech recognition tasks, in-
cluding word spotting, and are considered state-of-art in many
of these tasks [25].

In our setup, we employed a BLSTM network to directly
classify each block of incoming speech into one of 2N classes,
corresponding to the 2N possible combinations of keywords.
The network is trained with several instances from each of these

Figure 4: A schematic of the BLSTM network architecture.
Forward blocks of LSTM neurons are colored yellow and back-
ward ones are colored blue. The number of memory neurons
used is indicated within each block.

2N conditions. The output layer has 2N soft-max neurons, the
outputs of which may be interpreted as P (Z|F ), where Z is
defined as in Section 2. In the test phase, each block of incom-
ing data is processed by the BLSTM network. The outputs are
combined according to Equation 1 to compute probabilities for
the individual words.

The configuration of the network used in our experiments
was identical to the one used for word recognition in the 2013
2nd ChiME Challenge track-1 [26]: the network had three hid-
den layers (indicated as Layers 1, 2 and 3 in Fig. 4) containing
156, 300 and 102 neurons, respectively. The full architecture is
shown in Fig. 4. We used CURRENNT [27], a publicly avail-
able CUDA-based implementation. A learning rate of 10−5

and a momentum of 0.9 is used in a stochastic gradient descent
method for optimizing the network parameters during training.

4. Experimental results
We evaluated three algorithms: both the M-TMM and M-GMM
variants of the proposed algorithm and BLSTMs, on Mole Mad-
ness data collected in-house at Disney Research. The data com-
prise recordings from 34 distinct pairs of children between the
ages of 4 and 10 years (mean age 7 years, standard deviation
= 2.01 years, male-female ratio of 3:2). Each pair of children
played twice, once as GO and once as JUMP. For data collec-
tion, the application did not use a speech recognizer to respond
to the children’s voices. Instead, the players controlled the mole
through “Wiimotes” [28], while simultaneously uttering the re-
quired keywords. Each child wore a close-talking microphone
on his or her shoulder, with data recorded at a sampling rate of
16 kHz.

The Mole Madness database contains 1723 isolated utter-
ances of GO and 1214 utterances of JUMP. Tracks from each
child were independently annotated. Overlaps can thus be de-
termined by matching time-stamps between the tracks. Data
segments which did not contain these keywords are annotated
as “Background”. For our experiments, we used 1200 non-
overlapping GO, 800 instances of non-overlapping JUMP and
254 segments of Background.

The test set for evaluating performance on non-overlapped
speech comprised 523 instances of GO, 414 instances of JUMP
and 230 instances of Background. The sets of children from
which the training and testing data are chosen were mutually ex-
clusive. The test set for evaluating performance on overlapped
speech comprised 523 instances of concurrent instances of GO
and JUMP being spoken together. These latter count as pos-
itives for both GO and JUMP. To test the performance under
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Figure 5: (a): Performance obtained within a hypothesis-
testing framework. (b) DET Curves for M-TMM, M-GMM and
BLSTMs under the proposed framework.

different SNR conditions, we synthetically added babble noise
(recorded in a gaming parlor) to the test set.

In all experiments, the features used were 39-dimensional
Mel-Frequency Cepstra (including delta and acceleration coef-
ficients). Performance was evaluated by generating Detection
Error Threshold (DET) curves for each. The DET curve plots
missed-detection (MD) vs. false-alarm (FA). We also computed
the detection cost function (DCF) as a scalar quantitative metric
of performance. The DCF is a weighted combination of false-
alarm and missed-detection. Because the cost of FA is higher
than MD in Mole Madness, we set the DCF to be the weighted
combination: 0.3∗P (MD)+0.7∗P (FA), where P () denotes
probability.

We note that keyword spotting may also be viewed as a con-
ventional hypothesis-testing problem. To establish the baseline
for this task, we first performed spotting within a hypothesis-
testing framework. Two models were trained for each word:
one for the word itself, and the other for the negative class using
all data that did not include the word. For the spotting task, a log
likelihood score was obtained using both models. Both TMMs
and GMMs were used for this purpose. TMMs and GMMs
used mixtures of 64 component distributions. Since TMMs and
GMMs do not incorporate temporal structure, we also trained a
third spotter using BLSTMs. Here, for each word we trained a
BLSTM to distinguish between the word and the absence of the
word. Figure 5a shows the DET curves for all three spotters, for
both words in our test set. We note that there is no significant
difference in performance between the three. In particular, the
temporal structure captured by the BLSTM brings no signifi-
cant benefit, showing clearly that even the BLSTM is unable to
capture the large variations in temporal structure in children’s
speech under game conditions.

Figure 5b shows the performance obtained using our pro-
posed method on clean test instances of both words. We show
the performance with M-TMMs, M-GMMs, and BLSTMS im-
plemented as described in Section 3. We note directly that ex-
plicitly modeling the condition where words overlap improves
the performance of BLSTMs. However the best performance is
obtained using M-TMMs. The combination of the proposed
maximum-likelihood framework and the use of mixtures of
Student’s-t distributions to model the words results in the best
performance.

Figure 6 shows the performance obtained using the pro-
posed method on test instances that were corrupted by back-
ground (babble) noise to various signal levels. The upper
and lower panels show, separately, the performance on non-
overlapping and over-lapping instances of the words.

−5 0 5 10 15
0.12

0.16

0.2

0.24

−5 0 5 10 15
0.05

0.1

0.15

0.2
BLSTM

M−TMM

M−GMM

SNR(dB)

SNR(dB)

D
C
F

Non-overlapping

Overlapping

D
C
F

BLSTM

M−TMM

M−GMM

Figure 6: Top: Average DCF as a function of SNR, on
non-overlapping instances of words corrupted by background
gaming-parlor noise, using the M-TMMs, M-GMMs, and
BLSTMs. Bottom: DCF as a function of SNR on overlapping
instances of the words, for the same three methods.

5. Discussion of Results
We note firstly that all results are poorer than we would expect
for such small vocabularies. The performances reported here
are, in fact, better than those obtained with standard commer-
cial speech recognizers (although not reported here) and other
ASR based recognizers [29]. Children’s speech, particularly
from excited children, is just fundamentally extremely difficult
to recognize for all the reasons mentioned above.

The results show interesting patterns. The two-class
hypothesis-testing framework of Figure 5a performs consis-
tently worse than all variants of the proposed method. Of par-
ticular note is that the TMM and GMM frameworks, which
model feature vectors as IID, do not perform significantly worse
than BLSTMs – the temporal structure captured by the BLSTM
brings no significant benefit. The large variations in temporal
structure in children’s speech under game conditions are diffi-
cult to model even with models such as BLSTMs with many pa-
rameters. This is in opposition to all other experiments on adult
speech, where the BLSTM is shown to distinctly result in large
improvements over more detailed models, including HMMs.

The proposed maximum-likelihood mechanism which esti-
mates the contributions of the individual classes to the test data
by “fitting” the mixture of class distributions to the data seems
to significantly outperform the more conventional hypothesis-
testing framework on this data, suggesting that such approaches
(which discard temporal structure) can in fact be used effec-
tively in some situations where the temporal structure in the data
may be obscured by intrinsic or extrinsic effects.

A secondary observation is that the mixtures of Student’s-t
distributions result in better performance than mixtures of Gaus-
sians. This indicates that children’s speech may include a larger
fraction of episodic phenomena, which are better modeled by
heavy-tailed distributions [30].

As can be seen in Figure 6, the performance of all classifiers
degrades with noise; however the performance degradation due
to low SNRs is more predominant in BLSTMs than in the pro-
posed approach, particularly when Student’s-t distributions are
used. The ability of the heavy-tailed Student’s-t to effectively
represent outliers, which are more common in noisy speech, ap-
parently provides significant benefit under these conditions. We
believe that at least a part of the gains are due to the limited
amount of training data, and that with larger amounts of data
the differences may diminish. Investigation of the effect of in-
creasing the amount and variety of data, game vocabulary, levels
of excitement, etc. remain areas of current and future work.



6. References
[1] Mitchel Weintraub. LVCSR log-likelihood ratio scoring

for keyword spotting. In International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-95),
volume 1, pages 297–300. IEEE, 1995.
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