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Abstract— Creating animations for entertainment humanoid
robots is a time consuming process because of high aesthetic
quality requirements as well as poor tracking performance
due to small actuators used in order to realize human size.
Once deployed, such robots are also expected to work for
years with minimum downtime for maintenance. In this pa-
per, we demonstrate a successful application of an iterative
learning control algorithm to automate the process of fine
tuning choreographed human-speed motions on a 37 degree-
of-freedom humanoid robot. By using good initial feed-forward
commands generated by experimentally-identified joint models,
the learning algorithm converges in about 9 iterations and
achieves almost the same fidelity as the manually fine tuned
motion.

I. INTRODUCTION

Humanoid robots for entertainment are designed to imitate
human or animal movements. Their motions are usually
choreographed by hand to move in synchrony with pre-
recorded speech or music. Animating such robots is a time
consuming process. For instance, it took several weeks for
an animator to finish the 255-second long animation for the
37-joint humanoid robot used in this work. Furthermore,
once the robots are deployed, their animations have to
be periodically re-examined and fine-tuned with minimum
downtime to adjust for robot wear and part replacements.

In this paper, we develop a controller to enable high
fidelity tracking of a given choreographed motion. More
specifically, we apply a technique called Iterative Learning
Control (ILC) to improve the tracking performance of the
37 degree-of-freedom (DOF) hydraulic robot shown in Fig. 1.
More details about the robot hardware and software follow
in Section III. Some of the key challenges associated with
motion tracking on this humanoid are; 1) at the user level, we
can only send position commands at 120 Hz; 2) the system
has 37 DOF; 3) the algorithm should adapt to changes in the
hardware properties due to wear and part replacements; and
4) the algorithm should be able to handle fast human-like
motions.

Based on the hardware limitations and problem re-
quirements, we decided to use Iterative Learning Control
(ILC) [1]. For a given reference motion, ILC performs
model-free refinement of feed-forward position commands
by using the tracking errors at each trial. ILC is therefore
well suited for applications involving repetitive disturbances
and/or unmodeled dynamics. Section IV-A presents the de-
tails of the ILC algorithm used in this paper.
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Fig. 1. The humanoid robot used as the experimental testbed for the
research presented here.

An alternative would have been traditional controllers such
as proportional, integral, and derivative control. While they
can be applied to any reference motions, we assessed that
it would be time consuming to find gains that would realize
faithful tracking throughout the range of motion because of
the limited sensing capability of the control system and the
nonlinearity of the hydraulic actuators.

A key for achieving high performance trajectory tracking
with ILC is obtaining good initial feed-forward commands.
When a manually fine-tuned position command is not avail-
able, which is the case with animations originally created
for films, we identify an input-output model of each joint.
This model is then inverted to generate the initial feed-
forward joint position command. Using ILC, we show that
it is possible to approach the quality of a motion that has
been manually fine tuned by a professional animator.

Figure 2 illustrates the issues with motion tracking on
entertainment humanoid robots and how we tackle them in
this paper. Each line on the plot represents either a position
command, an actual joint trajectory, or a choreographed
motion for one joint as a function of time. The choreographed
motion is what the animator would like to realize on the
robot.

In (a), the red solid line represents the manually fine-tuned
joint position command that the animator obtains through
trial-and-errors on the hardware in order to achieve the
choreographed motion shown as the thick grey solid line.
However, as the figure wears out or parts are replaced, the
same joint position command produces a sluggish response
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Fig. 2. Illustration of the conventional and proposed methods for animating entertainment humanoid robots. The plots show position commands, actual
trajectories, and the choreographed (ideal) motion for one joint as a function of time. (a) An animator manually fine tunes the joint position command
(red solid line) to achieve the choreographed motion (thick grey solid line). Due to wear or part replacement, the actual trajectory degrades over time
(blue solid line). (b) We re-adjust the position command using ILC and obtain a new command (red dashed line) resulting in better tracking performance
(blue dashed line). (c) If a manually tuned command is not available, we initialize the joint position command using the inverse of a joint model (magenta
dotted line) and obtain the motion shown in green dotted line. We then use ILC to improve the tracking performance, resulting in the position command
shown by the magenta dash-dotted line and joint motion shown by the green dash-dotted line. In our experience, (c) achieves better tracking performance
with fewer iterations than (b).

(blue solid line).
Next, we illustrate how we use ILC to re-tune the motion.

In (b), we start with the manually tuned joint position
command (red solid line) and perform ILC using the error
between the choreographed motion (thick grey solid line) and
the degraded motion (blue solid line). As learning proceeds,
we are able to drive the tracking error down leading to the
converged joint motion (blue dashed line) and the converged
joint position command (red dashed line).

In more practical situations, however, we may not have
access to a manually tuned command, but instead only have
the choreographed motion to realize. In this case, we use a
model-based initialization as shown in (c), where we use the
inverse of the joint model to generate the initial joint position
command (magenta dotted line) which generates the motion
shown by the green dotted line. ILC subsequently improves
the tracking performance, converging at a new joint posi-
tion command (magenta dash-dotted line) that gives better
tracking result (green dash-dotted line). In our experience,
model-based initialization followed by learning (c) converges
faster and achieves better tracking performance compared to
non-model-based initialization followed by learning (b).

II. RELATED WORK

Generating fast motions on hydraulic robots is challenging
especially because of the nonlinearities of the hydraulic
dynamics. Boaventura et al. [2] used a detailed hydraulic
dynamics model with pressure, force and position sensing to
generate high performance locomotion of the IIT Hydraulic
quadruped. Bentivegna et al. [3] studied position and force
control of a single joint of a hydraulic humanoid robot and
showed that high speed trajectory tracking is achievable
using linear actuator model, rigid-body dynamics model,
and full state (position, velocity and force) feedback. They
also showed convincingly that simple proportional-derivative
control on position gives a poor transient response such as
large steady state errors at low gains and system instability at
high gains. Since ILC uses tracking errors to repeatedly tune

the feed-forward commands, one can use low gains while
achieving good tracking performance and therefore avoid
system stability issues [4].

So far, applications of ILC has been limited to learning
fast motions of simple systems such as swing up of a
inverted pendulums [5], [6], quadrotor flips [7], table-tennis
paddle motions [8], pick and place operation of a two-axis
manipulator [9], and planar motion tracking of 3–6 DOF
industrial manipulators [10], [11], [12]. We believe that we
are the first to apply ILC to successfully tracking fast motions
of robots as complex as a 37-DOF humanoid robot.

III. SYSTEM DESCRIPTION

A. Robot hardware

The humanoid robot we use in this research is shown in
Fig. 1. The robot is on a fixed base, that is, its feet are
clamped to the ground. The robot has 37 joints: 4 in the lower
body (base bend, base sway, base rotate, and pelvis bend), 3
in the upper body (torso twist, torso bend, and torso sway),
a linear degree of freedom in each shoulder, 7 in each arm
(arm swing, arm rotate, arm bend, elbow bend, wrist swing,
wrist rotate, and wrist bend), one in each of the 10 fingers, 3
in the head (head rotate, head nod, and head tilt) and 1 in the
mouth. For actuation, the robot uses hydraulics operated at
a pressure of 600 psi. Each joint has a rotary potentiometer
or a linear variable differential transformer to sense joint
position. Some of the valves have pressure transducers to
measure the pressure difference, which roughly corresponds
to the actuator force.

B. Controller architecture

A schematic diagram of the controller architecture is
shown in Fig. 3. The controller consists of two levels: lower
and higher levels. These levels differ in terms of sensor data,
command inputs, and operating rates.

The lower level controller runs at a rate of 1KHz and
senses the joint position and joint force. Each joint has its
own lower-level controller. The joint velocity is obtained
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Fig. 3. Control software architecture of the experimental testbed.

by differentiation of the joint position followed by low-
pass filtering of the differentiated joint position. The control
command is the valve position v, which is computed as a
linear function of joint position θ, joint velocity θ̇, and joint
force F as follows:

v = −Kθ(θ − θc)−Kθ̇ θ̇ −KFF (1)

where Kθ, Kθ̇, and KF are the gains on the position,
velocity, and force, and θc is the position command.

The higher level controller runs on an external PC and
communicates with the lower-level controllers at a rate of
120 Hz. It can send position commands θc to the lower-
level controllers, and read back the joint position and force
measurements.

In order to emulate the in-field scenario, we assume that
we cannot change the low-level controller and use the pre-
installed default controller (1). Therefore, our only control
variable is the position command θc for each joint.

IV. SYSTEM MODELING AND CONTROL

A. Iterative learning control algorithm

Let i represent the trial number and j the time index
that goes from 1 to nj (end time). We denote feed-forward
position command by θic(j) and the error between actual
joint position and choreographed position by eic(j). Note
that the feedforward command θic(j) and error eic(j) are
vectors of joint angles and that learning is done on all joints
simultaneously. The ILC algorithm we use is described is
follows [13]:

1) For trial 1, set the error e1c(j) = 0 and initialize
the feed-forward command θ1c (j) by either a given
manually tuned command or the one obtained by
inverting the system model described in Section IV-
B.

2) For subsequent trials do:
• Command execution: send the feed-forward com-

mands θic(j) (j = 1, 2, ..., nj) to the robot and
save the resulting tracking errors eic(j) (j =
1, 2, ..., nj).

• Command modification: update the feed-forward
command using the tracking error at trial i by
θi+1
c (j) = θic(j) + γeic(j), where γ is a manually

tuned learning parameter.
3) Stop when an error metric eic(j) increase after an

iteration. The learnt feed-forward command is then
θi+1
c (j) (j = 1, 2, ..., nj).

An advantage of the ILC algorithm presented above is that
the error update is done after the end of each trial. Hence it
is possible to apply zero-phase filtering of errors [14] (using,
for example, filtfilt.m in MATLAB) to remove high frequency
noise from the error signal. Since the ILC algorithm is causal,
we could have based our command modification on eic(j +
1), eic(j + 2) and so on. However, we used only the eic(j)
values to keep the ILC algorithm simple.

B. Modeling

The initial feed-forward command used in ILC can signif-
icantly influence the convergence rate of the algorithm and
the final tracking performance as we will show in Section V.
However, we may not always have access to good initial
feed-forward command, especially if an animation is newly
created and a lot of manual tuning is required to obtain such
command. In this case, we use the inverse of the input-output
model to initialize ILC.

We apply an input-output based black-box approach to
fit a model to the individual joints. Our input signal is the
position command θc and output is the actual joint position θ.
We assume that the joint’s dynamics and low-level controller
can be described as a second-order model. We also know that
the low-level controller has a communication time delay. The
joint model is therefore given by

a2θ̈(t) + a1θ̇(t) + a0θ(t) = θc(t− T ) (2)

where T , a2, a1, a0 are the parameters to be identified.
We identify the constants in the model (2) as follows. First,

we set the individual joint approximately in the middle of
its range of motion. Next, we excite the joint using white
noise with a sufficiently large magnitude as θc. Finally, we
use least square fit on the position data to determine the four
constants.

We verify the quality of the identified parameters in
two ways. First, we run the same identification process
using chirp signals with frequencies of 0–2 Hz as input
and find that the parameters are within 10% from those
obtained using the white noise input. Second, we estimate
the communication delay T independently using a step input
and find it to be within 5% of that obtained using the white
noise input.

There are a few important limitations in the identified
model. If the gains of the lower level controller changes, the
model parameters would also change because the identified
model includes the response of the lower level controller.
Also, our model ignores some terms of the rigid-body
dynamics such as gravity, centripetal, and Coriolis forces.

To obtain the full-body model, we simply concatenate all
the single joint models described by (2). We verify that
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the joints are indeed decoupled as follows. We first track a
reference motion at two adjacent joints individually using a
feed-forward command signal obtained by the inverted model
in (2). Next, we track the same motion at the two joints
simultaneously using the same feed-forward commands. We
find that the tracking errors in the latter case are about the
same as those in the former, which implies that the two joints
are indeed decoupled.

V. RESULTS

A. Setup

The animation sequence used for the experiments is the
first 30 seconds of a 4 min 15 sec long animation created
and fine tuned by a professional animator. Our goal is
to accurately reproduce the choreographed motion that the
animator intended to play on the robot (the thick grey line in
Fig. 2). However, we do not know the choreographed motion
in this case because the fine-tuned animation we have gives
the manually tuned command (the red solid line in Fig. 2(a)).
We therefore assume that the animator was satisfied with the
actual robot motion when the fine-tuned animation was given
as position command.

We can then obtain the choreographed motion by measur-
ing the joint positions while playing the fine-tuned animation.
Because the measured motion contains noise that would not
be present in real choreographed motion, we apply a low-
pass Butterworth filter of a cutoff frequency of 2 Hz for
forward and reverse passes to obtain noiseless, zero phase
shift data. We also differentiate the raw position once to get
the velocity and twice to get the acceleration using forward
difference and apply the same zero phase filtering, which will
be used later in generating the initial feed-forward command
using the inverse of the model.

In our experiments, we consider two learning scenarios.
The first scenario concerns the case where the robot

hardware properties have changed due to wear or part
replacements. To emulate hardware degradation, we change
the proportional gain of the lower level controller to a quarter
of the original value for 26 of the 37 DOFs (excluding the
10 finger and mouth DOFs). Decreasing the proportional
gains results in more sluggish motion compared to the
choreographed motion. We then apply our learning algorithm
to improve the feed-forward command and achieve better
tracking performance.

The second scenario emulates the case where the robot
has to reproduce an animation created entirely in software
and therefore no manually-tuned command is available. To
generate an initial feed-forward command for ILC, we input
the position, velocity, and acceleration of the choreographed
motion obtained above to the inverse of the joint model
given in (2). The resulting output is used as the initial feed-
forward command, which is subsequently refined using the
ILC algorithm.

B. Experimental Results

We first conducted a set of preliminary experiments to
determine the learning parameter γ. A small value of the

0 2 4 6 8 10 12 14 16 18
2

2.5

3

3.5

4

4.5

5

5.5

trial number

 ro
ot

 m
ea

n 
sq

ua
re

d 
er

ro
r a

ve
ra

ge
d 

ov
er

 a
ll 

jo
in

ts

Learning from degraded motion 

 Learning from 
model inversion

Fig. 4. Convergence of the ILC algorithm for learning from model based
initialization (green squares) is twice faster and marginally better than
learning from a non-model based initialization (blue circles).

learning parameter leads to slow learning that may not be
practical. On the other hand, a large value leads to faster
learning but can cause amplification of noise leading to
system vibration and sometime may also drive the system
unstable. We found that a large learning parameter lead to
a distinct robotic-looking motion often seen in high gain
position tracking in electrical robots. We manually tuned the
learning gain (γ = 0.5) for one joint (left elbow bend) based
on a trade off between noise amplification and algorithm
convergence. We then used the same learning parameter for
all the joints.

Figure 4 shows the learning curve for the two learning
scenarios. The error metric at iteration i is

ei =
1
N

√√√√ 1
nj

nj∑
j=1

e2c(j) (3)

where ec(j) is the tracking error at time j and N = 37 is
the number of DOF of robot. While learning from degraded
motion takes 18 trails to converge, learning from model
inversion takes only 9 trials and the final overall performance
is marginally better than the other case. This result confirms
that the model inversion gives better initial feed-forward
command and that it results in faster convergence to better
performance.

We also show the four robot motions in the accompanying
video, snapshots (Fig. 5), and plots (Fig. 7) as follows:

1) Degraded motion: the first column in the video and
Fig. 5, the blue solid lines in Fig. 7.

2) Learnt from degraded motion: the second column in
the video and Fig. 5, the blue dashed lines in Fig. 7.

3) Learnt from model inversion: the third column in the
video and Fig. 5, the green dash-dotted lines in Fig. 7.

4) Choreographed motion: the fourth column in the video
and Fig. 5, the gray solid lines in Fig. 7.

The accompanying video show qualitative comparison
between the four motions. Although it is difficult to discern
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the difference when played at normal speeds, one can see
differences when played at slow speeds. Delay and tracking
error in the degraded motion are particularly visible, while
the other three motions are visually similar. The delays
and errors may be critical in synchronizing with music or
pointing at an object in the environment.

Figure 5 shows some snapshots where we observed the
motion between various hardware experiments to be distinc-
tively different. In particular, observe the left hand positions
and the head positions in the snapshots.

The plots in Fig. 7 give more quantitative comparison
for selected joints. In the degradation scenario, the tracking
error decreases by a factor of 2 for most joints. Furthermore,
learning from model inversion generally results in even better
tracking performance.

C. Discussion

In general, ILC can achieve tracking performance close
to that of manually tuned commands. In some special cases,
however, ILC still produces visually different motions. We
point out two of such cases highlighted in Fig. 6 (not
included in the video) and discuss possible solutions.

In the learnt motions at t = 12 s, we can observe that the
head is placed differently from the choreographed motion.
One might expect this to be due to a tracking error on the
head turn degree of freedom, but this is not obvious in Fig. 7.
The error is actually caused by aggregation of tracking errors
at the torso and body turn degrees of freedom. In some cases,
small tracking errors at the joint level can be magnified
to cause large end-effector position and orientation errors.
Our current controller cannot handle such situation because
it operates independently on individual joints. A solution
would be to perform ILC for the end-effector tracking errors,
although it would require a kinematics model of the robot.

At t = 16 s, the left hand position is much higher in the
manually fine tuned motion than in the other three motions.
We notice that this error is due to the tracking error on
left arm swing sideways as seen in Fig. 7. We speculate
that this error has been caused by the gravity and may be
further reduced by focusing on the error of this particular
joint instead of considering the average error over all joints.

VI. CONCLUSION

In this paper, we demonstrated that a properly tuned
Iterative Learning Control (ILC) algorithm can improve the
tracking performance of high dimensional humanoid robots
performing fast human-like motions under the presence of
limited sensing and control bandwidth as well as nonlinear
dynamics of hydraulic actuators. Furthermore, we confirmed
that model-based approach to generating initial feed-forward
command for ILC enables faster convergence and better
tracking performance than non-model-based generation [15].

Our work would have the following impacts on animation,
maintenance, and applicability of entertainment humanoid
robots in general:

• Save animator time by offloading the task of fine tuning
the motions on actual hardware. Note that animators

would still need to choreograph the motions in computer
software systems.

• Reduce downtime during maintenance by automatically
adjusting for wear and part replacements.

• Allow smaller feedback gains in the low-level position
controllers while achieving good tracking performance
by feed-forward. Smaller gains make physical contacts
easier because the robot will not exert excessive forces
even when unexpected collisions occur, and therefore
reduce maintenance issues.
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[7] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea. A sim-
ple learning strategy for high-speed quadrocopter multi-flips. In
2010 IEEE International Conference on Robotics and Automation,
pp. 1642–1648, 2010.

[8] M. Matsushima, T. Hashimoto, and F. Miyazaki. Learning to the
robot table tennis task-ball control & rally with a human. In IEEE
International Conference on Systems, Man and Cybernetics, volume 3,
pp. 2962–2969, 2003.

[9] W. Messner, R. Horowitz, W-W. Kao, and M. Boals. A new adaptive
learning rule. IEEE Transactions on Automatic Control, 36(2):188–
197, 1991.

[10] M. Norrlof and S. Gunnarsson. Experimental comparison of some
classical iterative learning control algorithms. IEEE Transactions on
Robotics and Automation, 18(4):636–641, 2002.

[11] M. Norrlof. An adaptive iterative learning control algorithm with
experiments on an industrial robot. IEEE Transactions on Robotics
and Automation, 18(2):245–251, 2002.

[12] A. Tayebi and S. Islam. Adaptive iterative learning control for robot
manipulators: Experimental results. Control Engineering Practice,
14(7):843–851, 2006.

[13] K.L. Moore. Iterative Learning Control for Deterministic Systems,
Advances in Industrial Control Series. Springer Verlag, London, 1993.

[14] H. Elci, R.W. Longman, M. Phan, J-N. Juang, and R. Ugoletti. Discrete
frequency based learning control for precision motion control. In 1994
IEEE International Conference on Systems, Man, and Cybernetics,
volume 3, pp. 2767–2773, 1994.

[15] C.G. Atkeson and J. McIntyre. Robot trajectory learning through prac-
tice. In IEEE International Conference on Robotics and Automation,
volume 3, pp. 1737–1742, 1986.

447



Fig. 5. Snapshots from the experiments using the four commands that highlight the advantage of learning. See submitted video for more information.

Fig. 6. Snapshots from the experiments using the four commands that highlight the limitations of learning (not included in the submitted video).
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