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Due to the widespread use of compositing in contemporary feature films,
green-screen keying has become an essential part of postproduction work-
flows. To comply with the ever-increasing quality requirements of the in-
dustry, specialized compositing artists spend countless hours using multiple
commercial software tools, while eventually having to resort to manual
painting because of the many shortcomings of these tools. Due to the sheer
amount of manual labor involved in the process, new green-screen key-
ing approaches that produce better keying results with less user interaction
are welcome additions to the compositing artist’s arsenal. We found that—
contrary to the common belief in the research community—production-
quality green-screen keying is still an unresolved problem with its unique
challenges. In this article, we propose a novel green-screen keying method
utilizing a new energy minimization-based color unmixing algorithm. We
present comprehensive comparisons with commercial software packages
and relevant methods in literature, which show that the quality of our results
is superior to any other currently available green-screen keying solution.
It is important to note that, using the proposed method, these high-quality
results can be generated using only one-tenth of the manual editing time
that a professional compositing artist requires to process the same content
having all previous state-of-the-art tools at one’s disposal.
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1. INTRODUCTION

As computer-generated imagery became convincingly realistic,
compositing synthetic backgrounds and objects into live-action
shots became a common practice in feature-film production. The
widespread use of composite shots over pure live action is often
motivated by the higher degree of artistic control over the final
shot, as well as the potential to reduce production costs. Usually,
the first step in a digital compositing workflow is the performance
capture of the actors and various other live-action elements against
a controlled—typically green—background. Then, in postproduc-
tion, one needs to obtain RGBA foreground layers corresponding
to the live-action elements that ideally carry no trace of the green-
screen background. This process is often referred to as keying. Fi-
nally, one or more foreground layers are combined with the desired
computer-generated scene elements to obtain the composite shot.

Keying is a crucial intermediate step in any compositing work-
flow, as later in the workflow, seamless blending between the syn-
thetic and live-action elements is highly dependent on obtaining
high-quality keying results. The keying process usually starts with
the compositing artist obtaining preliminary foreground layers by
using multiple software tools in concert, some of the most popu-
lar ones being The Foundry’s Keylight, Nuke’s Image-Based Keyer
(IBK) and Red Giant’s Primatte. Often, this first step already in-
volves significant manual labor in the form of parameter tweaking
or drawing roto-masks. Ideally, the preliminary foreground layers
would already be sufficiently high quality so that one can move on
to consecutive steps in the compositing pipeline. Unfortunately, this
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Fig. 1. Major steps of our method. First, parameters of a global color model are obtained from a key frame via a simple scribble interface (a) (Section 4.1).
For a different query frame (b), the global color model is refined into local color models (c) (Section 4.2), which are utilized for extracting multiple color layers
via color unmixing (d) (Section 3). A subset of layers is then combined to get the final keying result (e). The layers can be used for compositing as well as
color editing (f).

Fig. 2. High-quality alpha maps do not necessarily result in high-quality
foreground layers for keying. While both alpha maps capture the intricate
details of the actor’s hair, the foreground layer computed by comprehensive
sampling [Shahrian et al. 2013] (left) has noticeable color artifacts, while
the foreground layer computed by our method has the correct colors.

is rarely the case in practice; the imperfections in the foreground
layer still have to be corrected by manual painting before moving
forward. In professional circles, the combined manual work re-
quired for both obtaining preliminary keying results and later their
refinement by manual painting is recognized as a significant bottle-
neck in postproduction.

While the shortcomings of the currently available keying tools
are well known in the industry, the focus of relevant academic re-
search is almost exclusively on the related natural matting problem.
An important distinction between natural matting and keying is in
their end goals. While the end result of the keying process is one or
more RGBA foreground layers with both correct colors and precise
alpha maps, natural matting methods very often solely focus on
the extraction of alpha maps. In fact, the widely used natural mat-
ting benchmark [Rhemann et al. 2009] evaluates performance based
only on alpha masks and not foreground layer colors. Figure 2 shows
two seemingly high-quality alpha maps with significantly different
corresponding foreground layers: while one is almost perfect, the
other has significant color artifacts. In fact, our experiments with
the state-of-the-art natural matting methods show that their perfor-
mance in the alpha matting benchmark does not necessarily carry
over to green-screen keying challenges.

The feedback that we collected from industry professionals as
well as our own experience showed that commercial software tools
have difficulties dealing with image regions where the colors of
multiple objects mix, either due to motion blur, intricate object
boundaries (e.g., hair), or color spill (color cast due to indirect
illumination from green-screen). Influenced by this observation,
we propose a novel energy function for solving the fundamental
problem of unmixing a color mixture, that is, computing both the
individual underlying colors as well as their mixing ratios (alpha
values). We efficiently minimize this energy function by utilizing

priors for the underlying colors in the mixture, which are obtained
and refined through a two-step user interaction. We demonstrate
the application of our color unmixing framework to green-screen
keying. In a comprehensive set of quantitative and qualitative eval-
uations utilizing a paid compositing artist, we show that our method
consistently outperforms both the current commercial software tools
and the state-of-the-art natural matting methods in the domain of
green-screen keying. It is important to note that the superior results
of our technique can be obtained, on average, by using only one-
tenth of the manual interaction time required by a trained artist for
processing the same content with the current state-of-the-art tools.
Major steps of our pipeline can be seen in Figure 1.

2. RELATED WORK

Green/blue screen keying has received little attention in the re-
search community. In order to solve the underconstrained keying
problem, Smith and Blinn [1996] and Grundhöfer et al. [2010] pro-
posed methods that capture the same foreground with two different
backgrounds, providing additional equations to the linear system.
A radiometric compensation method was proposed by Grundhöfer
and Bimber [2008] in order to solve the problem against arbitrary
backgrounds as well. However, these methods require specialized
setups that limit their practical use. Our method, in comparison, re-
quires a regular video stream shot against only a single background.
Thus, its practical use is similar to commercial keying software such
as Keylight, IBK, or Primatte.

Commercial keying tools often use chroma-based or luma-based
algorithms. In feature-film postproduction, these tools are oper-
ated by specialized compositing artists for obtaining a preliminary
keying result. Preliminary results often require further manual pro-
cessing because, despite the parameter tweaking and the usage of
roto-masks, they often fall short of the quality level demanded
in professional productions. Figure 10 shows various examples in
which a trained artist simply cannot achieve production-level qual-
ity due to the various limitations of currently available tools. Since
such keying results are unacceptable in professional production, the
preliminary keying results undergo an extremely tedious manual
painting process, in which each pixel in the video is cleaned of
keying errors by hand.

Natural alpha matting methods are generally classified as
sampling- or propagation-based. Local propagation-based methods
[Sun et al. 2004; Levin et al. 2008a, 2008b; Singaraju et al. 2009]
typically rely on the assumption that there is a smooth transition
between foreground and background layers, and solve the matting
problem by identifying these transitions. The matting Laplacian
introduced by Levin et al. [2008a] has been employed or improved
by numerous methods [Singaraju et al. 2009; Gastal and Oliveira
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2010] and applied to multiple layers [Singaraju and Vidal 2011].
Nonlocal propagation-based methods [Lee and Wu 2011; He et al.
2013; Shi et al. 2013; Chen et al. 2013a] make use of the nonlocal
principle introduced by Lee and Wu [2011].

Sampling-based methods can be divided into parametric and non-
parametric ones. Nonparametric sampling-based methods [He et al.
2011; Shahrian and Rajan 2012; Shahrian et al. 2013; Johnson
et al. 2014] propose strategies to effectively select many samples
from both foreground and background, and conduct matting by
finding foreground–background sample pairs that can represent an
observed mixed pixel by their weighted sum. Parametric sampling-
based methods [Ruzon and Tomasi 2000; Chuang et al. 2001; Wang
and Cohen 2005] estimate a color distribution for each pixel using
nearby known pixels and solve the matting problem accordingly.
The soft segmentation method proposed by Tai et al. [2007] also
utilizes a parametric representation of the colors in an image.

Other methods combine propagation and sample-based ap-
proaches [Wang and Cohen 2007; Rhemann et al. 2008; Chen et al.
2013b; Jin et al. 2014] and pose an energy minimization problem
using the possible samples as a unary energy component and an
alpha-based propagation term as smoothness. Our formulation is
also based on energy minimization, while we only use the appear-
ance of a pixel without any propagation.

In literature, the matting Laplacian utilized by Levin et al. [2008a]
and Gastal and Oliveira [2010] among others, has been criticized for
having overly strong regularization [Lee and Wu 2011] and creating
unnecessary ambiguities [Singaraju et al. 2009]. Input in the form
of trimaps, which is needed for methods such as Ruzon and Tomasi
[2000], Chuang et al. [2001], and Gastal and Oliveira [2010] among
others, has been said not to have direct influence on the result [Levin
et al. 2008a], making users unable to predict or reiterate the results
without actually running the algorithm every time, or to be very
time-consuming to be practical [Wang and Cohen 2005]. In con-
trast, our method is parametric, but it does not rely on propagation
or automated sampling. We obtain our model parameters directly
through a two-step user interaction scheme. In the first step, the user
identifies an arbitrary number of dominant colors in the scene that
are used to build a global color model (Section 4.1), which can be
locally refined further in a second user interaction step (Section 4.2).

Video matting methods are often extensions of their image mat-
ting counterparts. While some methods use propagated or edited
trimaps for each frame and apply image matting methods directly
[Chuang et al. 2002; Li et al. 2005; Bai et al. 2011; Tang et al. 2012;
Fan et al. 2012], others apply consistency constraints or sampling
strategies in video volume instead of image plane [Wang et al. 2005;
Bai et al. 2009; Choi et al. 2012; Zhong et al. 2012; Li et al. 2013;
Shahrian et al. 2014].

Matting for specialized applications involves making specific
assumptions or utilizing additional user input. For example, shadow
matting allows specific assumptions on appearance; the method pro-
posed by Wu et al. [2007] outperforms natural matting methods in
this application. Similarly, motion-blurred objects can be extracted
more precisely when user-guided motion vectors are utilized [Lin
et al. 2011]. Extracting smooth transparent layers has also been stud-
ied [Yeung et al. 2008], which can be applied to shadow removal.
The downside of these methods is their rather limited applications,
as they do not generalize beyond the specific subproblems on which
they focus.

Color unmixing is an interesting problem for a wider range
of applications. Using an image formation model, Carroll et al.
[2011] propose illumination decomposition for material recoloring.
For effective image-based rendering in the presence of reflective
surfaces, Sinha et al. [2012] decompose the scene into reflected

and transmitted surfaces. Shih et al. [2015] remove reflections
from glass windows using an attenuation model for ghosting cues.
Despite sharing the common high-level goal of unmixing scene col-
ors, these methods are designed for substantially different use cases
than green-screen keying, which is our main focus in this work.

3. COLOR UNMIXING

The central component of our method is an energy minimization
framework, in which the color c of a pixel is hypothesized to be a
mixture of a number of underlying colors ui . The problem solved
by our framework is the estimation of the underlying colors and
their mixing ratios (αi), such that the linear combination of the un-
derlying colors weighted by corresponding mixing ratios gives the
original pixel color c. To that end, we build and utilize a paramet-
ric representation of all the colors present in the scene, which we
simply call the color model. The color model comprises N distribu-
tions in RGB space. Both the number and the parameters of these
distributions are obtained through user interaction. We assume that
the color model for an input scene is already known to us through-
out this section; rather, we focus on the formulation and efficient
solution of the color-unmixing problem. A detailed discussion on
building the color model of an input scene will follow in Section 4.

We start formulating our color unmixing framework by defining
three basic constraints that each pixel should satisfy: (i) an alpha
constraint, which states that the alpha values αi should sum up to
unity; (ii) a color constraint, which states that we should obtain the
original color c of the pixel when we mix the underlying colors ui

using the corresponding alpha values; and (iii) a box constraint that
limits the space of possible alpha and color values. Formally, we
express these constraints as follows:∑

i

αi = 1,
∑

i

αi ui = c, and αi, ui ∈ [0, 1]. (1)

The cost associated with the occurrence of an underlying color
ui in a mixture c is defined by how well it fits to the corresponding
distribution N (μi , �i), where μ and � denote the mean vector and
the covariance matrix, and N is the normal distribution. We use the
squared Mahalanobis distance as our measure of goodness of fit:

Di(u) = (u − μi)
T �−1

i (u − μi), (2)

and define our energy function F of selecting a particular mixture
of N underlying colors accordingly:

F =
∑

i

αiDi(ui ). (3)

This energy function favors layer colors that have the best like-
lihoods according to their corresponding color distributions, espe-
cially for the layers with higher alpha values. Minimization of this
energy subjected to the color constraint makes sure that the resul-
tant layers successfully represent the color mixture that formed the
observed pixel color.

While the energy functionF may seem straightforward, we found
that its minimization is nontrivial. Since the energy function F and
the color constraint defined in Equation (1) are nonlinear, we are
faced with a nonlinearly constrained nonlinear optimization prob-
lem. Specifically, the color constraint in Equation (1) constrains a
single alpha value for three underlying color channels at once. This
makes our energy function F prone to get stuck in local minima
within the vicinity of the initial point if the constraints are enforced
from the start. What we need instead is an algorithm that strictly en-
forces the constraints only after allowing us to find some reasonable
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alpha and color values first. To that end, we utilize the method called
the original method of multipliers [Bertsekas 1982]. We express the
deviation from the constraints in Equation (1) as

Gα =
(∑

i

αi − 1

)2

and Gu =
(∑

i

(αi ui) − c

)•2

, (4)

where (·)•2 denotes the elementwise squaring operation. This leads
to the constraint vector G = [GT

u Gα]
T

. The vector containing the
variables x that are the arguments of the optimization is

x = [
α1 . . . αN uT

1 . . . uT
N

]T
. (5)

Note that x contains the variables for unmixing a single pixel.
The optimization is performed independently for every pixel; for
each pixel, we solve for both the alpha values and the underlying
colors simultaneously. Further details of our optimization procedure
are discussed in Section 3.1.

Once x is computed for all pixels of an input video frame, for
each pixel we obtain N underlying colors and corresponding alpha
values. If we visualize the ith underlying color for all pixels of the
video frame with their alpha values, we obtain the RGBA layer
corresponding to the distribution N (μi , �i). Green-screen keying
can be seen as a special case in which we remove the RGBA layer
corresponding to the green-screen background.

In contrast to our color-unmixing method, related works on para-
metric natural matting use Bayesian formulations with either local
[Ruzon and Tomasi 2000; Chuang et al. 2001] or global models
[Tai et al. 2007]. Local methods solve for alpha values first, then
estimate colors. On the other hand, the method in Tai et al. [2007]
iteratively estimates the alpha values and colors for all pixels of
an input image, which makes it feasible for only low-resolution
images. In contrast, our formulation is easily parallelizable as each
pixel is treated independently; thus, our method easily scales to HD
resolutions and beyond.

Sampling-based natural matting methods such as comprehen-
sive sampling [Shahrian et al. 2013] take alternate approaches to
compute foreground layer colors where they try all the possible
background-foreground color pairs to get the best match from a lim-
ited set of color samples. Certain priors commonly utilized by these
methods, such as matte sparsity [Wang and Cohen 2007; Gastal
and Oliveira 2010], are often violated in green-screen keying due
to color spill.

On the other hand, commercial chroma-based keying tools sim-
ply suppress the background green-screen color everywhere in the
frame, which often distorts the colors of the foreground objects,
especially if they are similar to the color of the green-screen back-
ground. Around intricate object boundaries or motion blur, they
extend the foreground region without actually unmixing the colors.
As a result, they leave an unnatural halo around difficult regions.

To summarize, the natural matting methods in the literature, as
well as commercial keying tools, fail to achieve production-level
quality in green-screen keying due to their various shortcomings
discussed earlier. The main advantages of our color unmixing for-
mulation are the following:

—Our method does not enforce a matte-sparsity constraint, nor rely
on the suppression of the color of the green-screen background.

—Our formulation is highly scalable and parallelizable, as each
pixel is processed independently.

—The proposed energy minimization successfully unmixes even
mixtures of very similar colors (demonstrated later in Section 5.1)
and is agnostic to the scene colors, that is, we do not require a
strong chroma or luma component, as in commercial software.

—Similar to KNN Matting [Chen et al. 2013a], our method com-
putes multiple RGBA layers as its output, which enables fur-
ther interesting applications beyond green-screen keying, such as
color editing.

In the next section, we continue with a discussion of the two-step
user interaction process and other details of the color model, which
we treated as a black box so far.

3.1 Minimization of the Color Unmixing Energy

The color unmixing energy introduced in Equation (3) is optimized
using Algorithm 1. The function minimized in Line 1 is composed of
the original energy function and the deviations from the constraints.
Minimization at this step is done using the nonlinear conjugate
gradient method that takes xk as the initial value. The step size
of the nonlinear conjugate gradient at each iteration is determined
by a line search in the direction determined via the Polak–Ribière
formula. The box constraints are enforced at each iteration of the
nonlinear conjugate gradient method by clipping the elements to
be in the range [0, 1] and setting the gradients of the elements
at the boundaries 0 and 1 to zero if they are positive or negative,
respectively. As the parameters ρ(·) and λ(·) increase at each iteration
of Algorithm 1 (Lines 2 and 3), the energy F(x) is minimized
while allowing increasingly smaller deviations from the alpha and
color constraints in Line 1. λ(·) punishes deviation from individual
constraints, while ρ(·) increases the constraint enforcement globally.
The input to Algorithm 1, initial values for αi and ui , are taken as:

αi =
{

1 if i = j
0 otherwise ui =

{
c if i = j
μi otherwise ,

where j = arg mini Di(c), that is, only the alpha value correspond-
ing to the most likely distribution in the color model is initialized
to be 1. Note that the optimization procedure that we described is
independent for each pixel in an image.

ALGORITHM 1: The Original Method of Multipliers
Input: x0

Define: k = 0, ρ0 = 0.1, λ0 =
[

0.1
0.1
0.1
0.1

]
, β = 10, γ = 0.25, ε > 0

1: xk+1 = arg min
x

(
F(x) + λT

k G(x) + 1
2 ρk‖G(x)‖2

)
2: λk+1 = λk + ρkG(xk+1)

3: ρk+1 =
{

βρk if ‖G(xk+1)‖ > γ ‖G(xk)‖
ρk otherwise

4: if ‖xk+1 − xk‖ > ε then
5: k ← k + 1
6: go to Step 1
7: else
8: return xk+1

4. BUILDING THE COLOR MODEL

The energy function F that we defined in Equation (3) requires a
parametric representation of the colors that formed the color mix-
ture, which we refer as the color model. A set of distributions is
obtained in the first step of the user interaction of our method. The
resulting global color model (Section 4.1) is assumed to be able
to represent the whole image. The global color model is locally
overcomplete since, very often, each pixel color c is a mixture of
only a subset of the scene colors. We call the subset of distributions
that participate in the color mixture in a certain region of an image
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the active color distributions. In Section 4.2, we refine the global
color model such that each pixel is associated only with its active
color distributions. This refinement process is performed automati-
cally by utilizing a Markov Random Field optimization, but we also
allow the user to edit the resulting local color models in an optional
second user interaction step.

In comparison, commercial green-screen keying software pack-
ages offer a multitude of interaction modes ranging from back-
ground/foreground color selection to rotoscoping interfaces. They
also typically offer user control over various parameters that control
the amount of chroma suppression, matte blurring, or matte bleed.
Although this high level of control allows compositing artists to
fine-tune keying results, it also makes the process highly time-
consuming. On the other hand, natural matting methods typically
require trimaps (dense approximate segmentation of the image
into foreground, background, and unknown regions), which are
in practice extremely tedious to generate, especially for video se-
quences, and have been criticized for influencing the result only
indirectly [Levin et al. 2008a]. Some natural matting methods in-
stead rely on the user drawing a sparse set of scribbles, which often
results in a more convenient user interaction.

The goal of the user interaction in our method is to extract the
information we need to build the color model as intuitively and
efficiently as possible. Consecutively, instead of relying on com-
plex user interactions such as commercial keying tools or requiring
prohibitively time-consuming inputs such as a trimap, we utilize a
two-step interaction that involves drawing a small number of scrib-
bles (typically 7–8) and an optional pointing-and-clicking step.

4.1 Global Color Model

The user interaction typically starts with the user loading the first
frame of an input video using the interface of our method. The
goal of the first user interaction step is building the global color
model, which is achieved by the user drawing a scribble over each
of the dominant scene colors. The number of the scribbles N , thus
the number of dominant scene colors, is determined by the user
depending on the scene. For example, in Figure 8(b) (our result,
input) each different color on the person’s wig is selected separately
as a dominant color, whereas in Figure 8(a) (our result, input), the
actor’s natural hair color is marked as a single dominant color.

Each scribble identifying a dominant color is used to extract
the parameters of a distinct normal distribution. The mean and co-
variance of each distribution are computed simply from the pixels
underneath the corresponding scribbles (note that we do not use
any scribble propagation). Importantly, the results of our color-
unmixing method are not sensitive to the exact placement, size, or
shape of the scribbles (Figure 3). This property is very useful in prac-
tice, as high-quality results can be obtained quickly from roughly
drawn scribbles. Additionally, once the global color model is cre-
ated for a single frame, it can typically be used for the remaining
frames of the shot assuming that the dominant colors do not change
significantly. In fact, the global color models of all video results pre-
sented in this work were generated from a single frame (typically
the first frame). The motivation behind this first user interaction
step is utilizing the inherently good cognitive skills of the users for
clustering colors. These cognitive skills are especially helpful in
dealing with specific situations, such as the presence of strong color
spill. Figure 10(d) (original) shows an example in which the color
of the actor’s robe is affected by the indirect illumination from the
green-screen, except for only very few small regions. In this case,
recognizing the color spill and selecting unaffected regions as a
dominant color are trivial for a human user while the same tasks

Fig. 3. The keying results generated using four different scribbles demon-
strate the robustness of our algorithm against different user inputs.

are extremely difficult for an automatic color-clustering algorithm.
In fact, although we experimented with methods for automatically
building the global color model (see Section 5.3), we found that,
in most practical cases, user interaction would be necessary and,
therefore, favored our current interactive approach. The ability to
select the dominant colors also gives the user artistic control over the
color composition of the resulting RGBA layers, which is especially
useful for compositing artists.

4.2 Local Color Model

One shortcoming of the global color model is the assumption that
the color of each pixel of the input video is a mixture of N un-
derlying colors from the N distributions that make up the color
model. However, in practice, this assumption is almost always in-
correct. For example, in the original image in Figure 4, skin tones
are present only in a small region near the actor’s face and neck.
If we solely rely on the global color model, we would have to use
the distribution corresponding to the skin tones for unmixing pix-
els in completely unrelated image regions, such as the far edges of
the green-screen background. This may cause the color unmixing
to hallucinate nonexistent colors with small alpha values in such
regions. Thus, we perform a Markov Random Field (MRF)-based
optimization procedure over superpixels to estimate the active sub-
set of color distributions for different regions in an image.

If desired, the result of this optimization procedure can be edited
through user interaction via a simple point-and-click interface. Since
the automatic color activation is rather computationally costly, and
it would be cumbersome to perform the local color model edits
repeatedly for every frame, we propagate the local color model
of an edited frame to the following frame through simple super-
pixel matching. For every superpixel in a new frame, we find a
corresponding superpixel in the previous frame in a small spatial
neighborhood with the closest mean color. The active distributions
of a superpixel in the new frame is defined as the active distribu-
tions of its match in the previous frame. An example of local color
models, a typical user edit, and propagation to consecutive frames
are illustrated in Figure 4.

The local color model computation step can loosely be related
to the sample selection process employed by sampling-based natu-
ral matting methods such as shared sampling [Gastal and Oliveira
2010], in which the goal is also to find the best-fitting distributions
for every pixel. However, their brute-force approach is fundamen-
tally different from our MRF optimization process.

Several natural matting methods, such as comprehensive sam-
pling [Shahrian et al. 2013], utilize localized color models. While
we select a subset of the global color model as the local color

ACM Transactions on Graphics, Vol. 35, No. 5, Article 152, Publication date: August 2016.



152:6 • Y. Aksoy et al.

Fig. 4. Visualization: The result of local color model estimation can be visualized as a cascade of layers that illustrate the active color distributions by their
mean colors. Editing: The MRF optimization for the local color models may fail to distinguish between different objects with similar colors (such as the
markers and the actor’s face), or may give suboptimal results when one of the colors is present only faintly in a region (such as the color spill in the actor’s hair
from the green screen). Such situations can be alleviated by refining the local color model via a simple point-and-click user interface. Propagation: The user
interaction can be streamlined by propagating the local color model to consecutive frames.

model, comprehensive sampling estimates a set of normal distribu-
tions from the close-by foreground and background regions for a
mixed-color pixel. Although this approach provides some robust-
ness against complex backgrounds, it has several shortcomings in
the green-screen keying case. Under heavy color spill, estimating
distributions locally is typically insufficient since the pure-color
regions may occur in a very limited part of the image and cannot
be integrated into the local models. It also inherently increases the
number of necessary distributions to represent the image, making
the direct user-edits inconvenient, if not impossible. The resulting
localized layers then require additional temporal coherency steps
to be applied to image sequences, since spatially they are expected
to change from frame to frame. Hence, we found our definition of
local color models as a subset of a global model to be practically
well-fitting to our target application of green-screen keying.

4.2.1 Local Color Model Estimation. We represent the active
distributions of a pixel as a binary vector A of length N , and define
the cost of activating a subset of distributions for a pixel as the
sum of two terms. The first term is the minimum energy defined
in Equation (3) when the subset of distributions are fed to the
energy minimization algorithm detailed in Section 3, denoted by
FA. The intuition here is that, if the optimization is conducted with
distributions that fail to effectively represent an observed color, the
minimized energy will still be high. The second term GA = ‖A‖,
‖·‖ representing the Euclidean norm, is added to this cost in order to
favor fewer active colors for each pixel. Following these definitions,
the unary potentials are defined as

UA = FA + δGA, (6)

where δ is a user-specified weight parameter typically in the range
[5 10]. The binary potentials between neighboring pixels are defined
as

Bp,q = ‖Ap − Aq‖e−‖cp−cq‖. (7)

The energy function that we want to minimize in order to deter-
mine active color distributions is

E = arg min
A(·)

∑
p

UAp
+ σ

∑
(p,q)∈


Bp,q , (8)

where σ is the smoothness parameter, typically selected in the range
[0.01 0.05], and 
 is the set of 8-connected pixels.

The problem that we defined in this section is analogous to mul-
tilabel segmentation if we treat each possible subset of active color
distributions as a label. The minimization of the energy defined in

Equation (8) is NP-hard [Boykov et al. 2001]. We approximate the
global solution of this energy minimization using the α − β swap
algorithm presented by Boykov et al. [2001], using the publicly
available implementation by the authors [Kolmogorov and Zabih
2004; Boykov and Kolmogorov 2004].

Although we presented our energy formulation in this section at
the pixel level, computing FA for every subset and every pixel can
be time-consuming, especially if N is high. In order to make the
local color model estimation more efficient, we instead construct the
random field using SLIC superpixels [Achanta et al. 2012] (typically
10k superpixels for a 1080p frame). This allows a user controllable
trade-off between quality and computational efficiency.

5. RESULTS

Our method is suitable for parallel computation, as discussed in
Section 3. For a 1080p frame, our current C++/CUDA implemen-
tation typically requires 10s for local color estimation (assuming 8
dominant colors), another second to propagate the local color model
to the following frame, and approximately 3s for color unmixing.
Thus, at this resolution, the total computation time for a still image
is 13s, which drops to 4s per frame for image sequences.

In this section, we evaluate our method and present results for
various applications. In the absence of a comprehensive ground-
truth dataset of green-screen content, in our experiments, we utilize
computer-generated ground truth, as well as keying results gen-
erated by a paid independent professional compositing artist. In
contrast, all user interaction with our method was performed by
people with no prior experience in digital keying or compositing.

5.1 Statistical Validation

In this experiment, we test how distinct two colors have to be for our
unmixing algorithm to work successfully. To that end, we generated
a total of 480 images, each obtained by overlaying 2 or 3 images
created by randomly sampling from one of 720 different normal
distributions with varying mean vectors and covariance matrices.
The images were overlaid via a known alpha matte, which served
also as the ground truth. Examples of these test images are shown
in Figure 5. For the distinctiveness measure, we use Bhattacharyya
distance,1 which models the amount of overlap between two nor-
mal distributions. Figure 5 shows that our method can successfully

1Bhattacharyya distance between N (μi , �i ) and N (μj , �j ) is defined as
1
8 (μi − μj )T �−1(μi − μj ) + 1

2 ln( det(�)√
det(�i )det(�j )

); � = �i+�j

2 .
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Fig. 5. The average MSE error plotted with respect to the distance between
the distributions in the color model. The rightmost images show two cases
in which distributions are very distinct. The leftmost images are at the
point that our energy function starts to fail at discriminating between colors,
effectively illustrating the limits of the proposed color unmixing.

Fig. 6. Three animated image sequences are overlaid onto a challenging
green-screen in order to create data with ground truth. Ball represents a
simple scene with high motion blur, while Kong and Swing represent live-
action scenes with fast motion.

unmix colors up to a point when they become hard to distinguish
by a human observer.

5.2 Evaluation on Synthetic Video

Due to the absence of ground-truth data for green-screen keying, we
prepared a test set of computer-generated video sequences (Figure 6)
rendered with a live-action green-screen in the background. We
used this ground-truth data to compare the performance of our
method with three leading commercial keying tools (IBK, Keylight,
and Primatte). In the first experiment, we compared the out-of-
the-box performance by providing only minimal user input to all
methods, that is, by selecting a reasonable background color for
the commercial tools and selecting 5 to 9 dominant colors for our
method.

In the second experiment, we asked a paid compositing artist to
generate the best possible result separately with each commercial
tool. The artist reported spending 105min to 120min with each tool.
For comparison, we also processed the same sequences with our
method to achieve the best possible keying result, for which we
spent 10min mostly refining the local color maps.

Table I shows that our keying results are objectively better than the
three commercial tools for all test sequences, both with minimal and
optimal level of user input. In some cases, such as the performance of
Primatte in the Swing sequence, we observed that further processing
by the artist is essential to get a more reasonable result, which means
that, for a novice user, it is harder to get a good initial estimate. Note
also that the user interaction of our method is an order of magnitude
more efficient when one seeks to obtain the best possible result.

Table I. Quantitative Comparison of the Proposed Algorithm
with Industrial Keying Tools

1000 × MSE Color 1000 × MSE Alpha
Ball Kong Swing Ball Kong Swing

IBK 0.0170 0.0553 0.1139 0.5353 0.5954 2.1232 M
inim

al

Keylight 1.6001 0.5247 0.4831 2.3645 1.3389 2.7036
Primatte 5.8097 1.6830 27.0635 6.8404 2.6980 32.0337

Ours 0.0096 0.0250 0.0489 0.1286 0.4114 1.2722
IBK 0.0129 0.0504 0.1658 0.0583 0.1510 0.2291 O

ptim
al

Keylight 0.0239 0.0842 0.1301 0.0200 0.4841 0.1583
Primatte 0.0492 0.2348 0.2587 0.1391 0.5487 0.6166

Ours 0.0034 0.0189 0.0304 0.0089 0.0421 0.0585

Fig. 7. The results of our algorithm when the color model is inferred from
the scribbles (b) and when the color model is estimated by expectation
maximization using different numbers of distributions (10 for (c), 6 for (d)
and 4 for (e)). The EM algorithm is run using all the pixels in a small region
of interest (a). The highlighted colors are the colors estimated by EM that
are closest to our original four distributions.

5.3 Color Model Estimation Using EM

As an alternative to scribble-based interaction to infer the global
color model, we tried to estimate the distributions using expectation
maximization.

The main problem with expectation maximization is that it is
unable to separate the areas with color spill (indirect illumination
from the green-screen material) from the clean areas. As Figure 7
shows, the distribution corresponding to the white robe of the actor
appears greenish regardless of the number of distributions estimated
by EM. This is expected since the pure white color appears in very
limited regions while the greenish white is dominant due to the
strong color spill.

Using our scribble interface, the user can select regions without
color spill, and our color unmixing algorithm is able to separate the
spill from the robe.

5.4 Green-Screen Keying

5.4.1 Comparison with Natural Alpha Matting Methods. We
compare our method to four natural matting methods with pub-
licly available implementations. All four methods—KNN mat-
ting (KNN) [Chen et al. 2013a], shared matting (SM) [Gastal
and Oliveira 2010], weighted color and texture sampling (WCTS)
[Shahrian and Rajan 2012] and comprehensive sampling (CS)
[Shahrian et al. 2013]—compute not only alpha values but also
the corresponding foreground colors. For this comparison, we first
prepared a very detailed and narrow trimap and dilated the unknown
regions by 6 and 12 pixels to obtain two additional trimaps (follow-
ing the procedure from the alpha matting benchmark [Rhemann
et al. 2009]). For scenes with substantial color spill, we prepared
two sets of trimaps, in which one considers the regions with spill as
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Fig. 8. Results of KNN matting [Chen et al. 2013a] (KNN), shared matting [Gastal and Oliveira 2010] (SM), weighted color and texture sampling [Shahrian
and Rajan 2012] (WCTS) and comprehensive sampling [Shahrian et al. 2013] (CS) are presented using different trimaps together with our input scribbles and
keying results. Note that our scribbles are drawn on the first frames of the corresponding videos. Plate (a) shows an example with intricate object boundaries
as well as translucent regions, and (b) shows another example with many foreground colors that also include a green tone close to the background color.

unknown and the other as foreground. The final trimaps and corre-
sponding results can be seen in Figure 8 and in the supplementary
material.

The intricate object boundaries in Figure 8(a) demonstrate a fail
case for sample selection strategies of WCTS and CS, as they partly
use samples from the actor’s face rather than his hair, causing the
hair to appear to have a red hue. SM gives the cleanest result in
this case among the natural matting methods. Figure 8(b) shows
that the presence of the color green on the actor’s wig degrades the
performance of KNN, WCTS, and CS, while the local color model
assumption of SM helps to extract a cleaner foreground. However,
SM fails to extract the fine details as our method does, possibly due
to the sparsity assumption of SM.

The scenes shown in Figure 8 are selected to highlight several
challenges of green-screen keying. The results show that our
method performs favorably against the state-of-the-art natural
matting methods.

5.4.2 Comparison with Commercial Keying Software. As men-
tioned in Section 2, several methods have been proposed to solve
the keying problem by capturing the same foreground against dif-
ferent background colors. Figure 9 shows that our algorithm gives
comparable results to such a method [Grundhöfer et al. 2010] using
only a single background.

The keying tools that are widely used in production do not rely
on any special setups. In this section, we compare our method with
some of the leading commercial keying tools: Keylight, Primatte
and IBK. To that end, we used green-screen shots from the open-
source movie Tears of Steel2 as well as some content that we shot
with a Sony α7s camera.

2(CC) Blender Foundation—mango.blender.org.

Fig. 9. Our result obtained using only the image with the green background
is comparable to the result by Grundhöfer et al. [2010] obtained with both
input images.

In order to present a fair comparison, we asked a paid professional
compositing artist to generate a separate result with each tool for
each test scene. Based on the artist’s feedback, that in most real-
world scenarios all three tools would be used sequentially to take
advantage of their individual strengths, we decided to ask the artist
to generate another set of results in which he is allowed to use all
three tools. We did not impose any constraints on the artist other
than asking him to avoid manually painting pixels.

For the four sequences in our test set, the artist reported a total of
9h to get the results using multiple tools and reported an estimated
12h for fixing any remaining issues. Our results, on the other hand,
were generated by us using our tool in less than 1h. Almost the
entire time was spent on refining the local color models using the
point-and-click interface of our method3.

The results presented in Figure 10 show that our results compare
favorably to the artist’s results, even when the artist uses all the tools
at his disposal and spends approximately an order of magnitude

3Refer to the supplemental video for a demonstration of user interaction.
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Fig. 10. Commercial keying tools, even when operated by a specialized compositing artist, may not be able to extract the fine details near intricate object
boundaries (a), may fail to extract highly blurred objects (b), may distort the foreground color if it is mixed with the background color (c), or may create
unnatural artifacts around blurred regions (d), while our algorithm is robust against such scenarios.

Fig. 11. The main real-world application of our method is digital compositing. The figure shows a number of toy examples that we generated using the
foreground layers obtained with our prototype implementation. Background images courtesy of Flickr users milanboers (a) and jeremylevinedesign (c).

more time on manual editing. Additionally, the complex workflow
and heavy local editing employed by the artist may result in temporal
coherence artifacts. In contrast, our results for the same sequences
do not suffer from such artifacts, as illustrated in Figure 13.

Because of the high amount of spill on the actor in scenes
shown in Figures 10(b) and 10(d), actors appear transparent in the

extracted foreground layer. Discriminating between transparency
occurring from color spill or motion blur in a principled way is not a
trivial problem. In order to account for this, we apply a simple post-
processing composed of boosting α values of the foreground layers
with high spill to 1 except for the edges of the layers. For instance,
the layer corresponding to the white robe in Figure 10(d) appears
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Fig. 12. A possible application scenario for our color unmixing algorithm is interactive color editing. Here, an image with input scribbles and corresponding
color layers are shown with an edited image using our layers.

Fig. 13. Close-up around the same single filament in several frames of the
video. Note that the filament that sticks out is captured using our method
even when it is motion-blurred (middle), but the artist was only able to
capture it in some of the frames (bottom).

transparent after color unmixing. The robe layer is postprocessed
such that it has unity alpha values in regions that are not on the
edges of the robe. The edges are left untouched to account for the
smooth transition and the motion blur around the edges. While this
postprocessing is not completely foolproof, that is, its performance
will degrade if there is strong color spill on layers with high
transparency, we found it to be helpful for compositing and left the
classification of nonunity alpha values to color spill or transparency
as future work. Figure 11 shows examples of compositing results
generated using the foreground layers extracted by our method.

5.5 Further Applications

5.5.1 Non-Green-Screen Keying. We also tested our method
using scenes with non-green-screen backgrounds. Figure 14 shows
an example in which our per-pixel color unmixing approach proves
to be robust against complex foreground structures. Another exam-
ple, one that includes reflections from a semitransparent medium,
is shown in Figure 15. While the backgrounds in these examples
are admittedly simple, the results presented in this section suggest
that our method could be useful for an extended set of applications
beyond green-screen keying. However, it is worth noting that our
method is limited to simple backgrounds and is not suitable for
general-purpose natural matting.

5.5.2 Color Manipulation. Representing the image with mul-
tiple layers rather than just foreground and background opens up

Fig. 14. Despite the very complex scene structure, our algorithm success-
fully removes the sky in the background, demonstrating an advantage of our
per-pixel approach to color unmixing that does not rely on spatial cues.

Fig. 15. The layers computed by our algorithm are used to replace the
background (b) and change the color of the blurred object (c) while re-
taining the reflections. Note that the result images are color graded while
compositing. Background image courtesy of Flickr user davejdoe.

new application areas, such as color editing. By giving the artist
freedom to edit layers of each dominant color in the scene, interest-
ing results can be achieved easily while not being limited by scenes
with motion blur, as demonstrated in Figures 1 and 15.

The layers extracted by our unmixing algorithm can also be used
for photo recoloring similar to soft segmentation [Tai et al. 2005,
2007] or palette-based recoloring algorithms such as Chang et al.
[2015], as seen in Figure 12.
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Fig. 16. We changed the illumination or contrast of the input frame and
extracted the foreground using the same color model constructed from the
original image (a). With slight changes (b, d), our method is able to success-
fully extract the foreground. With a significant change in brightness (c), we
observe a drop in the performance of our method, characterized by the halo
around the actor. On the other hand, with very significant contrast change
(e), some intricate details are missed and the background color remains in
some small regions in the foreground.

Fig. 17. When our assumption of a small number of scene colors is satis-
fied, we are able to get a successful foreground layer (left), but the quality
drops significantly otherwise. Images courtesy of Rhemann et al. [2009].

6. LIMITATIONS AND DISCUSSION

While, in our experiments, we have not noticed any significant
temporal consistency issues, our test scenes had admittedly near-
constant illumination. In practice, keying may need to be performed
in outdoor scenes (such as driving), in which the illumination can
change drastically from one frame to another. Due to the absence
of any mechanism to enforce temporal coherence, we expect the
performance of our method to decrease in such settings, as demon-
strated in Figure 16.

The global color model as a small set of distributions may not
be able to effectively represent non-green-screen backgrounds. We
tested our method on several images from the alpha matting bench-
mark [Rhemann et al. 2009]. Figure 17 shows typical natural matting
results in which our method works well when our main assumptions
are satisfied, but fails when they are violated.

Our scribble interface for extracting the color model requires the
unmixed colors to be present in at least one of the frames. For
highly transparent media such as thin smoke, the pure color cannot
be determined via the proposed interaction; thus, it is not possible
for our keying system to extract the layer with only smoke. Devising
an algorithm that can infer the colors that only appear mixed with
others in a scene is an interesting direction for further research.

The proposed color unmixing algorithm may slightly overesti-
mate the alpha values of some layers in some cases. Since the
energy minimization favors underlying colors that are closer to the
mean vector of the distributions, the foreground layer might get a
small portion of the color mixture since matte sparsity is not en-
forced in the color unmixing energy minimization by design. This

mainly occurs when the underlying color of one of the layers is
not well represented by the corresponding distribution. These arti-
ficially occurring alpha values being very small, we observed that
this behavior does not result in any disturbing artifacts in the keying
results.

7. CONCLUSION

In this article, we proposed an interactive technique for green-screen
keying, which is a highly relevant problem in the postproduction
industry due to the popularity of digital compositing. We presented
a novel energy minimization–based color unmixing algorithm that
relies on global/local parametric color models and can achieve high-
quality keying results even in challenging cases. We show that
our algorithm outperforms the state-of-the-art in natural matting in
the case of green-screen keying. Our technique also substantially
decreases the interaction time required for achieving production-
ready keying quality when compared to commercial keying tools.

Future research directions include the investigation of temporal
coherency for scenes with dramatic illumination changes, evalu-
ating whether the discriminative power of our algorithm can be
improved by using a perceptually uniform color space instead of
RGB, and exploring further applications of our color-based soft-
segmentation such as local contrast editing.
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