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Inertial Parameter Estimation of Floating Base Humanoid Systems
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Abstract— Recently, several controllers have been proposed
for humanoid robots which rely on full-body dynamic models.
The estimation of inertial parameters from data is a critical
component for obtaining accurate models for control. However,
floating base systems, such as humanoid robots, incur added
challenges to this task (e.g. contact forces must be measured,
contact states can change, etc.) In this work, we outline
a theoretical framework for whole body inertial parameter
estimation, including the unactuated floating base. Using a
least squares minimization approach, conducted within the null-
space of unmeasured degrees of freedom, we are able to use a
partial force sensor set for full-body estimation, e.g. using only
joint torque sensors, allowing for estimation when contact force
measurement is unavailable or unreliable (e.g. due to slipping,
rolling contacts, etc.). We also propose how to determine the
theoretical minimum force sensor set for full body estimation,
and discuss the practical limitations of doing so.

I. INTRODUCTION

We wish for humanoid robots to execute fast, dexterous
motion in a robust, compliant, and human-like way. Model-
based control methods, which consider the dynamic proper-
ties of the robot, are able to specify the necessary control
forces required for some desired motion. This makes it
possible for proactive control of balance during fast motions,
for example, as opposed to reactive correction after some
delays. However, these control methods rely heavily on the
accuracy of the particular dynamic model used. Obtaining
accurate models for model-based control is a significant
challenge in robotics, especially for high degree of freedom
systems such as humanoid robots.

There has been substantial work done on data driven ap-
proaches to inertial parameter estimation of robotic systems
[11,[21,[31,[4]. In these works, motion and forces are recorded
while the robot executes sufficiently exciting trajectories.
Then, inertial parameters (such as mass, center of mass,
inertia tensors) can be fit to the observed data. These works
have traditionally focused on fixed based systems such as
manipulators and industrial robots. However, humanoids and
other legged systems, have floating base dynamics which
complicate matters for some of the following reasons: 1) the
floating base is unactuated, but its inertial parameters must
still be identified, 2) torque sensing at all joints, as well as
force/torque sensors at all contacts are required, 3) contact
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states typically change (e.g. during locomotion), and the
identifiability of certain parameters depends on the contact
state, and 4) the range of allowable motions can be limited
due to balance requirements, constraints, etc.

Because of these complications, it is best to collect as rich
a data set as possible from a variety of activities, with several
contact conditions (squatting, reaching, locomotion, etc).
Ideally our systems would have full force sensing available,
which implies force or torque sensing at all prismatic or
rotary joints, respectively, and 6 axis force/torque sensing at
all contact points. However, due to cost or design limitations,
this typically not the case in current humanoid systems.
When full force sensing is not available, we would like to
have an understanding of what is possible with a reduced set.
Recently progress in this area has been made, where it has
been shown contact force sensing alone (without any joint
torque sensing) is enough for full body parameter estimation
[51.[6]. This result is encouraging since the majority of
humanoid systems are currently lacking joint torque sensors.
However, there are several reasons why we may not want
to ignore joint torque sensors in humanoid robots. For
example, force/torque sensors may not be available at all
contact locations (such as the hands), or may be unreliable
(e.g. the foot is slipping or rolling). Additionally, if we are
interested in accurate joint tracking, as many model-based
controllers are, it may be best to tune parameters to fit local
measurements at the specific joints we are trying to control.

In this paper, we attempt to outline some of the theoretical
issues involved in inertial parameter estimation of floating
base systems, such as humanoid robots. We would like to
develop a general framework for least-squares fitting of full-
body inertial parameters, using a partial set of force/torque
sensors (possibly a combination of joint torque and contact
force sensors). We would like to understand how and when
a partial subset can be used, which may be useful the design
of future systems. Ultimately we would like to be able to
obtain accurate models for implementation of model-based
controllers such as ones proposed for full-body humanoids
([71,18],[91,[10],[11],[12],[13]), legged locomotion systems
[14], or even passivity control systems that rely on gravity
compensation [15].

II. FLOATING BASE RIGID BODY DYNAMICS

The floating base framework provides the most general
representation of a rigid-body system unattached to the
world, and is necessary to describe the complete dynamics
of the system with respect to an inertial frame. The system
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configuration is represented as:

a=[x af (1)
where q,. € R” is the joint configuration of the rigid body
robot with n joints and x, € SE(3) is the position and
orientation of the coordinate system attached to the robot
base, and measured with respect to an inertial frame. Figure
1 illustrates this representation by showing the 6 virtual
degrees of freedom attached from inertial frame to the robot
base frame.

]T

6 Virtual DOFs

Inertial Frame

Fig. 1. The base frame attached to the robot is connected to the inertial
frame via 6 unactuated virtual DOFs

When the robot is in contact with the environment, the
equations of motion with respect to an inertial frame are
given by:

M(q)d + h(q,q) = ST7 + IZ(q)A )

with variables defined as follows:

o M(q) € R**6X7+6; the inertia matrix including the
floating base

o h(q,q) € R**6: the floating base centripedal, Coriolis,
and gravity forces.

¢S = [ Opxe Inxn |: the actuated joint selection
matrix

o 7 € R™: the vector of actuated joint torques

o Jo € RFXn+6: the Jacobian of k constraints

o X € RF: the vector of contact forces

A. Linearity With Respect To Inertial Parameters:

As shown in [16],[17], we can express the complete
dynamics of the system to be linear with respect to a set
of inertial parameters.

K(q,4,d)¢ = ST7 +J5 (), ?3)

where ¢ = [ ¢f o7 T ]T is the vector of inertial
parameters of n + 1 links (n joints plus the floating base).
Each link has 12 parameters, defined as follows:

¢i = [ml MiCg;, M4iCy;, M4Cyy I:cxl
Imzi I$Zi Iyyz- Iyzi IZZ«; fCi f'l)i ]Ta (4)

where m; is the mass of link 4, (cz;,cy,,cC;), is the link’s
center of mass position, and (I, , oy, Inzi Iyys s Tyzis Lz2;)
are the 6 independent components of its inertia tensor.
Additionally f., and f,, are coulomb and viscous friction,
respectively.

III. INERTIAL PARAMETER ESTIMATION

Since we are able to write the system dynamics as linear
with respect to inertial parameters, we can use ordinary least
squares to fit parameters to collected data. We move the
robot in a sufficiently exciting manner, collecting N sample
points along the motion. Each sample point ¢ consists of the
joint and base configuration vectors and their derivatives:
(ai, i, 4:), and, if full force/torque sensing is available, the
vectors of joint torques 7; and contact forces \;. Next we
combine sample points by creating stacked matrices in the
following manner:

K(qlaqlvql) STTI + ng )‘l
K(a2, 92, 42) STry +IE, e
: - . , )
K(QN»QN»CIN) STTN +J£N/\N
or in more simple notation as:
K¢=T1, (©6)

where the bar notation refers to an augmented stack of N
matrices, and the following vector of total generalized force:

f, =STr +IT N\ @)

is defined for convenience.
Inertial parameters can then be estimated using ordinary
weighted least squares:

b= (KTWK) T KTWE. ®)

The parameters computed from (8) are those that minimize:

N . T .

arg min (Z (K,»gs - fi) W (Kiqﬁ - fz)> )
¢ i=

We can also write this expression in the following way

(which we will refer to in later discussion):

N 2
arg min (Z (W%K,qg - W%fi) ) 10)
] i=1

Note that because the generalized forces, f, exist on a
non-euclidian space, the weight matrix W must be chosen
to be an appropriate metric such that the units throughout (9)
are consistent and minimization with respect to least squares
can be well defined. This point is especially relevant for any
floating base system, since the generalized forces at the base
link are represented by a vector of mixed units (a 6-DOF
wrench of combined linear force and torque). The parameters
¢ also live on a non-euclidian space, but if we assume K is
full column rank (see the following section), then (8) will be
independent of any metric on ¢. See [18] for a full discussion
of these issues.
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A. Unidentifiable Parameters:

Due to the kinematic structure of the robot, potentially
some parameters in ¢ will be unidentifiable, or only identi-
fiable within linear combinations with other parameters. In
such a case, the matrix K will not be full column rank, and
therefore not invertible by (8). However, this problem can be
resolved using a singular value decomposition [1] or finding
the minimal set of identifiable inertial parameters, ¢p [19]
and rewriting (6) as:

Kpop =1, an

where K g is full column rank.

Note that which parameters are unidentifiable will depend
on the contact state of the robot. For example, if a foot is
on the ground and not moving (with respect to the inertial
frame), it will be impossible to identify its inertia tensor.

B. Physical Consistency:

Although the least squares equation minimizes (9), it may
be the case that certain parameters in ¢ are not physically
consistent (having a negative mass for example). In this case,
it is possible to project ¢ into a physically consistent subset
(see [4]1.[20]).

IV. INERTIAL PARAMETER ESTIMATION WITH
PARTIAL FORCE SENSING

A. Estimation from Contact Forces Only:

If joint torque sensors are not available, [5] has shown it
is possible to estimate the same set of parameters as in (6),
but only using contact force measurement. If we expand the
matrices in (3):

K 0 JT
i o= [ 2]

we can use the just the top half of (12) to fit parameters:

12)

Kip =JIT (13)

In [6] it is proven that the least squares solution to (13) can
estimate the same inertial parameters as the full sensor case.

We note that (13) is identical to premultiplying each data
point in (6) with Sp:

StK¢ = S,f, (19

where we define:

St = [ Isxe Ooxn |, 15)

B. Estimation from Joint Torque Sensors Only:

As a dual to (12), we can also write the complete dynamics
of the system without contact forces. We take the QR
decomposition of JZ:

R
J£=Q[O], (16)

where Q is an (n + 6) X (n + 6) orthogonal matrix and
R is an k x k upper triangular matrix of full rank. If we
premultiply (3) by QT, we have:

17

Q"K¢ = QTSTr + [ R ] .

0

In [13] we show that the upper and lower portions of this
equation are decoupled, i.e. we are able to write the full
system dynamics using only the bottom portion that does
not depend on contact forces:
S.Q"K¢ = S.Q7s™r, (18)
where
Su=[ Ont6-k)xk L(n+6—k)x(nt6-k) | - (19
We can then fit parameters with the following equation:
S.QTK¢ =S, QTf (20)

C. Estimation with a General Reduced Sensor Set:

As it was possible to remove joint torque sensing, or
contact force sensing, and still obtain an estimate of inertial
parameters, it is possible, to some degree, to generalize the
procedure in order to use a specified reduced sensor set,
which may be a portion of joint torque sensors combined
with a portion of contact force sensors. This can be very
useful when the robot has inadequate sensing, for example
force/torque sensors at the feet but not the hands (as is
typically the case with modern humanoid robots), or only
a few joint torque sensors in key locations. The critical issue
when using an arbitrary reduced set of sensors, is whether
or not the remaining sensors are capable of accurately
representing the complete motion of the floating base link.

We segment and reorganize the vectors 7 and A and
matrices S and Jo into those to be used for parameter
estimation: (7, Am) and those not to be used: (7, Az). We
then rewrite (3) as:

Ko=(Sh T, ]| 7 |+180 95, 1] |
_ AT | ™m T| Tz
-an| ]3]

Next, compute the null space basis of A, (via a singular
value decomposition or row reduction method), which we
call V. This matrix is defined by the following relationship:

AV, V¢ = {o, Vé € R,

2D

(22

and the operator V, VT is the null space projection of A,.

Essentially, we want to be able to conduct parameter
estimation within this reduced dimensional null space. In
order to be able to do so, we must make sure that key infor-
mation regarding the dynamics of the system is not lost when
projecting into this subspace. As a consequence of the work
of [6], we know that the dynamics of the floating base link
alone contains critical information. Because the floating base
link is the root of the kinematic tree, the total force/torque at
this link represents the combined force/torques of all other
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links. Additionally, dynamic information regarding this root
link is only contained within the forces of this link. Thus,
the floating base link is the only link that contains dynamic
information of all links, making it possible to estimate
inertial parameters for all links, based on the forces/torques
at this single link alone (see [6] for a full proof). Therefore,
when we project a given generalized force vector into a
reduced dimensional subspace, we need to make sure that
dynamic information pertaining to the floating base link is
retained. We decompose the generalized force vector, f, from
(6) into its base and joint components:

_ | f
f= [ £ ] (23)
and project this vector into a the null space of A :
T Vi f
vvie= | [ 1ve v |
_ [ VepVi, VapVy, fo
= [ VerVE, VoV | g | @Y

Thus, in order to retain information contained in f;, through
the projection of V, VT, we at least need the sub-matrix
V,:,be’b to be full rank, or equivalently Rank(S,V,) = 6.
In such a case, our reduced sensor set will be sufficient for
estimating ¢. We can then fit parameters using the following
equation:

VIK¢$ = VIT 25)

We note that (25) is the general form of (14) and (20).
Indeed, ST is the null space basis of S, and QST is the null
space basis of J¢. Of course, Rank(Sbsg") = 6 in all cases,
satisfying the requirement for base link identifiability. Addi-
tionally, Rank(S,QSI) = 6 when all degrees of freedom of
the the floating base can move independently within the null
space of J¢.

D. Minimal Sensor Set

We can now reason as to what can be the minimal possible
force sensor set for full body parameter estimation. This
number will depend on the contact state of the robot. The
critical issue is to be able to sense all external forces in some
way, either through direct contact force sensing or through
joint torque sensing. We can distinguish between constrained
and unconstrained branches of the kinematic chain of the
robot (Figure 2), where the base link is considered to be
the root of the tree. Unconstrained branches are those chains
with no external forces. In this case, we know that all forces
applied by this branch to the base link will be due to inertial
motion alone. However, in a constrained branch, we will
need to distinguish between the inertial motion of the branch
and external forces applied to the branch. This is possible if
we have at least the same number of sensors located along
this branch as there are linearly independent external forces
applied to this branch (the sensors must also be able to sense
in linearly independent directions). For example, a typical
humanoid robot with two feet on the ground (6 linearly
independent constraints for each leg), will require at least

6 linearly independent sensors on each leg. This can be one
force/torque sensor per foot, or 6 joint torque sensors along
the leg (all aligned to be non-parallel), or a combination of
the two.

Unconstrained
Branches

\

Base Link /

T

\

Constrained
Branches

Fig. 2. Constrained and Unconstrained branches of a humanoid robot’s
kinematic chain. As long as we can sense the forces at the base link,
unconstrained branches require no additional force sensing. However, since
constrained branches have external forces applied, force sensing is required
in order to distinguish between inertial and external forces.

E. Practical Issues for Control

Although it is theoretically possible to estimate full-
body parameters using a minimal set of force sensors, for
practical reasons we may not want to do so. Different sensor
sets will result in different parameter values, as each set
attempts to minimize a different function. Fitting parameters
according to (25) will minimize (10) with Wi = Vf. As
a consequence of the null space projection, certain forces,
which may be important for a particular control task, will not
be considered in the minimization procedure. For example,
estimations using only contact forces may result in poor joint
tracking. If highly accurate center-of-pressure placement is
required, it is very useful to include foot force/torque sensing.
On the other hand, including too many sensors can possibly
degrade performance. For example, it is reasonable to assume
that balancing may improve if noisy upper-body sensors are
excluded. When deciding what sensors to use for estimation
(or what sensors to design into your robot), it is important
to consider the control tasks.

V. EVALUATIONS

For a basic evaluation of the parameter estimation theory,
we will use the SL simulated bipedal robot, modeled after
the lower half of the Sarcos Humanoid robot (Fig. 3). The
simulated robot has 2 x 7 DOF legs and a 1 x 2 DOF torso,
for a total of 16 actuated DOFs with torque sensing. Each
foot is represented by 4 point contacts, and floor contact
is simulated using a spring-damper model. In the simulator,
the integration loop runs at 1000Hz and the feedback control
loop at 500Hz.
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Fig. 3. The Sarcos humanoid robot, and SL simulator.

We record a training data set for inertial parameter es-
timation consisting of two types of motion: 1) a series of
squatting motions at various speeds, with two feet in contact
at all times, and 2) a series of motions where squatting
is superimposed with a side-to-side sway and alternatively
lifting each foot off the floor. The complete training set is
made of 30 seconds each of squatting at 0.5,1.0,1.5,2.0,2.5,
3.0 and 3.5 Hz, and combined squatting/stepping motions at
0.0,0.5, 1.0, 1.5, and 2.0 Hz squatting and 1/6 Hz side-to-
side sway with stepping pattern. The 6 minutes of training
data is filtered and down-sampled to a 200 Hz sampling rate
for a total of 72,000 data points. We evaluate the training on
6 seconds of 1.5 Hz squatting. We will use three different
parameter estimation techniques. For Full Sensing, we use
(6) with full joint torque sensing and full contact force/torque
sensing at the feet. For Contact Only, we use (14), with only
contact force/torque sensors at the feet. Finally for Joints
Only we use (20) with all 16 torque sensors at each joint.

Figures 4 and 5 show some prediction results obtained
by each of the 3 methods. The top two graphs of Fig. 4
show the predicted values of the generalized force vector
(Mgq + h) for the right hip flexion/extension joint and
the right knee joint respectively. The lower two graphs of
Fig. 4 show the prediction components of the base-link’s
z force (the direction of gravity) and the base-link’s z
moment (forward-backward rotation). Figure 5 shows two
representative components of the predicted generalized force
vector projected into the null-space of the constraint Jacobian
(S.QT (Mg + h)). It is within this null-space where Joints
Only performs its regression. Finally Figure 6 shows the
RMS prediction error values over the complete 6 second
evaluation. The top chart shows the average joint torque
prediction errors. The following charts show the base-link
force, base-link moment, and projected generalized force
predictions.

As expected, these results show that Full Sensing does

an adequate job of all-around force and torque prediction.
Not surprisingly, Contact Only performs well only on base-
link predictions, and not joint torques. Interestingly, although
Joints Only excels within the projected subspace where it was
trained, it performs poorly when extrapolating outside that
subspace. However, we may only be interested in controlling
our robot within this subspace, (e.g. when we do not care
about contact forces), and thus this technique should yield
the best prediction. Finally, we should mention that with
the addition of more training data with greater variety of
motions, we would expect all these techniques to improve in
performance.

— Actual

= = = Full Sensing
= = = Contact Only
= = = Joints Only

S
-

.

N
~
>y

16 18 2

Right Hip Flexion Torque (Nm)

Right Knee Torque (Nm)

Base-Link X Moment (Nm)

time (s)

Fig. 4. Predictions of the generalized force vector (Mq + h) using the
methods of Full Sensing, Contact Force Sensing Only and Joint Torque
Sensing Only, and compared with the actual forces in blue. The top 2 graphs
are the components of the right hip flexion/extension and right knee joints
respectively, and the lower 2 graphs are the base-link’s z force (in the
direction of gravity) and the base-link’s 2 moment (front-back sway).

VI. CONCLUSION

In this work we have outlined some of the theoretical
issues regarding inertial parameter estimation for floating
base humanoid systems. We have proposed a framework for
full body parameter estimation using a subset of force/torque
sensing. We have also discussed the minimal requirements
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Fig. 5. Predictions of the three methods when projected into the null-
space of the constraint Jacobian (S, QT (Mg + h)). Shown are two
representative components. The method of Joints Torque Sensing Only
excels here since its regression was performed within this subspace.
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Fig. 6. Top graph is the total joint torque RMS prediction error. Middle two
graphs are base-link force and torque prediction respectively. The bottom
is the generalized force prediction within the null-space of the constraint
Jacobian.

for full parameter estimation. We are actively working on
the parameter estimation of our Sarcos humanoid, for the
purpose of model-base control (Figure 3). Although full
joint torque sensing, and force/torque sensing at the feet are
available, the high dimensionally of this system (40 DOF
including floating base) as well as practical considerations
such as sensor noise and bias, may not warrant the inclusion
of all sensors for estimation. For example, if we are only
interested in joint motion and not contact force control, then
we maybe able to achieve higher joint control accuracy by
estimating without contact force sensors. Ultimately it is
critical to consider the control task at hand when evaluating
which sensors to include in inertial parameter estimation.
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