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Abstract— Effective teleoperation requires real-time control
of a remote robotic system. In this work, we develop a controller
for realizing smooth and accurate motion of a robotic head
with application to a teleoperation system for the Furhat robot
head [1], which we call TeleFurhat. The controller uses the
head motion of an operator measured by a Microsoft Kinect
2 sensor as reference and applies a processing framework
to condition and render the motion on the robot head. The
processing framework includes a pre-filter based on a moving
average filter, a neural network-based model for improving
the accuracy of the raw pose measurements of Kinect, and
a constrained-state Kalman filter that uses a minimum jerk
model to smooth motion trajectories and limit the magnitude
of changes in position, velocity, and acceleration. Our results
demonstrate that the robot can reproduce the human head
motion in real time with a latency of approximately 100 to
170 ms while operating within its physical limits. Furthermore,
viewers prefer our new method over rendering the raw pose
data from Kinect.

I. INTRODUCTION

Real-time imitation of human head movement is of interest

for various applications such as telepresence, teleopera-

tion, and imitation learning. For telepresence, the existing

solutions only transmit a video of the person. However,

studies have shown that physical embodiment in the form

of a humanlike robot leads to more natural and humanlike

conversations [1]–[3]. The idea of the TeleFurhat system is

that instead of simply transmitting a video of the person, the

Furhat robot will be present at the remote end to render the

gestures of the person, including his or her head motion.

Such a system could result in much more effective and

engaging conversations and improve upon current entertain-

ment systems that require real-time interaction with remote

persons. Current interfaces for these systems are tedious and

cumbersome because they require an operator to use remote

controls and joysticks [4], [5]. With our TeleFurhat system,

the remote system could be teleoperated using human body

motion instead, resulting in more intuitive control.

Imitation of human head movement by a robotic head

has been attempted previously. Demiris and colleagues [6]

presented a system for deferred imitation of human head
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movement using optical flow for head pose estimation. How-

ever, their pose estimation algorithm suffered from several

limitations including lack of translation information as they

assumed that optical flow always represents rotation. This

resulted in inaccurate rotational pose estimates. In addition,

no quantitative results were presented on the performance

of the system. Hurring and Murray [7] proposed a system

for teleoperating a robot head while the user wears a head-

mounted display. However, their pose-tracking algorithm

required explicit paper markers to be mounted on the display.

Some prior work has focused on use of the full body

pose for imitation learning by augmenting the human user

with explicit color patches for real-time tracking [8] or

with a motion capture system for offline [9] or real-time

tracking [10], [11]. However, such systems are often affected

by ambient light and placement of markers, and they require

tedious calibration of the system for accurate and repeatable

performance, limiting the use of the system to laboratory

settings. More recently, Microsoft Kinect has been employed

to imitate human arm motions with an anthropomorphic dual

arm robot [12]. However, its online trajectory generation al-

gorithm causes significant delay, which adversely affects the

system performance in teleoperation because additional delay

will be added due to communication over the network. In

addition, the authors show that the velocity and acceleration

estimates obtained by numerical differentiation are extremely

noisy; however, their system does not condition the signal to

filter out the noise, which could lead to jerky and unnatural

motion.

The major challenges in the implementation of the Tele-

Furhat system for teleoperation are (i) how to map the

human motion to a robot with different dynamics and degrees

of freedom (DOFs) (i.e., motion retargetting), (ii) how to

perform accurate human head pose estimation, (iii) how to

limit the motion for the robot’s safety while retaining the

essence of the human motion, and (iv) how to ensure low

overall latency in the system to enable natural conversation.

Motion retargeting has been employed previously to map

an actor’s trajectory onto an animated character [13]. Prior

work has also focused on rendering human motion cap-

ture data on humanoid and non-humanoid characters with

significantly different morphologies [14]. The problem is

more challenging for teleoperation as it requires mapping

the user’s input on the robot across a significant distance in

real time [15]. Dragan and Srinivasa [16] proposed a method

for customizing and learning the retargeting function from

online demonstration of the desired pose by the user. In this

work, our focus is on the second and third challenge.
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Fig. 1. Overview of the TeleFurhat system developed for teleoperation using the Furhat robot.

In this work, our goal is to build a system for teleoperating

the Furhat robot head using human head motion in real

time while ensuring the safety of the robot. To this end,

we develop the processing framework described below.

II. OVERVIEW

The TeleFurhat system consists of a local computer where

the user’s head pose is estimated and a remote computer

to which the Furhat robot is connected (Fig. 1). The head

pose estimation is performed by the high-definition face

tracking system from Microsoft Kinect 2 sensor API 2.0 [17]

at approximately 30 Hz. The estimated head angles (pitch

and yaw) are communicated over the network to the re-

mote computer via user datagram protocol (UDP). At the

remote computer, the pose measurements are processed to

appropriately condition the signal, which is then rendered on

the Furhat robot. Our processing framework consists of pre-

filtering using a low pass filter, a neural network-based model

for mapping the filtered pose measurements to the desired

pose, and a constrained Kalman filter to reduce noise and

limit the magnitude of the position, velocity and acceleration

of the signal using a minimum jerk model.

Furhat is a humanlike, back-projected robotic head that

displays facial expression using computer animation as well

as pitch and yaw motions of the head in real time [1]. It

does not support the roll motion and also has smaller range

of motion (28◦ in pitch and 68◦ in yaw) than the human

head (130◦ in pitch and 155◦ in yaw [18]). It allows for

natural, humanlike human-agent interaction due to the three-

dimensional physical embodiment through its humanlike

head and face shape. Furhat also allows for flexible rendering

of humanlike facial motion (e.g., eye movements, blinks,

eyebrow movements, and lip movements) due to its animated

Fig. 2. The setup used for the synchronized Kinect and OptiTrack
based head motion capture. The actor interacted with two subjects while
performing the tasks to ensure that his gestures are natural.

face, enabling it to convey subtle facial expressions and

emotions that are limited on robots with hardware-based

facial animation. In this work, we omit the animated facial

expressions in order to focus on head motion.

III. POSE FILTERING AND MAPPING

In this section, we discuss the processing framework

implemented for the TeleFurhat system.

A. Motion Capture Data Analysis

First, we collected motion capture data to analyze and

model the natural human head motion and establish the



TABLE I

SUMMARY OF THE VARIOUS TASKS PERFORMED BY AN ACTOR TO

GENERATE POSES THAT COVER THE POSE VARIATION OBSERVED

DURING HUMAN-HUMAN VERBAL OR NON-VERBAL COMMUNICATION.

THE TOTAL DATA CORRESPONDS TO OVER 8 MINUTES OF

PERFORMANCE AT A SAMPLING RATE OF 30 HZ.

Task Sample Size

Storytelling 7128

Desert Survival Game 3247

Career Advice to Right
Listener

767

Career Advice to Left
Listener

951

Expressions 3178

ground truth for benchmarking the performance of the de-

veloped algorithms. A professional actor performed sev-

eral tasks to generate the pose variation observed during

human-human verbal and non-verbal communication (Ta-

ble I, Fig. 2). We recorded synchronized head pose data with

an Optitrack motion capture system [19] at 100 Hz, a Mi-

crosoft Kinect 2 sensor at 30 Hz, and two HD cameras. The

motion capture data sequences were then manually processed

to remove any outliers in the pose data and resampled to

obtain a synchronized sequence of pose measurements from

the two sources. The pitch and yaw angles refer to the angles

corresponding to the vertical and horizontal motion of the

head, respectively.

B. Pre-filtering Kinect Data

Raw head pose data measured by Kinect typically contain

significant noise. To filter out this high-frequency noise,

a moving average low-pass filter is designed using filter

residual analysis.

First, filter residual analysis is performed to determine

the optimal cutoff frequency for the filter. Specifically, it

evaluates how the root mean square (RMS) residual (i.e., the

discrepancy between the raw signal and the filtered signal)

changes with the change in the cutoff frequency of the

filter [20]. Results show that the residual drops to 0.1 degrees

for both pitch and yaw angles with a cutoff frequency of

5 Hz.

Then, a moving average filter is designed with cutoff

frequency fco = 5 (Hz). The optimal window size N for the

moving average filter with sampling frequency fs = 30 (Hz)

is given by (1).

N =

√

0.442942 +

(

fco

fs

)2

fco

fs

≈ 3 (1)

While filtering removes the high-frequency noise from

raw pose data from Kinect, it also introduces a delay of

approximately 2 time steps (∼66 ms) as shown in Fig. 3.

Time step →

0 50 100 150 200 250 300

P
it
ch

A
n
g
le

(d
eg
)
→

-20

-15

-10

-5

0

5

Raw Filtered

(a)

Time step →

0 50 100 150 200 250 300

Y
aw

A
n
g
le

(d
eg
)
→

-40

-30

-20

-10

0

10

20

Raw Filtered

(b)

Fig. 3. The moving average filtering results for the actor head angles
captured using the Kinect.

C. Neural Network Based Pose Modeling

The Kinect-based measurement system introduces sys-

tematic error in the head pose data. The error is both a

function of the head pose and the higher order derivatives of

the pose trajectory. In contrast, the marker-based OptiTrack

motion capture system is more reliable and is less prone to

error because it estimates the pose by tracking specialized

markers placed at strategic locations on the body using

multiple high frame rate cameras. In order to correct the

error introduced by Kinect, we learn a model between the

Kinect- and OptiTrack-based measurements (Fig. 5). The

model could also be learned on any other desired pose data

to replace the gestures that could not be effectively rendered

on the robot in real time. This could be done by generating

custom motion on the robot head with the help of an animator

and learning the mapping between the Kinect-based pose

estimates and the animated motion. This could also help

generate gestures that look more natural on the robot rather

than simply rendering the human head pose on the robot

accurately.

Neural network regression [21] and Gaussian process

regression [22] are two popular techniques for modeling

data mapping. Neural network is a parametric model that is

relatively computationally inexpensive to evaluate once the

network is trained. Gaussian process regression, on the other

hand, is a non-parametric Bayesian modeling technique that

has much higher computational requirements for inference

(exact inference scales with O(n3), where n is the size

of the training sample), especially when the sample size

is greater than a few thousand [23], [24]. Because our

application requires real-time execution of the framework, we

use neural network models. There are also other parametric

modeling techniques such as Gaussian mixture regression,

locally weighted projection regression etc. However, studies

have shown comparable results from these techniques on

some problems [25], [26].

The developed neural network model takes a window of

the time series for head pitch (θpk) and yaw (θyk) data from

the Kinect sensor and outputs the corrected current pitch

(θpr) and yaw (θyr) estimates to render on the robot (Fig. 4).

We use linear transfer functions for the input and output

layers and hyperbolic tangent sigmoid transfer functions

for the perceptrons in the hidden layer. We use hyperbolic
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Fig. 4. The neural network model used for learning the pose mapping
from the Kinect data to the respective desired robot pose.

TABLE II

THE SAMPLES USED FOR TRAINING, VALIDATION, AND

TESTING THE NEURAL NETWORK MODEL LEARNED FOR

POSE MAPPING.

Training Validation Testing

Sample Size 10690 2290 2290

Percentage 70% 15% 15%

tangent sigmoid as the transfer function because some studies

have shown that networks with these functions are more

generalizable [27] and perform better than the networks with

other types of transfer functions [28], [29]. We divide the

collected pose data into training, validation, and test sets

to quantify the performance of the network (Table II). The

pitch and yaw values from OptiTrack are also saturated at

the joint angle limits of the robot so that the network can

learn to limit the output to be within the bounds of the

robot’s joints. We train the network with different numbers

of perceptrons in the hidden layer and past window sizes

to select the optimum network for the task. Each network

is trained 50 times with random initialization and the best

performing network is selected.

D. Post-Filtering

The output from the trained neural network does not

guarantee the smoothness of the pose trajectory or ensure that
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Fig. 5. A comparison of the pose estimates obtained from the OptiTrack
motion capture system with the filtered Kinect-based estimates for (a) pitch
angle comparison and (b) yaw angle.

the trajectory has angular position, velocity and acceleration

that are safe for rendering on the robot given the limitations

on hardware capability. We address this issue by introducing

a constrained-state Kalman filter with a minimum jerk model

into our framework as a post-filter.

1) Minimum Jerk Model: Coordinated voluntary human

arm movement studies have shown that humans follow a

minimized jerk trajectory [30], which is also the smoothest

possible trajectory [31]. We use the minimum jerk model in

the head pose space with added white Gaussian noise at the

acceleration level (2) as the underlying model for filtering

the pose estimates.
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where θk =
[

θp,k θy,k

]T
, ωk =

[

ωp,k ωy,k

]T
, αk =

[

αp,k αy,k

]T
. In and 0n represent an identity and zero

matrix, respectively, of size n×n. ∆T represents the size of

the time step. wk and vk represent the noise in the process

model and the observation model at time step k, respectively.

Q and R represent the covariance matrix of the process noise

for the angular acceleration and observation noise for the

angular position, respectively. N (µ,Σ) represents a Gaussian

distribution with mean µ and covariance Σ.

2) Constrained-state Kalman Filtering: The original

Kalman filter, represented by (3), does not constrain the

system states in the filter output.

Kk = AΣk−1C
T

(

CΣk−1C
T + R

)

−1

x̂k = Ax̂k−1 + Kk (yk − Cx̂k−1)

Σk = (AΣk−1 − KkCΣk−1) AT + Q

(3)

where Kk is the Kalman gain; A and C are the system and

output matrices, respectively, as defined in (2); Σk is the

state covariance matrix at time step k; yk is the observed

pose estimate as obtained from the neural network model at

time step k; and x̂k is the system state estimate at time step

k.

A constrained-state Kalman filter overcomes this limitation

and projects the unconstrained estimates of the Kalman

filter on the constraint surface [32], [33]. It solves for the

system state estimates by minimizing the state variance while

subjecting them to the state constraints (4).

x̃k = arg min
x

(x − x̂k)
T

Σ−1

k (x − x̂k)

subject to: D1x ≤ d1

D2x ≥ d2

(4)



The closed form solution (5) to the optimization problem can

be obtained using the Augmented Lagrangian method [34].

x̃k = x̂k − ΣkD̂T
(

D̂ΣkD̂T
)

−1 (

D̂x̂k − d̂
)

(5)

where D̂ = [D1 −D2]T and d̂ = [d1 −d2]T . The matrices

D1 and D2 are configured such that the angular position,

velocity and acceleration of the two robot joints are bounded

by the vectors d1 and d2. The filter ensures that the estimated

states are always within their respective upper and lower

bounds and thus, guarantee that the robot operates within

its physical limits while retaining the original human head

motion as much as possible.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of the TeleFurhat system,

we present the results from the neural network training, the

performance of the trained network on the robot using the

collected motion capture data, and the results from real-time

execution of the TeleFurhat system. Both the remote and the

local computer were present on the same local area network

for the experiments carried out in this work. Additionally,

we perform a perceptual study to obtain viewer impressions

of our system.

A. Neural Network Training Performance

1) Neural Network RMS Error Mapping: We first de-

termine the optimum number of perceptrons in the hidden

layer and the size of the past frame window. As shown

in Fig. 6(a), the RMS error (between the network output

and reference) for the pitch angle decreases as both the

hidden layer size and the past window size increase over the

training dataset. However, the error increases beyond hidden

layer size of 10 and past window size of 20 over the test

dataset (Fig. 6(b)). In contrast, yaw angle error decreases

with the increase in hidden layer size and past window size

over both the training and test datasets (Fig. 6(c) and (d)).

This result shows that the learned networks are relatively

less generalizable for the pitch motion compared to the yaw

motion. This may be because the human head motion is much

more dynamic for the pitch angle motion as compared to the

yaw angle motion, which increases its variability. To achieve

an optimum compromise for the performance of both the

pitch and yaw angles, we choose a network with a hidden

layer size of 20 and a past window size of 30, which ensures

that the error is under 1.5 degree for the pitch angle and under

1.3 degree for the yaw angle in both the training and test

datasets. The model-fitting statistics in Table III show that the

network has reduced both the mean squared error (MSE) and

the maximum absolute error (MAE) as compared to the error

evaluated between the Kinect data and the OptiTrack data.

Furthermore, the standard deviation of the error distribution

with the neural network model is smaller than without the

model for both the pitch and the yaw angles, demonstrating

that there are more samples with lower error when the model

is used.
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Fig. 6. Root mean square (RMS) error plots for different numbers of
neurons in the hidden layer and past window sizes for the learned neural
network-based output. The error is evaluated by comparing the neural
network output with the corresponding motion capture data. (a) The pitch
angle prediction error for the training data, (b) the pitch angle prediction
error for the test data, (c) the yaw angle prediction error for the training
data and (d) the yaw angle prediction error for the test data.

TABLE III

MODEL-FITTING STATISTICS FOR THE SELECTED NETWORK WITH A

HIDDEN LAYER SIZE OF 20 AND A PAST WINDOW SIZE OF 30. MSE,

MAE AND SD REPRESENT MEAN SQUARED ERROR, MAXIMUM

ABSOLUTE ERROR AND STANDARD DEVIATION, RESPECTIVELY.

Dataset
Pitch Yaw

MSE MAE SD MSE MAE SD

Raw
Overall∗

1.616 8.827 2.487 2.564 15.366 2.432

Training 1.003 7.288
1.242†

1.200 6.147
1.445†

Test 1.581 6.854 1.272 10.414

∗ statistics without any neural network model
† statistics over all data

2) Learned Neural Network Output: A comparison of

the output from the learned neural network model with the

reference data shows that the network output is similar to the

reference data (Fig. 7). In general, the performance is better

for the training dataset than the test dataset.

B. Offline System Performance Test

To test the performance of the neural network model on the

robot head, we control the robot head using the Kinect-based

pose measurements from one of the captured sequences as

input to our framework. The robot head is also tracked

simultaneously using the OptiTrack motion capture system

to verify its performance.

Fig. 8 shows the results from the offline performance test

on the robot with the human head angles from the OptiTrack
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Fig. 7. A comparison of the measured data with the output obtained from
the learned neural network. (a) The pitch angle comparison for the training
data, (b) the yaw angle comparison for the training data, (c) the pitch angle
comparison for the test data, and (d) the yaw angle comparison for the test
data.
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Fig. 8. Comparison of the measured actor head pose (head data) with the
learned neural network output (NN output) and the measured robot head
pose obtained by rendering the filtered network output on the robot (robot
data) with a network having 20 neurons in the hidden layer and a past
window size of 30: (a) pitch angle, (b) yaw angle. The post-filter used for
these results is the original Kalman filter without any bounds on the velocity
and acceleration of the system.

system, the output from the learned neural network, and the

actual robot head angles. Snapshots from this experiment are

shown in Fig. 10. Some deviation is occasionally observed

during fast motion due to the dynamics of the robot joint

that has not been modeled by the neural network. The

reconstruction of the pose estimates on the robot head shows

that the human head pose matches the robot head pose most

of the time (refer to the supplemental video for details). Some

deviation in pose observed in Fig. 10 images 23 and 24 is

due to the fact that there is no roll DOF on the robot. Also,

the pose deviation observed in Fig. 10 image 10 is due to

the limit on the yaw angle of the robot.

C. Real-time System Performance Test

To test the real-time performance of the system, a user

controlled the robot head in real time using our framework.
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Fig. 9. Output pose at various stages of the framework as obtained during
real-time execution of the TeleFurhat system. The shaded area in the plot
shows the one sigma bound of the estimates obtained using the constrained-
state Kalman filter.

The data is logged after every block in the framework to

verify its contribution to the overall performance of the

system.

Our results show that the system is able to obtain smooth,

safe pose trajectories for the robot using the Kinect data as

input (Fig. 9). The moving average filter effectively removes

the high-frequency noise in the data. The learned neural

network then corrects for any error in the filtered pose

and limits the pose to be within the bounds of the robot.

Finally, the constrained Kalman Filter limits the position,

velocity and acceleration within their allowable limits while

preserving the nature of the motion.

During the experiments, we observed that the timing of the

motion is more important than the accuracy of the amplitude

of the motion for the gestures to look natural. When the

head motion has a high frequency, the pose magnitude is

limited by the Kalman filter to ensure that the system does

not exceed the allowable velocity and acceleration bounds

while maintaining the timing of the motion. This leads to

effective and safe rendering of the motion on the robot in

real time (Fig. 11 and supplemental video). A delay of 100

to 170 ms is observed between the human head pose and the

robot head pose. A major portion of the delay is introduced

due to the communication over the network (∼34 to 104

ms). This delay due to communication is also present in the

baseline method.

D. Perceptual Studies

To compare our new framework for controlling head

motion to the use of raw pose measurements from the

Kinect sensor, we performed two online comparison studies

using Amazon Mechanical Turk. This study was approved

by our Institutional Review Board, and participants provided

informed consent and were reimbursed for their time.

1) Participants: Using Mechanical Turk and Survey-

Gizmo.com, 203 participants successfully performed the first

study and 205 completed the second study. All participants

had to be 18 years of age or older and have self-reported

normal or corrected-to-normal hearing and vision. Addition-

ally, participants had to have an approval rating above 95%

and more than 50 previous assignments on Mechanical Turk

in order to enroll in the research.
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Fig. 10. Results from the offline rendering of the pose using the learned
pose mapping. The motion capture system is used to measure the pose of
the actor and the robot to compare the two.

2) Stimulus Generation: Using 3.78 minutes of the actor’s

tracked motion data from the recorded storytelling task,

we created two types of head motion for TeleFurhat. In

the first type, the motion was created using the raw pose

measurements of the Kinect sensor as a baseline. For the

second type, we used our method for modifying the position

commands sent to the robot controller.

3) Study 1 Method: We used SurveyGizmo, an online

service, to display the stimuli for the research. The input

video of the actor was presented at the center, and the two

output videos were presented on each side of the video

of the actor. All three videos were time-aligned to present

simultaneous movements. Different versions were created

to counterbalance the display by switching the left/right

positions of the output videos; half of the participants saw

each order. Each participant watched the videos for at least

3.5 minutes before submitting an answer to the question,

1 2

3 4

5 6

Fig. 11. Results from the real-time estimation of the human head pose
and rendering of the pose on the Furhat robot head using the proposed
framework. A delay of approximately 100 to 170 ms is observed between
the human head pose and the robot head pose. The slight differences in
pose is due to the observed delay in the system.

“Which robot head motion is closer to the human head

motion?”

4) Study 1 Results: The two methods did not significantly

differ for perceived accuracy of head motion (113 our method

vs. 90 baseline method; χ2 = 2.606, p = .1065, where χ2

and p are the test statistics from the Pearson’s chi-squared

test)

5) Study 2 Method: Before completing the questionnaire,

participants were shown a 18-second clip of the actor alone

in order to provide an idea of what types of head movements

could be expected. Then, they proceeded to the main page,

which contained a 3.78-minute video only showing the two

videos of the robot heads side by side. Again, participants

had to play the video for at least 3.5 minutes before sub-

mitting their responses. At the bottom of the page were

four questions: “Which robot looks more alive?”, “Which

robot looks more humanlike?”, “Which robot looks more

intelligent?”, and “Which robot looks more friendly?”

6) Study 2 Results: Our method was rated as significantly

more alive (135 vs. 70; χ2 = 20.61, p < 0.0001) and friendly

(122 vs. 83, χ2 = 7.42, p = 0.0065) than the baseline

method. There were no significant differences for humanlike

(112 vs. 93; χ2 = 1.76, p = 0.18) or intelligent (98 vs. 107,

χ2 = 0.40, p = 0.52).

7) Discussion: Our method was preferred to the previous

method for questions of how alive and friendly the robot

appeared. The baseline method was never preferred. The

two methods did not differ for closeness to human head

motion, humanlikeness, and perceived intelligence. Overall,

these findings suggest that our method improves upon the

use of raw pose data from the standpoint of a viewer.

V. CONCLUSION

We developed a system for teleoperation using the Furhat

robot, which we call TeleFurhat. Our experiments showed

that the robot head is able to effectively imitate the human



head motion in real time while ensuring that the robot

operates within its physical limits. In the future, we also

plan to use the uncertainty estimates from the Kalman filter

to evaluate the pose input to the robot. We observed that

some very high-frequency motion (e.g., head nodding) is not

accurately captured even by the marker-based motion capture

system in real time. In subsequent research, we plan to ask

an animator to create an animation on the robot that matches

a measured human head motion, and learn models between

the Kinect-based pose estimates and the animated motion.

This process will help account for creative decisions often

made by artists to overcome the hardware limitations such

as lack of a roll joint.
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