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ABSTRACT 

In order to enable unobtrusive human object interaction 

detection, we propose a minimalistic approach to 

instrumenting everyday objects with passive (i.e. battery-

free) UHF RFID tags. By measuring the changes in the 

physical layer of the communication channel between the 

RFID tag and reader (such as RSSI, RF phase, and read rate) 

we are able to classify, in real-time, tag/object motion events 

along with two types of touch events. 

Through a user study, we demonstrate that our real-time 

classification engine is able to simultaneously track 20 

objects and identify four movement classes with 93% 

accuracy. To demonstrate how robust this general-purpose 

interaction mechanism is, we investigate three usage 

scenarios 1) interactive storytelling with toys 2) inference of 

daily activities in the home 3) identification of customer 

browsing habits in a retail setting.  

Author Keywords 

RFID; Activity Detection; Object Interaction; Touch 

Interface 

ACM Classification Keywords 

H.5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous. 

INTRODUCTION 

Effective means of identifying people’s activities in their 

indoor environments has the potential to enable a wide 

number of human-computer interaction applications 

[7,14,15]. One key observation is that the objects we interact 

with provide rich contextual information about the state of 

our environment and the activities that we are doing. 

Whether it’s reading a book to a child, cooking a meal or 

fixing a bicycle, the objects that we use both define and 

reflect the activities we do in our daily lives. 

The challenge is to create an unobtrusive and general 

purpose approach to monitoring human object interaction via 

computer systems. A variety of sensing approaches have 

been proposed and shown that activity recognition is possible 

based on object interaction [10,11,13]. One common 

approach is to instrument objects with wireless sensor nodes 

using accelerometers (or other sensors) to infer object 

interactions. This approach can provide high-fidelity 

streaming sensor data but due to their relatively high per unit 

cost, large size, and need for battery replacement these 

methods have found limited usage for object-based activity 

monitoring.  

In this paper we propose IDSense, a new human object 

interaction detection technique which uses commercially 

available passive Ultra High Frequency (UHF) RFID tags 

and readers to detect human object interactions in the form 

of motion and touch. Combined with the ID information 

inherently provided by the RFID tags, our approach enables 

interaction identification for a wide variety of daily objects. 

This is accomplished by observing changes in the physical 

layer signals of the communication channel between the 

RFID reader and the passive tags. The key insight is that the 

channel parameters reported by the RFID reader, such as 

Received Signal Strength Indicator (RSSI), RF Phase, and 

Doppler shift represent a unique signature of the RF 

environment of each individual tag. By observing changes in 
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Figure 1: IDSense applications include (a) activity 

inferencing of daily tasks (b) interactive storytelling with low 

cost toys (c) identification of customer browsing habits 



these parameters over time, inferences can be made about the 

state of the tag and thus the object the tag is attached to. 

IDSense is a scalable, real-time object interaction detections 

system that can robustly monitor large rooms and living 

spaces with a single RFID reader. Everyday objects can 

easily be retrofitted with RFID “stickers” or integrated with 

RFID tags by the manufacturer. Users are able to naturally 

interact with 10s to 100s of tagged objects and the system 

detects events such as object motion and tag touch. By 

observing these interaction events over time, it is possible to 

enable a wide variety of applications such as inference of 

daily activities in the home (Figure 1a), interactive 

storytelling using low-cost tangible toys with computer-

based media (Figure 1b), enhanced retail experiences where 

interactions with tagged merchandise can be used to 

determine customer interests (Figure 1c). Generally 

speaking, IDSense makes sensing human interaction with 

everyday objects easy and unobtrusive, by minimally 

augmenting objects with low-cost and long-lived RFID tags. 

Contributions: 

We develop a new human object interaction detection 

technique based on commercially available, long-range 

RFID technology. This system is capable of robustly 

classifying tagged objects using a single RFID reader and 

antenna in home and office environments. The contributions 

of this work are as follows: 

1. For the first time, we use RF Phase information along 

with other key low-level channel parameters, such as 

RSSI and read rate to create multi-path invariant features 

for object interaction detection 

2. Create a classifier capable of identifying object motion 

and two types of touch events.  

3. Implement a real-time, data acquisition and classification 

system.  

4. Explore three usage scenarios: 1) interactive storytelling 

with toys, 2) inference of daily activities in the home, 3) 

identification of customer browsing habits in a retail 

setting. 

RELATED WORKS AND APPROACHES 

Automatic means of activity recognition is one of the key 

building blocks needed to enable new and novel human-

computer interactions systems. There is a variety of 

approaches to accomplish this goal each with their own 

unique strengths and weaknesses. 

User-centric systems require that individuals wear sensor 

nodes [1] or a smartphone [6] that continually collect data 

throughout the day. These types of systems show good 

results for determining the state of the body (i.e. running, 

walking, and sitting), but it is difficult to determine higher 

level activities such as cooking meals or reading a book. In 

order to gain a better understanding of user activity, Ren et 

al. [12] used body worn cameras to identify handheld objects

This approach provides a rich amount of data but like all 

computer vision systems, cameras require line of sight, 

significant amounts of computational resources, and raises 

privacy concerns. Furthermore, all user-centric systems 

require that the user actively participates at all times by 

wearing a device and maintaining its battery level which is 

not applicable for passive and/or intermittent users. 

The work presented in this paper focuses on the alternative 

paradigm where inexpensive sensors are densely distributed 

throughout the environment thereby freeing the individual to 

go about their daily routine. A straightforward approach is to 

instrument objects with wireless sensor nodes that use 

accelerometers (or other sensors) to infer object interactions 

[13] This approach can provide high-fidelity streaming 

sensor data but due to their relatively high per unit cost (tens 

of dollars), large size, and need for battery replacement, these 

methods have found limited usage for object based activity 

monitoring. Thus, many research efforts have focused on 

lowering cost and improving the lifetime of battery based 

sensing systems. 

At the extreme end of the hardware spectrum are RFID tags, 

which are battery-free (passive), fixed-function devices that 

cost 10 to 20 cents and report their unique ID when energized 

and interrogated by an RFID reader. Depending on the RFID 

technology used, the read range can be a 30cm for near-field 

systems or 10m for far-field UHF RFID systems. Since 

typical RFID systems only report the binary information that 

a tag is within range of a reader or not, researchers have 

focused on developing new types of tags and new ways of 

inferring tag activity. 

Philipose et al. [11] developed a wrist worn near-field RFID 

reader system that could identify objects tagged with button 

size RFID tags. Although this system did require the user to 

wear an RFID reader bracelet, this work demonstrated the 

feasibility of identifying daily activities solely from tracking 

human object interaction events. Buettner et al. [2] used the 

Wireless Identification and Sensing Platform (WISP), which 

is a battery-free, long range RFID tag enhanced with an 

accelerometer to detect movement of a tagged object. RFID 

readers were placed in the ceiling of a living room 

environment and the WISPs reported move events along with 

their ID. This system was capable of inferring 12 daily 

activities in a home setting. Since the WISP is still a research 

platform its relatively high pre-unit cost of more than $100 

USD does not make it feasible yet for large-scale 

deployments. Both of these examples demonstrate that object 

interaction events can be utilized to reliably infer activities. 

Early work by Fishkin et al [5] demonstrates the feasibility 

of passive UHF RFID based motion detection by measuring 

changes in tag read rate to infer object motion. They showed 

good results for detecting object rotation but, as the authors 

stated, their system was “nearly unable to detect translation-

only movement”. Furthermore, this system required multiple 

RFID reader antennas and multiple tags on each object.  



The closest prior work to our approach has been done by 

Parlak et al. [10] who presented a passive UHF RFID 

detection system specially designed for a trauma 

resuscitation scenario. The authors focused on constant 

rotation and linear tag movement at speeds of 1m/s and 

showed an average of 90% accuracy in motion detection 

based on a binary classifier in four lab controlled scenarios, 

and approximately 80% accuracy for real-world scenarios. 

The motion detection classifier described in their system is 

based solely on RSSI data and thus requires multiple 

antennas to detect tags that move laterally to reader antenna 

at a constant distance. 

It should be noted that the IDSense system presented here 

does not require multiple RFID reader antennas or multiple 

RFID tags on a given object, while still achieving high 

accuracy motion detection with low false positives. In fact, 

all the applications shown are done with a single antenna in 

real-world multipath environments. Additionally, we 

demonstrate two types of touch not previously reported. 

Thus, this system provides a flexible solution for object 

interaction detection, which can enable a wide number of 

human-computer interaction scenarios. 

SYSTEM OVERVIEW AND IMPLEMENTATION 

The goal of this project is to use minimalistic hardware in the 

form of commercially available RFID tags to provide enough 

sensing capability to robustly detect basic human object 

interactions. Figure 2 shows an example of a toy ambulance 

augmented with a UHF RFID tag on its hood; the copper 

antenna is most visible in panel C. Good RF engineering 

practices should be observed when choosing the type of tag 

and it’s placement on the object. There is a wide variety of 

tag shapes and sizes to choose from, as well as tags specially 

designed for glass and metal object. Generally speaking, it 

was not difficult to find good tag locations but some trial and 

error can be expected. 

Three different object states are investigated as well as two 

different touch events. The primary state is “object still”, 

meaning no interaction with tagged objects. The second state 

is object translation as shown in Figure 2a, where an object 

translation is defined as movements of greater than 10cm 

within 2 seconds. The third state is rotation as depicted in 

Figure 2b) which consists of a 90o rotation around one of the 

objects axis. Swipe touch (shown in Figure 2c) consist of the 

user swiping their finger across the tag antenna within 2 

seconds. Finally, a cover touch is when a user touches more 

than half the tag antenna for a minimum of 1 second. It 

should be noted that small and/or extremely short duration 

movements were not specifically studied and only natural 

human interactions are explored.  

This work focuses on common indoor environments such as 

the home and office with no special considerations given to 

building materials, room selection or furniture placement. 

Figure 3 shows an image of the lab environment where initial 

testing and validation of the IDSense system was done. The 

RFID reader antenna is placed on top of a ceiling panel 

(highlighted in pink) pointed downwards. A coax cable 

leading back to the Impinj Speedway Revolution reader and 

host computer is visible. The read distance of UHF RFID 

tags in free space is +10 meters. In this example, the reader 

coverage zone extends from the gray workbench on the left 

to the gray workbench on the right and includes the wooden 

table and floor in the middle of the frame. In this region per 

tag read rate (or sampling rate) is between 15-40 reads per 

second depending on the size of the tag population. As a 

point of reference, it is possible to read tags on the far white 

shelves in the background but read rate is typically below 10 

reads per second. As will be discussed later in the paper, 

proper RFID reader antenna placement is important to 

achieve good performance and reduce false detection caused 

by human activity, and a detailed discussion of room 

coverage can be found in [4]. 

Physical Layer Signals of UHF RFID Systems 

The commercially available UHF RFID system used in this 

work is capable of reporting low-level channel parameters 

such as Received Signal Strength Indicator (RSSI), RF 

Phase, and Doppler shift as well as the unique identification 

number of each tag. The RFID reader interrogates tags within  

Figure 2: Types of human object interactions a) translation b) 

rotation c) swipe touch d) cover touch 

Figure 3: Image of the lab environment used for initial testing. 

The RFID reader antenna is placed on top of a ceiling panel 

(highlighted in pink) pointing downwards. 



its range according to the ISO-18000-6C specification, based 

on the Slotted Aloha protocol, and has a maximum 

theoretical read rate of 1,200 tags/sec. Given proper reader 

settings, it has been observed that an individual tag can be 

read at ~90 reads/second and a population of 10 tags can be 

read at ~330 reads/sec with individuals reading at 30 

reads/sec. Using a naïve approach a large population will 

begin to saturate the system. For instance, 60 tags had a total 

read rate of 616 reads/sec and thus the individual rate 

dropped to around 10 reads/sec. To overcome this limitation, 

it is possible to programmatically mask sub-populations of 

tags to increase read rate. This technique was not needed for 

this work and as a rule of thumb, the typical per tag read rate 

was between 15-40 reads per second for all experiments.  

In RFID systems, RSSI is a measurement of the signal power 

received at the reader and is predominantly affected by large 

changes in the distance between the tag and the reader. RF 

phase is a measure of the phase angle between the RF carrier 

transmitted by the reader and the return signal from the tag. 

Phase is dominated by small changes in distance and/or in 

carrier frequency and repeats every wavelength. Finally, 

Doppler is the frequency shift between the transmitted and 

reflected signals caused by quickly moving objects. Each 

time a tag is read, the RFID reader measures these physical 

layer channel parameters and reports them along with the tag 

ID and the transmit frequency to our real-time host 

application. To retrieve the low-level data streams, we 

implemented a reader communication software in C# using 

Octane SDK provided by Impinj. 

A plot showing 60 seconds of raw RSSI and Phase data for a 

single tag is depicted in Figure 4, panel a. The tag is “still” 

during the first 20 seconds, next the tag is “moved” for 20 

seconds, and for the remaining 20 seconds it is “still”. This 

sequence of events can be inferred from the RSSI data, but 

the phase data does not show a discernable trend. This is due 

to FCC regulations which require RFID readers in the 

915MHz ISM band to pseudo-randomly change their 

transmit frequency in order to minimize interference with 

other devices. The result is that the RFID reader must 

“frequency hop” across 50 channels from 902MHz to 

928MHz (in the USA) at an interval of approximately 0.2 

seconds. This causes significant discontinuities in the RF 

phase reported by the reader as a function of time (see Figure 

4a), which makes detecting tag movements particularly 

difficult. However, the RFID reader also reports which 

channel (aka frequency) was used when a tag is read. Thus, 

re-mapping the window of the RF phase data from time into 

transmitted frequency (as shown in Figure 4c) reveals well-

defined structures that can be used to build classification 

features. 

One of the key insights is that these low-level channel 

parameters represent a snapshot of the RF environment that 

is unique to each tag. Each tag’s RF environment is 

comprised of, the far-field signal path from the reader to the 

tag (including all multipath elements), as well as the objects 

within the near-field region of the tag, which has an effective 

radius around the tag of a half wavelength (~16cm). Thus, 

any changes in distance and/or tag orientation will result in 

altering the signal paths and will be reported as changes in 

RSSI and/or RF phase. By watching the change in these 

parameters over time, the state of an individually tagged 

object can be inferred. Furthermore, changes in the near-field 

region of the tag (such as hand touch) will alter its resonant 

frequency and/or the impedance match between the RFID IC 

and the antenna. Both of these effects will be reported as 

changes in RSSI and RF phase as reported by the reader. 

Feature Selection and Machine Learning 

Through experimentation, it was determined that 2 seconds 

is approximately the upper bound needed for our participants 

to complete translation, rotation, swipe touch, and cover 

touch interaction in a natural fashion. Thus, a 2-second 

sliding window (which is advanced each second) was 

employed to segment the RSSI and RF phase data stream to 

generate features as inputs for the object interaction 

classifier. A longer window could be used to identify longer 

object interaction, but it would also increase the latency of 

the real-time system. 

Figure 5 shows examples of the raw RSSI and RF Phase 

signals for the same object undergoing four different types 

of interactions. Figure 5a shows a still tag (i.e., no human 

interaction) with the RSSI vs time plot on the top and the RF 

phase vs. transmit frequency plot on the bottom. The RSSI 

vs time plot is relatively stable for a two second time window 

and the RF phase vs. frequency plot shows RF phase 

decreasing at a constant slope. Translation (Figure 2b) and 

rotation (Figure 2c) has a major influence on RF Phase 

variation while swipe touch (Figure 2d) has a major 

influence on RSSI variation. 

Figure 4: Raw RSSI and Phase data for a single RFID tag 

undergoing an interaction event (panel a). Due to pseudo-

random frequency hopping a two second windows of phase 

data (panel b) must be sorted by channel (i.e. frequency) to 

reveal the tag expected phase behavior (panel c). 



To minimize the influence of RF signal multipath effect, the 

features are based on differentials rather than absolute values 

of RSSI and RF Phase. Eight features have been 

implemented from RSSI, RF Phase, as well as read rate.  

RSSI Features 

Generally speaking, changes in RSSI are predominantly 

caused by changes in the distance between the reader and the 

tag as well as the orientation of the tag antenna. However, it 

is well known that multipath effects can cause unpredictable 

variations in signal strength between a transmitter and 

receiver. In real-world settings, multipath increases the 

spatial variation in RSSI and thus providing a greater 

likelihood of detecting motion events. To identify these 

changes the following features have been selected.  

1. Standard Deviation of RSSI  

2. Mean of RSSI Standard Deviation within each frequency. 

3. Mean of difference between neighboring RSSI 

RF Phase Features 

RF phase is sensitive to smaller changes in distance between 

the tag and reader and is particularly useful for detecting 

translations. Additionally in Figure 4, the frequency hopping 

effect demonstrates RF Phase dependency on channel 

frequency, which results in the phase related features being 

divided into two subgroups: the Constant Frequency Phase 

Rate (CFPR) and the Variable Frequency Phase Rate 

(VFPR). Since the RFID reader performs many tag reads on 

a single frequency before hopping to the next channel, 

changes in the phase are a good indicator of an interaction 

event. Here we define the Constant Frequency Phase Rate as: 
  

𝐶𝐹𝑃𝑅 = 𝑃ℎ𝑎𝑠𝑒[𝑖 + 1] − 𝑃ℎ𝑎𝑠𝑒[𝑖]          (1) 

Where Phase [i+1] and Phase [i] are neighboring RF phase 

measurements at the same frequency (for a given time 

window). We use the following three features to represent 

variations of Constant Frequency Phase Rate caused by 

human tag interaction. 

4. Median of the CFPR  

5. Sum of the absolute values of CFPR 

6. Standard Deviation of the CFPR 

When the RFID reader does frequency hop from one channel 

to another, the change in frequency adds an additional 

dimension of information to infer human tag interaction. 

Equation (2) shows that the distance between the reader and 

tag is proportional to the partial derivative of the phase with 

respect to the derivative of frequency as described in [9]. 

𝑑 = −
𝑐

4𝜋

𝜕𝜑

𝜕𝑓
                 (2) 

  

Therefore, the Variable Frequency Phase Rate is defined in 

equation (3) as the incremental change in phase divided by 

the incremental change in frequency.

 
𝑉𝐹𝑃𝑅 =

𝑃ℎ𝑎𝑠𝑒[𝑖 + 1] − 𝑃ℎ𝑎𝑠𝑒[𝑖]

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦[𝑖 + 1] − 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦[𝑖]
    (3) 

Finally, since VFPR is proportional to the distance of the 

tag to the reader, the standard deviation of VFPR is used to 

determine tag motion. 

7. Standard Deviation of the 𝑉𝐹𝑃𝑅 
 

Read Rate per Tag 

A cover touch event on a tag will dramatically weaken the 

received signal strength, which results in decreased read rate. 

Read rate of an uncovered tag ranges from 15 to 40 per 

second while a covered tag (half covered or fully covered) 

usually has a read rate less than 10 reads per second.  

8. Read Rate: Number of packets received from each RFID tag 

per second. 
 

Doppler Features 

Doppler shift is used in a number of radio sensing scenarios 

to infer the relative motion of two radio systems. We 

developed several features using the Doppler information 

reported by the reader; unfortunately due to the relatively 

low speeds of human motion and the large amount of noise 

in the signal, these features did not prove to be expressive 

enough when compared to the other eight features. It should 

be noted that RFID-based Doppler shift features would be 

useful in fast moving scenarios such as outdoor sporting 

activities and automotive settings. 

Figure 5: Tag RSSI vs time and phase vs frequency for Still, Translation, Rotation, and Swipe Touch over a 2 second window 



Motion and Touch Event Classifier 

In a pilot study conducted in the lab setting depicted in Figure 

3, we determined that our system is able to detect horizontal 

translation greater than 20 centimeters in distance, vertical 

translation greater than 10 centimeters, and rotation of more 

than 45 degrees; all in a 2 second window. One limitation of 

the system is that when objects are moved very slowly, there 

may not be a significant RF signal change (in the two second 

sliding window) to be classified as an interaction event. At 

the other extreme, it could be possible to start and complete 

an object moment so quickly that the data would only appear 

as a brief impulse, thus making classification difficult. This 

edge condition was difficult to produce and was not observed 

in practice.  

In a pilot study, 600 instances of interaction events were 

recorded with one participant interacting with one tagged toy 

doing 5 types of interactions: still, translation, rotation, swipe 

touch and cover touch. For translation, the toy is moved by 

20 centimeters and in the rotation class, the toy is rotated by 

90 degrees. Interactions are conducted on a table top with the 

RFID reader antenna mounted on the ceiling facing 

downwards at a distance of approximately 3 meters. A real-

time classifier using Support Vector Machine (SVM) [3] 

with Radial Basis Function (RBF) kernel was implemented 

in Matlab, which received streaming RFID read events from 

a Java application over TCP/IP.  

We trained a 5-class classifier based on the 600 annotated 

instances and tuned parameters in the RBF kernel by 10 fold 

cross validation. This approach was able to achieve an 86.0% 

accuracy. However, the major classification confusion 

occurred between the translation class and the rotation class, 

which could only be distinguished with a 74.7% accuracy. It 

is believed that using multiple tags on a single object could 

improve these results in the future. 

Since the goal of this work is to robustly identify human 

object interactions, we combined the rotation and translation 

classes into one “motion class”. The final classifier detects 

human tag interaction including still, motion, swipe touch 

and cover touch. The 10-fold cross-validation results in a 4-

class classifier, which shows an improved accuracy of 

95.7%. It should be noted that our classifier is invariant to 

which object was used to train the classifier. Thus annotated 

data from all objects are being used to train a uniformed 

model. In later sections, we demonstrate that this classifier 

can be used by different participants, without the need for 

retraining. This makes sense, since the system is detecting 

that an object is being interacted with, not a gesture or action 

that is unique to an individual.  

The real-time classifier reports results once per second for 

each tag, which is accomplished by sliding the two-second 

window over the data stream in one-second intervals. The 

following sections investigate several applications using the 

IDSense system and are implemented using the real-time 

classifier. 

IDSENSE APPLICATION AND EVALUATION 
One of the key tradeoffs of this approach is the we are 

inherently sacrificing rich sensing data of an object’s state, 

for a low-cost method of instrumenting that object with a 

passive RFID tag. The previous section demonstrated that 

the system is fundamentally capable of identifying basic 

human object interaction in a normal office/lab environment. 

To gain a better understanding of the capabilities of the 

system, it is useful to focus on a few application spaces. 

The following sections explore three application scenarios 

and provide a deeper analysis of system performance. It 

should also be noted that human subject approval was 

obtained for all studies in this paper and the RFID equipment 

used is commercially available and meets the FCC 

regulations for health and safety as well as radio interference.  

Interactive Storytelling with Physical Toys 

An interactive storytelling application is shown in Figure 6 

where a stuffed toy lion is enhanced with a low-cost RFID 

collar that communicates with a higher cost game console 

(RFID reader) connected to a computer or TV. When a child 

plays with the real toy, interaction events are recorded by the 

IDSense system which triggers actions by a virtual character 

on a computer screen. For instance, a swipe touch near the 

collar is interpreted as petting the lion while a cover touch 

triggers the character to take a nap. Likewise shaking the lion 

causes the digital character to dance. Any of these actions 

can advance the plot line of the story and be used to trigger 

visual and audio feedback. Since RFID tags inherently 

provides unique identification information, multiple toys can 

be used simultaneously to create complex and dynamic 

stories. Additionally, each toy can be personalized based on 

previous story lines or user’s preferences using a database or 

the writeable memory in the RFID tag. Ultimately IDSense 

offers an unobtrusive way to bridge interactive digital media 

with real-world toys and objects. 

Study Design Overview 

In this study, we evaluate the performance of the system at 

classifying events necessary to support the interactive 

storytelling scenario. These events include the toy being: 

still, in motion, swipe touched, and cover touched. In this 

case, the “motion class” includes both toy translation (Figure 

2a) and rotation (Figure 2b). 

Classified 

as   

Still Trans Rotate Swipe Cover 

Still 97.5% 1.7% 0.0% 0.8% 0.0% 

Trans 0.8% 68.3% 28.3% 2.5% 0.0% 

Rotate 0.8% 20.0% 74.2% 4.2% 0.8% 

Swipe 0.0% 3.3% 3.3% 93.3% 0.0% 

Cover 0.0% 0.8% 0.8% 1.7% 96.7% 

Table 1: 10 fold cross-validation result for 5-class classifier  



Five tagged toys were placed on a table measuring 140cm x 

70cm as shown in Figure 7, which is in the same location as 

shown in Figure 3. The table was divided into 6 sections 

marked with number 1-6. For move events, the toys were 

moved from one section to another, distance between 

neighboring sections was approximately 20 to 35 

centimeters, and non-neighboring sections approximately 40 

to 90 centimeters.  

Study Procedures 

We recruited 11 participants including 7 males and 4 
females, with a mean age 25.7 years. Each participant 
finished the study independently, 11 studies spanned over a 
period of two weeks. During the study, each participant was 
asked to follow visual instructions on a monitor to perform 
10 instances of each of the following interactions on 2 
randomly selected toys. Instructions were given once every 
5 seconds. The instruction script is used as ground truth and 
user’s mistakes are manually annotated. We also monitor 
interaction records on the 3 unselected toys to test false 
alarms triggered by interaction with nearby objects.  

1.  Translation: Translate 2 toys simultaneously between 6 

sections for 10 instances (Figure 2a, Figure 7). 5 

translations to neighboring sections and 5 translations to 

non-neighboring sections. Note that 2 toys were 

following different paths during translations. 

2. Rotation: Rotate 2 toys simultaneously by approximately 

90 degrees for 10 instances (Figure 2b) 

3. Swipe touch: Perform 10 swipe touches on 2 toys 

simultaneously. (Figure 2c) 

4. Cover touch: Perform 10 cover touches on 2 toys 

simultaneously. (Figure 2d) 

5. Still: Pauses between two interactions are recorded as 

still instances 

Training & Testing 

We trained our 4-class interaction classifiers based on 

annotated data from one participant and tested the classifier 

for all other 10 participants. Classification results were 

reported in real time (and recorded for post processing), but 

were not made visible to the participants during testing. The 

script with annotated mistakes was then compared to data 

collected by the RFID reader. 

 

Evaluation Results: 

The system achieved an average of 93.7% (SD=1.0%) 

classification accuracy for 5 toys on 1600 instances across 4 

classes collected from 10 participants, and a 2.8% (2400 

instances) false alarm rate on the 3 still reference toys. Table 

2 shows detailed classification results. 

These results show that the system is capable of classifying 

multiple tagged objects even when simultaneous interaction 

events occur. During natural interactions with toys, 

participants would have to reach over “still toys” in order to 

pick up adjacent objects when prompted. This could cause a 

change in the RF signature of the “still toy” since the arm of 

the participant would partially blocked some of the RF 

signals from the reader, potentially causing a false positive.  

However, our training session included this type of 

interference and the results show that it did not cause a 

significant false positive rate. 

We also tested the system in the same setting with only one 

tagged toy to get an upper bounds on performance. This 

accuracy is only slightly higher than the 5 tag scenario with 

an accuracy of 95.3% (SD=4.0%). 

Classified 

as 

Still Motion Swipe Cover 

Still 94.5% 2.5% 3.0% 0.0% 

Motion 2.3% 92.3% 5.5% 0.0% 

Swipe 1.0% 5.5% 93.5% 0.0% 

Cover 0.0% 4.0% 1.5% 94.5% 

Table 2: Classification results for user toy interaction 

events. Five toys where interacted with in total and at any 

one time two toys where being interacted with.  

 

Figure 6: An example of interactive storytelling 

where interaction with a physical toy lion, such as 

petting, holding, and shaking triggers digital 

character actions and plot events. 

Figure 7: Study setting for toy interaction 



Interaction Detection of Daily Objects for Activity 
Inferencing 

Activity inferencing of daily tasks and events in the home 

and office environment has long been an important capability 

for ubiquitous computing and smart environment 

applications. Using human object interaction in the form of 

“move” events has been shown as a reliable method for 

inferring daily activities [11,13]. For testing purposes, a 

home living room environment was setup in our office space 

and objects were augmented with RFID tags as shown in 

Figure 8. In this scenario, IDSense shows that it can achieve 

results similar to previous activity inferencing projects based 

on RFID without the need for expensive custom hardware or 

for the users to wear an RFID reader. 

Study Design Overview 

In this study, we evaluate the performance of our system in 

classifying events necessary to support activity inferencing 

scenarios, based on human object interaction. Ten commonly 

used items in a living room/kitchen setting are retrofitted 

with tags including: 1) drinking glass, 2) milk container, 3) 

cereal box, 4) bowl, 5) glasses case, 6) book, 7) TV remote 

control, 8) vitamin box, 9) window cleaner, 10) toothbrush.  

The items are placed on 3 separate tables/counter tops, which 

occupy approximately a 4m x 4m space. The RFID reader 

antenna is placed near the ceiling on a tall tripod and is 

pointed downwards towards the floor so that it covers the 

tables and counter. 

Study procedures 

We recruited 11 participants including 6 males and 5 

females, with a mean age of 25.3 years. Each participant was 

given audio instructions to perform three randomly ordered 

sets of the following eight activities, resulting in 24 activity 

instances: 1) Drink milk 2) Make cereal 3) Wear glasses 4) 

Read book 5) Watch TV 6) Take vitamin 7) Clean window 

8) Brush teeth. Each activity lasted approximately 20 

seconds. 

An instruction script was used as ground truth and user’s 

mistakes were manually annotated. Some activities were not 

exactly the same as in real life (i.e. participants were not 

required to consume food), but participants were asked to 

perform object interaction with tagged objects as they would 

do in a real-life setting.  

Training & Testing 

In this scenario, the goal is not to simply quantify IDSense’s 

ability to identify individual move and touch events which 

were demonstrated in the last two sections. Instead, the time 

series output of the IDSense motion event classification 

engine is sent to a second activity inferencing classifier. The 

goal of the activity inferencing engine is to identify higher 

order activities based on the series of lower level object move 

events. 

We trained our lower level motion event classifier based on 

50 annotated motion events, of 10 objects manipulated by 

one participant. For the activity classifier, we set our sliding 

classification window length to 20 seconds, which was 

advanced on a one-second interval. Object motion events are 

mapped into activities and used to identify the other 10 

participants’ activities. Results are post-processed based on 

the ground truth script with annotated user mistakes. 

Evaluation Results: 

IDSense reported an average of 96.9% (SD=2.5%) precision 

and 95.8% (SD=4.3%) recall, for inferring eight activities 

given a total of 240 instances across 10 participants. Table 3 

shows classification details on each activity. These 

promising results showcase the adaptability of our low-cost, 

commercially available RFID-based system in a home 

setting for activity detection and inferencing. 

Product Interaction Tracking for Costumer Interest 
Monitoring. 

RFID systems have already shown potential for enhancing 

traditional retail stores while improving inventory 

management [8]. IDSense offers the potential to determine 

which items or merchandise displays are most appealing to 

consumers based on interaction events. Retailers can use 

such information to provide consumers with customized 

shopping experiences. One of the challenges in a retail 

environment is that the number of RFID tags visible by an 

individual reader may be significantly larger than that in a 

Activity Precision Recall 

Drink Milk 93.5% 96.7% 

Make cereal 98.1% 86.7% 

Wear glasses 96.8% 100.0% 

Read book 100.0% 96.7% 

Turn on/off TV 96.5% 93.3% 

Take vitamin 100.0% 96.7% 

Clean window 96.7% 96.7% 

Brush teeth 93.7% 100.0% 

Totals 96.9% 95.8% 

Table 3 Activity detection results for eight common tasks in 

the home 

 

Figure 8: Activity inferencing study setting in a mock living 

room environment 



home setting. As the population of tags increases, the per-tag 

read rate (or the sampling rate of the tag) can decrease. 

Thankfully there is not an inversely proportional correlation 

as the ISO-18000c standard which is based on the Slotted 

Aloha protocol is specially designed to quickly inventory 

very large population of tags. Additionally, with densely 

packed clothes on hangers, it is likely that the movement of 

one item may cause motion on nearby objects as well. On the 

other hand, since shoppers will spend more than a few 

seconds with an object that they are interested in, multiple 

move events can be registered in terms of higher frequency 

and duration to determine the items of interest.  

Study Design Overview 

In this study, 20 tagged clothes are displayed on two clothing 

racks (Figure 9). The RFID reader antenna is located on the 

ceiling pointed towards the racks. Each participant is asked 

to browse the selection of clothing and select items of 

interest. Since the RFID tags are densely packed together on 

hanging racks, small movements of one piece of clothing can 

move other shirts resulting in spurious move events. 

Therefore, we created a second classifier that monitored the 

data stream of move events into two shopping activities: 

“browsing” and “item of interest”. Browsing indicates which 

rack of clothing a shopper is looking through. The “item of 

interest” classifier detects that a single garment tag is being 

interacted over an extended period of time. 

Study procedures 

We recruited 11 participants including 7 males and 4 

females, with a mean age of 24.2 years. Each participant was 

asked to browse through the racks of clothes and then choose 

one piece to try on. We recorded browsing and clothing 

choice ground truth manually. The clothing interaction 

classifier reported interaction events once per second. The 

action of browsing was determined by matching clusters of 

interaction events to a particular clothing rack. Items of 

interest are determined by monitoring interaction frequency. 

In a moving window of 30 seconds, if more than 10 

interaction events are detected on one tag, the tagged clothes 

will be classified as an item of interest. 

Training & Testing 

We trained our interaction classifier based on annotated data 

from one participant doing 50 instances of annotated motions 

on clothes. Since there are only motion and still events in this 

scenario, the classifier is binary, separating motion class 

from still class. Objects motive events and their frequency in 

a 30-second sliding window (which is advanced each 

second) was used to determine browsing and item of interest. 

Classification results were reported in real-time but were not 

made visible to the participants during testing. 

Evaluation Results: 

A total of 10 participants made 50 browsing events and 50 

clothing choices. The system was able to detect 49 out of 50 

“browsing” events with 4 false alarms and 48 out of 50 “item 

of interest” clothing choice events with 1 false alarm. Thus, 

yielding 92.5% precision, 98.0% recall on browsing 

detection and 98.0% precision and 96.0% recall on 

identifying clothes choices. These results show the potential 

to apply the IDSense system in the retail environment to 

identify consumer shopping habits and help provide better 

consumer experiences. 

DISCUSSION & LIMITATIONS 

There are many possible methods for implementing human 

object interaction detection systems and IDSense focuses on 

the paradigm of minimalistic instrumentation of objects with 

ultra-low-cost radio sensing capability in the form of RFID 

tags. While other approaches can provide streaming sensor 

data at higher data rates, this paper demonstrates that simple 

move and touch interaction detection can enable compelling 

ubiquitous sensing and human object interaction 

applications. 

Additional Applications 

Since the IDSense system is easy to train and deploy, we 

believe the potential application space is not limited to the 

three scenarios described in the previous sections. In fact, 

everyday objects provide a board space for IDSense to 

enable novel interaction detection applications. Other 

applications we have explored include seat occupancy 

detection and gross posture estimation. For example, tags on 

a seat surface can be utilized to detect occupancy by sensing 

cover touch. Tags on the seat back and armrest can be used 

to sense a leaning back posture and resting arm posture, 

enabling gross posture detection.  

A second class of compelling application space is 

infrastructure monitoring, where RFID tags can infer the 

state of the environment. For example, RFID tags placed on 

fixed infrastructure, such as doors, floors, and windows, can 

be used for motion tracking for security scenarios. 

Furthermore, tags can be integrated into objects as sensors, 

where the motive or still states of mechanical methods can 

be inferred by monitoring RSSI and RF Phase features.  

Human Interference 

IDSense demonstrates good performance for multi-tag 

applications and the usage scenario should be designed to 

mitigate object-to-object and object-to-human interference. 
Figure 9: Retail shopping scenario study setting 



However, due to the diversity of human behavior, unintended 

interactions can be recorded. For instance, when humans 

walk between the reader antenna and tagged objects (or 

block most of the RF paths to the target tag) it is possible to 

create false interaction events. Thus, choosing good antenna 

placement can improve system performance. We found that 

reader antennas placed in the ceiling provide a good balance 

between reader coverage area and reduction of human signal 

blocking events. Other approaches, such as multiple reader 

antennas and the use of fixed reference tags that help 

calibrate the system may provide additional improvements. 

Training 

One of the advantages of only classifying move and touch 

events is that the classifier can be generalized to multiple 

users, and the same classifier can be used for multiple 

objects. In our evaluation study, the training process required 

a single participant to record training data for no more than 

10 minutes. When a single interaction classifier is applied to 

multiple usage scenarios in different environments, it can 

only achieve limited performance. So we chose to boost 

performance by having one participant retrain the classifier 

for each usage scenario. Since each of the three studies was 

done in very different locations, it is believed that the 

environment had some effect even though the features are 

based on signal differentials. In future work, we want to 

explore the machine learning space to develop a unified 

model to automatically adapt to dramatically different 

circumstances to reduce training and enable human object 

interaction in even more sophisticated environments. 

CONCLUSIONS 

This paper presents a robust method for enabling human 

object interaction by using minimalistic instrumentation in 

the form of passive UHF RFID tags. Even though RFID tags 

can only provide their ID when read by an RFID reader; we 

have shown that it is possible to infer tag motion and touch 

events by measuring changes in the RF communication 

channel between the tag and reader with 93% to 97% 

accuracy. 

To demonstrate the versatility of our system, we investigated 

three application scenarios and conducted user studies to 

show the viability of our approach. First an interactive story-

telling scenario was demonstrated where toys were tagged so 

that they could be augmented by digital media. Second, we 

showed for the first time that low-cost, commercially 

available RFID tags could be used to infer daily activities in 

a home setting without the need to wear a reader. Lastly, we 

showed that implementing this system in a retail scenario can 

enable the identification of real-time shopping behaviors. 

Ultimately, IDSense makes sensing human interaction with 

everyday objects easy and unobtrusive, by minimally 

augmenting objects with low-cost and long-lived RFID tags. 
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