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ABSTRACT
Technologies that allow autonomous robots and computer
systems to quickly recognize and interact with individuals in
a group setting has the potential to enable a wide range of
personalized experiences. However, existing solutions fail to
both identify and locate individuals with enough speed to en-
able seamless interactions in very dynamic environments that
require fast, implicit, non-intrusive, and ubiquitous recogni-
tion of users.

In this work, we present a hybrid computer vision and RFID
system that uses a novel reverse synthetic aperture technique
to recover the relative motion paths of an RFID tags worn
by people and correlate that to physical motion paths of indi-
viduals as measured with a 3D depth camera. Results show
that our real-time system is capable of simultaneously rec-
ognizing and correctly assigning IDs to individuals within 4
seconds with 96.6% accuracy and groups of five people in
7 seconds with 95% accuracy. In order to test the effective-
ness of this approach in realistic scenarios, groups of five par-
ticipants play an interactive quiz game with an autonomous
robot, resulting in an ID assignment accuracy of 93.3%.
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INTRODUCTION
Have you ever ran into someone and forgotten their name?
Or even worse did not recognize them at all, only to find out
you’ve met before! These panic filled moments are not only
awkward and unpleasant for you, but can lead to hurt feel-
ings and an aversion to future encounters by the other person.
Now imagine an autonomous robot trying to have casual and
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Figure 1. An illustration depicting and autonomous robot interacting
with people wearing RFID tags. In order to provide a personalized ex-
perience the robot must quickly and precisely correlate the RFID and
computer vision data to determine who and where the individuals are.

meaningful encounters with people. If the robot calls some-
one by the wrong name or fails to recognize they have had a
previous encounter, it can have disastrous effects when trying
to build social relationships.

The ability for autonomous robots and computing systems
to quickly recognize individuals is an important step to en-
abling natural encounters and personalized experiences that
grow over multiple interactions. However, this becomes espe-
cially challenging in very dynamic environments that require
fast, implicit, non-intrusive, and ubiquitous identification of
the users.

Recognition systems based on computer vision (including
stereo cameras, structured light, and LiDar) can robustly de-
termine where people are in its field of view, but it still re-
mains an open research challenge to identify who those indi-
vidual people are. State-of-the-art face recognition systems
have shown promising results when given large amounts still
photos for training [26, 22]. However, face recognition re-
quires a cumbersome user registration process consisting of
photographing and manually annotating each participant for
training purposes, which is not feasible when scaling to a
large number of participants or for casual encounters. In addi-
tion, face recognition software is limited by constraints such
as orientation, light condition and face resolution.



Alternatively, recognition approaches based on wireless sig-
naling require active participation by the user, but signifi-
cantly increases the reliability of identification. This typi-
cally requires the user to activate an app on their cell phone
for each interaction or carry a wireless transponder [23, 15].
While these devices actively transmit data to identify who is
within the vicinity of the robot or computing system, it is
very difficult to determine precisely where the person is. This
is primarily due to the nature of propagating electromagnetic
waves, which makes it difficult to precisely locate a transmit-
ter with an accuracy greater then 1-2 meter [17, 29, 19].

In this work, we propose a combination of light-based com-
puter vision, and RF-based wireless communication to har-
ness the best of both worlds (i.e. location and identification).
An example scenario is depicted in Figure 1, where a fam-
ily, wearing UHF RFID tags, approaches and interacts with
a robotic character. To create a rich interactive experience
the robot needs to be able to recognize people it has seen
before, look at an individual in their eyes, and call him or
her by their correct name. First the robot scans the family’s
long range UHF RFID tags and can infer that Chase, Monica,
and Emmy are coarsely standing in front if it. At the same
time, the robot’s vision system analyzes the scene and deter-
mine that there are three people (i.e. skeletons) in the field
of view. This raises what we are referring to as the “ID as-
sociation problem”. The challenge is to determining which
name (Chase, Monica, and Emmy) belongs to which skeleton
(A, B, or C), all while people are actively moving throughout
the scene and with many additional RFID tags visible to the
reader in the background.

To accomplish this, we have developed a method for cor-
relating the time traces of the free-roaming synthetic aper-
tures of the worn RFID tags (using a single RFID reader an-
tenna), with the position traces of people (using a single depth
camera). This new technique is further enhanced by using a
support vector machine to correlate the changes in low-level
RFID channel parameters such as (RSSI and Phase) as the
tags are moved in space, to the motion of the individuals as
seen by the depth camera. Finally, a probabilist voting system
is implemented to assign ID to the people in the scene.

Our real-time system called ID-Match is capable of simulta-
neously recognizing and correctly assigning IDs to individu-
als in 4 seconds with 96.6% accuracy and people in groups
of five in 7 seconds with 95% accuracy. Additionally, it is
demonstrated that the system can operate in multi-path rich
environments and distinguish between nearly identical mo-
tions between users without loss of accuracy. In order to test
the effectiveness of ID-Match in realistic scenarios, groups
of five participants play an interactive quiz game with an au-
tonomous robot, and results show an ID assignment accuracy
of 93.3%. Finally, the robustness of ID-Match is evaluated
with a 7.5-hour test where 21 participants were autonomously
recognized throughout a working day.

Contributions
We develop a novel hybrid computer vision and UHF RFID
system capable of recognizing individuals walking in groups
while wearing RFID tags. This real-time system is effective at

Figure 2. An illustration of a typical implementation of the ID-Match
system consisting of a Kinect depth camera and UHF RFID reader.

operating in multi-path environments and under challenging
usage scenarios.

• A reverse synthetic aperture radar technique for measuring
the relative motion of UHF RFID tags for correlation to
motion paths captured with a 3D depth camera

• Development of new features and a machine learning
pipeline to correlate the tags low-level RFID channel pa-
rameters to body movements as measured with a 3D depth
camera

• A real-time system capable of simultaneously recognizing
five individuals and giving them a personalized robotic in-
teraction

SYSTEM OVERVIEW
ID-Match is a real-time, hybrid computer vision and UHF
RFID system that can simultaneously track, and individually
identify multiple people wearing RFID tags in multipath rich,
real world environments.

Figure 2 shows a typical implementation of the ID-Match sys-
tem consisting of an Impinj Speedway Revolution UHF RFID
reader [2] with a single antenna [1], along with a Kinect v2
depth camera [3]. Users wear low cost (7-15 cent each) UHF
RFID tags in the form of clip-on name badges or lanyard.
As people walk within view of the system the RFID tags are
continuously read and the Kinect tracks the position of the
unknown skeletons in 3D space. Since passive UHF RFID
tags have a read range of up to 10 meters and a single reader
can cover 50-150 square meters, the challenge is to determine
which ID belongs to which skeleton.

ID-Match accomplishes this using two independent correla-
tion pipelines, which are combined to provide a fast and ac-
curate determination of the precise location and ID of indi-
viduals. The procedure is outlined below and is covered in
greater detail in subsequent sections.

Reverse Synthetic Aperture Pipeline:

1. Use a reverse synthetic aperture technique to determine the
relative radial path of each of the RFID tags to the RFID
reader’s antenna



2. Use the Kinect to track each person in 3D and determine
his or her equivalent radial path in the coordinate frame of
the RFID reader antenna

3. Compare and rank each of the tags synthetic aperture paths
to the visual motion paths and place in a voting buffer

RF Motion SVM Pipeline:

1. Record the RSSI, phase, and channel number for each tag
and extract seven RF motion features

2. Track the location of each skeleton using the Kinect and
extract three motion features

3. Use SVM machine learning to classify similar RF motion
features to physical motion features and place results in a
voting buffer

Final Step:

1. Combined the two independent voting buffers and deter-
mine the final tag ID to skeleton correspondence

RELATED WORK
At the core of the ID-Match system, is a method for determin-
ing the fine grain change in distance between the reader and
the tag using a reverse Synthetic Aperture Radar (SAR) ap-
proach. These RFID SAR paths are then compared to the po-
sition paths of the people as reported by a 3D depth camera.
This core capability is augmented with a machine learning
approach that builds upon [16], and classifies changes in low-
level RFID communication channel parameters to the motion
of a person in space.

Synthetic Aperture Radar (SAR) and Angle of Arrival (AoA)
techniques are regularly used in wireless communication sys-
tems to locate active transmitters [29, 19, 14, 17, 7]. Many
of these general approaches have been adapted to the UHF
RFID space. Where RF channel parameters such as Received
Signal Strength (RSSI) and RF Phase can be used to locate
tags with accuracy on the order of several 10s-100s centime-
ters [20, 24, 13], for well-controlled environments such as
anechoic chambers and well-structured portals.

In order to increase localization resolution of tags in uncon-
trolled, multipath environments several systems use SAR an-
tennas on the RFID reader. However, these approaches face
limitations when both the reader and the tag are moving. For
example Miesen et al. [18], used an antenna on a linear actu-
ator to create a synthetic aperture. However, this requires that
the environment remains static while scanning occurs. Wang
et al., [27] uses a spinning antenna to create a synthetic aper-
ture but requires densely spaced marker tags place throughout
the environment to disambiguate the mobile tag motion from
reader antenna motion.

Alternatively, a modified AoA approach using multiple RFID
readers, each with four antennas, demonstrates the ability
to determine the trajectory of a single RFID tag in space
[28]. Yang et al., [30] demonstrated the use of multiple RFID
reader antennas that can locate multiple moving tags in harsh
multipath environments. However, since they are not using
a vision system that can track the objects path, that tags can

only be located while traveling at a constant velocity along a
known trajectory, i.e. on a conveyor belt.

A variety of mobile robotic systems have used RFID tags
for navigation [11, 21] and to localize tagged objects [12,
8]. While these robots have computer visions systems, they
are typically used for object manipulation instead of real-time
object or human tracking. One notable exception is Grema et
al. [25] which built an eight element phase array into a mo-
bile robotic platform to determine the AoA of people wearing
RFID tags. The robot employed a computer vision system to
boost identification accuracy up to 83% for 4 people. In con-
trast, the ID-Match system can track five people using a single
antenna with an accuracy of 93%.

Two other hybrid computer vision and RFID systems have
been reported with the goal of identifying and locating tagged
people. The closest prior work by Cafaro et al. [6], demon-
strates the ability to determine which of two people are stand-
ing on the left and right of an interactive display. The second
example by Goller et al. [10] shows an occupancy counting
scenario where the authors are able to simultaneously deter-
mine the direction of travel for two people. Both of these sys-
tems use RSSI fingerprinting which requires extensive train-
ing and multiple reader antennas. As is the case with all fin-
gerprinting based location schemes, changes in the RF envi-
ronment will cause loss of accuracy and require the system to
be retrained. Additionally, both systems are limited to track-
ing at most two people.

REVERSE SYNTHETIC APERTURE RFID
Synthetic Aperture Radar (SAR) techniques have been
widely used to increase the imaging resolution of radar sys-
tems [7] and the localization accuracy of both radio transpon-
ders [17, 29] as well as UHF RFID tags [30, 27, 18]. This
is accomplished by moving the objective antenna (i.e. reader
antenna) along a known trajectory at a constant velocity, to
synthesize a large array of antennas. Localization accuracy is
increased since the objective antenna can take multiple sam-
ples of a stationary target from different angles.

In contrast, the goal of the ID-Match system is to locate and
identify people wearing RFID tags as they naturally walk and
play in their environment. This breaks traditional SAR ap-
proaches since both the objective antenna and the target ob-
ject would be simultaneously moving at unknown velocities.
This would normally result in blurry radar images and large
localization errors.

In this work the SAR paradigm is reversed as shown in Fig-
ure 3, panel A. Here the RFID reader is placed in a fixed
location and the motion of the RFID tag (when worn by a
person moving) creates a synthetic aperture. Since the exact
trajectory of the people wearing tags is not known (i.e. they
are “free roaming”) it is not possible to directly compute the
exact location of the tags.

One of the key attributes of UHF RFID systems is that the
tags do not actively generate and transmit radio waves. In-
stead the tags back-scatter (i.e. reflect) the RFID reader’s
carrier wave back to the reader in order to send data. This
unique feature of the UHF RFID physical layer means that
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Figure 3. Overview of the signal processing algorithm used to associate RFID SAR data to Kinect motion data. Panel A shows a motion path of a
person wearing and RFID tag while being continuously measured by the ID-Match system (top view). Panel B shows a two-second snapshot of the raw
RFID phase data as a function of time. In panel C, the phase data has been converted to the radial distance from the antenna. In Panel D the phase
discontinuities cause by frequency hopping are “stitched” back together. Finally, panel E shows the RFID SAR trajectory (blue circles) compared to
the radial motion of the person as measured by the Kinect (dashed red line).

in a single read event, the RFID reader can precisely mea-
sure the phase angle between its transmitted signal and the re-
flected signal received from the tag. Figure 3, Panel B shows
a two-second snapshot of the raw phase measurement as a
function of time, for a person wearing an RFID tag walking
towards the ID-Match system. The discontinuities in the re-
ported phase are partially due to 2π radian wrapping as can
be seen at 4.2 seconds. An additional source of error is due to
an unknown phase offset introduced when the reader pseudo-
randomly frequency hops from one carrier to another as re-
quired by government regulations [9]. This manifests in panel
B as a grouping in the phase data. Where each group consists
of a series of data points read consecutively at the same fre-
quency.

Using equation 1, it is straightforward to calculate the relative
radial distance from the tag to the reader, where φ is the phase
angle reported by the RFID reader, f is the frequency of the
RF carrier, and c is the speed of light.

Distance(relative) =
φc

4π f
; 0 < φ < 2π (1)

Figure 3, Panel C shows the phase data converted to distance.
However, since the phase angle between the transmitted and
reflected signal will rotate 2π radians for every λ wavelength,
it is not possible to calculate the absolute distance, but in-
stead rather the relative distance. Given the inertia of a per-
son walking, and the high sampling rate of the reader, it is
reasonable to assume that large discontinuities in distance are
not due to human behavior, but rather an artifact of the RFID
reader frequency hopping. Thus, given the channel number
reported by the RFID reader it is possible to “stitch” the dis-
connected groups back together. This is shown in Figure 3
panel D, where the slope of the trailing points of one group
are aligned with the slope of the leading points of the next
group.

Working in conjunction with the RFID reader the ID-Match
system uses a Kinect 3D depth camera to track the location
of people with in its frame of view. In this work people wear
RFID tags on their torso, as either name tags or lanyards. By
computing the distance of the person’s spine (as measured by
the Kinect) to the RFID reader antenna, it is possible to cor-
relate the physical path of the person, to the RFID tag’s SAR
path. It should be noted that due to phase wrapping, there is

an equivalent distance wrapping, and the absolute distance of
the tag to the reader cannot be determined. Thus for a given
time window both the Kinect distance data and RFID SAR
distance data are aligned at the beginning. The final result
is shown in Figure 3, Panel E, which shows good agreement
between the Kinect (red dashed line) and RFID reader (blue
circles).

When multiple people are walking in front of the ID-Match
system it will result in multiple RFID SAR paths and multiple
Kinect motion paths. By taking the standard error between
the sets of paths it is possible to determine which path be-
longs to which person. Details on the ranking algorithm are
presented in the ID Association section.

PROBABILISTIC ID-BODY CORRELATION
In addition to the synthetic aperture approach described above
it is possible to use low-level channel parameters along with
machine learning techniques to determine the correlation be-
tween bodies in the view of the Kinect and tags within the
view of the RFID reader. The key idea is that each time the
RFID reader interrogates a tag, it reports channel parameters
such as Received Signal Strength Indicator (RSSI), RF Phase,
and Doppler shift, along with the channel number, represent-
ing a unique signature of the RF environment of that individ-
ual tag. By observing the changes in these channel parameters
over time, it is possible to correlate the motion signature of a
tag, with the motion of the person wearing it.

In order to give some intuition into how these RF parameters
can be utilized Figure 4 shows a 30-second trace of RSSI and
RF Phase trace of a single RFID tag. For the first 10 seconds
the tag is held still, next the tag is waved at a slow speed
for 10 seconds, and then at a faster rate for the remaining
10 seconds. The tag “still” state can be distinguished from
motive states, by observing the rate of change of either the
RSSI and/or RF Phase as a function of time, as can be seen in
panel A.

It should be noted that the FCC regulations require RFID
readers in the 915 MHz ISM band to pseudo-randomly
change their transmit frequency in order to minimize inter-
ference with other devices. To satisfy this requirement, RFID
readers “frequency hop” across 50 channels from 902 MHz
to 928 MHz (in the USA) at a time interval of approximately
0.2 seconds. This results in the dramatic discontinuities in
phase data as a function of time. To better reveal the un-



Figure 4. A plot of RSSI and RF Phase data for a RFID tag undergoing
still, slow, and fast motion. In panel B, repotting phase vs channel fre-
quency for a given time window reveals highly structured patterns that
are positively correlated to tag motion.

derlying characteristics of phase hidden by frequency hop-
ping, we take three 1-second slices of phase from the 3 dif-
ferent states and re-plot against channel frequency in Figure 4
(lower panel). For still states, phase is linearly correlated with
the channel number resulting in lines with constant slope, that
wrap between 0 and 2π. Motive states of the tag result in in-
creased phase variation within each channel, which is posi-
tively correlated with the intensity of motion.

In prior work Li et al. [16] used RFID channel parameters
including RSSI, RF Phase, and tag Read Rate to classify a
tag as either being still, moving, cover by a hand, or swipe
touch. Building upon this approach new features have been
specifically designed for the task of correlating tag motion to
the motion of people as measured by a depth camera.

RFID Phase Features
Note that all features are calculated using RF channel param-
eters within each segments. The first two RF phase features
are based on the tags velocity using equation 2, which is cal-
culated from consecutive tag reads on the same channel [20].

vr =
λ(θ1 − θ2)
4π(t1 − t2)

(2)

1. Radial Velocity: the average of vr.
2. Absolute Radial velocity: the average of the absolute vr.
3. Standard error of the simple linear regression

of unwrapped phase versus channel frequencies.
stderror(linear f it(channel, unwrap(phase)))

4. Average of phase change divided by frequency change
when carrier signal frequency hops.

∑k−1
i=1 ((phase(i + 1) −

phase(i))/( f requency(i + 1) − f requency(i)))/(k − 1)

RFID RSSI Features
Given the RSSI characteristics observed in Figure 4, change
in distance will create variations in the RSSI signal which is
employed in the following three features.

1. Average RSSI standard deviation within each channel

2. Average RSSI difference between consecutive samples
within each channel

3. Absolute value of the RSSI

RFID Read Rate
The read rate of a given tag is primarily correlated to the
amount of RF power it can receive. This typically means that
RFID tags with a low read rate are on the edge of the read
zone which is well outside the field of view of the Kinect.
Thus, this feature is mainly employed to exclude tags that are
unlikely to be a viable candidate for ID to body matching.

1. Read rate: number of packets received from each RFID tag
per second

Kinect Motion Features
Both RSSI and phase are sensitive to movement in the radial
direction to the reader. Thus, the position of the spines on
the skeletons reported by the Kinect are transformed from the
Kinect’s Cartesian coordinate system to a polar coordinates
centered at the reader. Once the skeleton tracking is started,
the following three features are utilized.

1. Radial component of the skeleton’s velocity relative to the
RFID reader antenna

2. Azimuth (i.e. non-radial) component of the skeleton’s ve-
locity relative to the RFID reader antenna

3. Distance between the skeleton’s spine and the RFID reader
antenna

Data Segmentation & Machine Learning
A Support Vector Machine (SVM) classifier with the Radial
Basis Function (RBF) kernel was trained by recruiting three
participants to wear RFID tags while walking freely in the
view of the depth camera and the reader (ground truth was
taken manually). The data stream was segmented with a win-
dow size of 2/3 second which was advanced every 1/3 second
resulting in a 50% overlap. This achieved a good balance
between matching accuracy and latency. The classifier was
only trained to two prediction classes, “Match” and “Not-a-
Match”. The parameters of the SVM classifier where opti-
mized by maximizing the 10 fold cross validation results.

Since the system is trained for large movements that are
generic to a majority of people, and since the machine learn-
ing features are differential and/or relative to the reader an-
tenna, training does not have to be redone for new environ-
ments or people. In fact, training was done on one set of par-
ticipants at one location, while all testing was done at several
other locations with many other participants over the course
of several weeks. Finally, In the following section, the out-
put of the SVM classifier is combined with the results from
the SAR method to provide final decisions on body to ID
matches.

ID ASSOCIATION ALGORITHM
The true strength of the ID-Match system is that ID associ-
ation is based on similarity ranking between a finite number



Figure 5. Panel A shows the distance in meters for five participants as
tracked by the depth camera. Panel B shows the distance calculated
using the SAR approach of the same five participants. Panel C shows a
time slice of the motion path of ‘Person 1’ as measured by the depth cam-
era (dashed red line) compared to all the SAR RFID tag motion paths
over the same time period. Since ‘Person 1’ (dashed red line) closely
matches ‘Tag 1’ (red circles) they have the lowest standard error and
are considered a ‘match’.

of possibilities, rather than the raw ability of the RFID reader
and/or the Kinect to precisely locate tags and people. This is
accomplished by measuring small variations in tag and body
motion of people as they walk in order to differentiate be-
tween them. While these motion difference can be hard to
visualize, they are statistically distinct. In order to illustrate
how the ID association algorithm works we offer a “toy ex-
ample” of five people walking in a single file line, towards
the RFID reader and Kinect mounted on a tripod. While this
does not represent a real usage scenario (which is presented
in detail in subsequent sections) for the sake of an example,
it simplifies the motion the people and ensures that there are
no blocking events where one person is visually occluded by
another.

Figure 5 panel A, shows the distance traces for five partici-
pants (i.e. Persons 1-5) walking toward the system as mea-
sured with the Kinect. Panel B shows the relative distance of
the RFID tags (Tags 1-5) as worn by the five people over the
same period of time. Since the RFID reader can detect the
tags at a range of 7-8 meters they are visible to the system be-
fore the Kinects depth camera can track them (which occurs
at 4.5 meters).

The ID-Match system is implemented in Matlab and is ca-
pable of assigning IDs to people in real time. This is ac-
complished by applying a 2/3 second sliding window (which

is advanced every 1/3 seconds) to the incoming data stream
from the Kinect camera and RFID reader. During each time
segment the system analyzes the buffered data and applies the
SAR and SVM techniques previously described.

In the case of the SAR approach, the standard error between
each of the five SAR tag traces is computed across each of
the five participants position traces. An example can be seen
in Figure 5 panel C which shows an expanded view of a 2/3
second time slice from panels A and B. Here it can be seen
that ‘Tag 1’ (red circles) is the best fit for ‘Person 1’ (dashed
red line), which will result in the lowest standard error and
highest confidence. Thus, every 1/3 seconds the system out-
puts new matching events and places them in the SAR results
buffer for each person seen by the Kinect. It should be noted
that SAR data is only considered valid for people in motion.

During the same time window, the 8 RF features for the five
RFID tags and 3 Kinect features for the five bodies are passed
to a trained SVM classifier which generates a probability es-
timation of each Tag and Person pair. For each individual
body, if a given RFID tag has a probability with a margin of
30% or more when compared to all the other RFID tags, it is
considered a matching event and the SVM results is placed in
a result buffer.

Each of the five bodies is assigned their own final results
buffer consisting of a FIFO of the last 10 prediction points
from the SAR and SVM predictor. The arithmetic mode is
taken as the final matching result, and the ID is assigned to
the body. Since the prediction FIFO for each body seen by
the system can be updated over time, misidentifications can
be corrected for. Once sufficient confidence is obtained, the
identity of the body (i.e. tag / body pair) is “locked in”.

PERFORMANCE AND EVALUATION
In this section ID-Match is evaluated under a number of con-
trolled scenarios so that the underlining behavior of the sys-
tem can be better understood and quantified. In particular, we
evaluate the ability of the system to: recognize individuals in
groups of people, distinguish between multiple tags undergo-
ing the same motion, and reacquire people after the identity
match has been lost.

Recognition of Individuals In Groups
When multiple people, walking as a group, approach the ID-
Match system. This creates a number of dynamic events
where people in the foreground can visually occlude (and
possibly RF occlude) people in the background. Addition-
ally, since the RFID SAR motion paths are a relative measure
of distance and not a trace of position over time, there is the
potential that the paths may not be unique, causing confusion
in the matching algorithm.

In this study, two groups of five participants wore RFID tags
on their upper torso. They were asked to start outside of the
Kinect’s field of view (approximately 6-7 meters away from
the system), and walk as a group up to the ID-Match system.
They were instructed to stop in one of five general locations
such that upon arrival in front of the ID-Match system they
would be standing five a breast and could visually see the



Figure 6. Panel A shows the RGB image captured by the Kinect as five
people walk up to the ID-Match system. Overlaid on the image is the
RFID tag ID that has been automatically associated with that person.
Panel B shows a top view diagram of the paths of the participants as
recorded by the Kinect.

Table 1. A confusion matrix showing the results for assigning IDs to five
participants as they approach the ID-Match system.

system. Figure 6 panel a shows the final location of one set
of participants of one trial as seen by the Kinect, and panel
b shows the path they took as reported by the Kinect. For
ground truth each person was assigned a “Body Number” (1-
5) and the corresponding RFID ID (1-5) was also recorded.
To emulate a more real world scenario and to ensure the prob-
lem space was not unduly constrained, two dummy tags were
also introduced into the view of the reader (IDs 6 & 7). Each
group of participants was asked to repeat the experiment 6
times for a total of 60 potential matching events. The two
experiments are folded together into the truth table shown in
table 1.

These results show and overall ID association accuracy of
95%. There were two trials where the Kinect was not able
to see one of the participants as indicated in the two columns
to the right in table 1. Excluding this data point results in an
accuracy of 98.3% when both the Kinect and RFID reader can
view all people. In one trial an ID was not assigned to a body
leaving body 5 “pending”, meaning the confidence threshold
for a match has not been met. Observations of the trials sug-
gest the errors are due to occlusions.

One of the important criteria of the proposed system is that
it should be able to quickly identify and recognize individu-
als such that an autonomous robot can properly interact with

them in a timely manor. However, for the ID-Match system
calculating the exact acquisition time for groups of five peo-
ple is a multi-dimensional problem consisting of (but not lim-
ited to); the walking rate of individuals, the total time all par-
ticipants take to arrive at the destination zone, the fact the
some people will enter the Kinect’s depth field of view before
others, the issue of people dynamically blocking the view of
the Kinect, and the resulting need for target reacquisition and
ID association.

Instead of quantitatively addressing each one of these vari-
ables individually the following plot qualitatively shows that,
given all the above variables, ID-Match is indeed able to iden-
tify individuals in a timely manor. The red line in Figure 7
shows the accuracy of matching the correct ID to an indi-
vidual as a function of time. Since there is variability in the
time of arrival and walking speed, the data has been normal-
ized to the point in time when each participant first walked
into the view of the Kinect’s depth camera. Results show that
ID-Match is capable of correctly assigning IDs to individuals
within 4 seconds with 96.6% accuracy.

The second blue line in the plot shows the accuracy of as-
signing the correct ID to all five participants in the group as
a function of time. The reason this plot takes longer to con-
verge is that the system must wait for all participants (regard-
less of how fast they walk) to enter the field of view. Re-
sults show that a group of five participants can be correctly
matched within 7 seconds with 95% accuracy. It should be
noted the line for the individual acquisition time has a higher
accuracy than the group case because the two people not seen
by the Kinect are excluded.

A detailed examination of the SAR and SVM voting buffers
for the above data shows the predictive power of each
technique individually. For the data shown in Figure 7,
at t=4sec for each individual, the SVM classifier has an
accuracy of 70.1% and the SAR approach has an accuracy of
89.4%, while the combination of the two results in a total of
96.6% accuracy.

Disambiguating Similar User Motion
One important question is how unique does the motions of the
users and the paths they take, have to be for the ID Associa-
tion algorithm to work properly. One concern is that groups of
people walking in lock step may have nearly identical RFID
SAR paths. Since the measurements RFID SAR of relative
distance and not absolute distance it may not be possible to
distinguish them from each other.

Given the complexity of precisely and repeatedly controlling
the motion of five people, an alternative and arguably more
stringent test has been implemented. Figure 8, panel A shows
an image of five RFID tags (in the form of name tags) at-
tached to a wooden rod. They are spaced evenly approxi-
mately 40 cm apart to mimic five people standing shoulder
to shoulder. For this study ten participants were recruited
and each person was asked to hold the wooden rod such that
one of the tags was place firmly against their chest as if they



Figure 7. Prediction accuracy of the system overtime. The upper red line
shows the accuracy of correctly identifying individuals. The lower blue
line shows the accumulated accuracy of identifying all five members of
the group starting the moment the first body enters the field of view of
the depth camera.

were wearing the tag. Starting outside the field of view of the
Kinect’s depth camera the participants were ask to walk to-
wards the ID-Match system. This procedure was repeated five
times such that each participant held each tag on the wooden
rod against his or her chest once, which resulted in a total of
50 runs. Again two dummy tags were placed in the environ-
ment to insure a more realistic experiment.

The results in Figure 9 show that ID-Match is capable of cor-
rectly matching the tag ID to the corresponding body position
on the wooden rod with an accuracy of 96.7%. The probabil-
ity of randomly guessing the correct answer for one instance
is 1-out-of-7. Since each of the 60 trials was done by a single
person (rather than a group) there were no occlusions, and the
Kinects depth camera was able to track each person without
errors. These results show that ID-Match is able to take ad-
vantage of the slight difference in radial direction of parallel
movement to successfully assign the correct ID to the corre-
sponding body.

Match Reacquisition
The Kinect depth camera has proven to be reasonably reli-
able at detecting the presence of a person, determining the
position of their body and limbs (i.e. skeleton), and tracking
the location of the person while in the field of view. However,
all computer vision systems suffer from occlusions when the
camera’s view of the target person is blocked by an object or
another person. In the case of the Kinect this means that when
a person is occluded or goes out of view, their virtual skeleton
(and corresponding skeleton ID) is discarded. Once the per-
son reenters the field of view, they are given a new skeleton
and skeleton ID. This means that each time the Kinect loses a
person and they reenter the field of view the ID-Match system
must reacquisition the person and perform ID association to
determine who they are and where they are.

In order to investigate how effectively ID-Match re-
acquisitions tagged people once they have been lost by the
Kinect’s depth camera, the following experiment has been de-
vised. Here three participants have been asked to walk in a

Figure 8. Image on the right of a person carrying a horizontal rod with
five RFID tags mounted on it. The plot on the left shows the five RFID
tag SAR trajectories along with the path of the person as measured by
the Kinect (red dashed line). The results show the system is capable of
assigning the correct ID while the person is walking even though all tags
are undergoing nearly identical movements.

Figure 9. The accuracy of the system at matching the correct tag to the
skeleton in the disambiguating similar motion evaluation. The blue line
shows and average accuracy of 96.7% within 6 seconds, for the 60 trial.

circle marked on the floor with a diameter of 3 meters. As
they walk around the perimeter of the circle the person in the
foreground as seen by the Kinect blocks the people in the
background. Thus, each person is potentially occluded twice
per revolution. The three participants are asked to walk in
a circle for 5 minutes resulting in 86 blocking and reacqui-
sition events. Results for the percent accuracy for matching
the correct ID to the correct person is shown in Figure 10. In
this case the available time was only approximately five sec-
onds (i.e. the time between a person becoming visible and
then blocked again). This test shows that ID-Match performs
quite well at reacquiring people once they have been lost by
the Kinect, with a percent accuracy of 90.7% over the limited
time interval of 5 seconds.

HRI AND OCCUPANCY TRACKING STUDIES
In an environment where the system is supposed to capture
which users are passing a gate, users will enter, continue



Figure 10. Accumulated accuracy overtime for re-acquisitioning a per-
son after visual tracking is lost.

moving, and leave the field of view of the system at differ-
ent speeds and at different times, with no constraints on how
long they would stay in the field of view.

In the following sections, we present two fundamentally dif-
ferent scenarios where we test the accuracy of ID-Match with
less control on the behavior of the users.

Human Robot Interaction Study
In this application, the ID-Match system has been integrated
into Furhat [4], an interactive anthropomorphic robotic head
with an rear-projected 3D face. Computer animation deliv-
ers dynamic facial movements such as gaze (eye movement),
facial expressions (happy, sad, confused, surprised etc.) and
lip animation of basic phonemes which are synchronized to
computer generated speech. Additionally Furhat is equipped
with a pan-tilt neck which along with the animated eyes al-
lows for convincing gaze simulation, and importantly for this
work, allows the robot head to turn to address an individual
person while looking at them in the eyes.

In this experiment Furhat has been programmed to au-
tonomously host a multi-player quiz game [5]. In this inter-
action, users in groups freely approach the robot to compete
in a gaming interaction scenario where the robot asks players
different trivia questions and the users collect points when
giving the correct answer. The interaction is constructed such
that the robot needs to use the identity of the user and ad-
dress the user by name (e.g. ”Jack, here is the next question:
what is...”). For the purposes of this game contestants were
asked multiple choice questions and a commercially avail-
able speech recognition engine was used to capture users ver-
bal answers, which were limited to “one”, “two”, “three”, or
“four”.

The interaction was setup up in a large office room (4 x 6
square meters), with the robotic head placed on a pedestal in
one of the corners, as shown in Figure 11. The RFID antenna
and the depth camera was placed to maximize the field of
view of the ID-Match systems and the coordinate frame of
the Kinect was transformed to the robot’s coordinate frame to
account for the offset in location and pose between the two.
Ten participants were recruited to interact with the robot in

Figure 11. A snapshot of the Human-Robot Interaction setup showing 5
participants in front of the robot playing a quiz game.

two groups of five users each. Seven of the users were male
and three were female. All participants were graduate level
students between 20 and 30 years old. Groups of five users
carrying pre-registered RFID tags were instructed to enter the
room and playing and quiz game with the robot. In order to
allow the interaction to be natural, the participants were not
told to stand in any predefined locations, order, or distance
from the robot. However, the participants were asked to avoid
standing directly in front of another person so as not to block
the view of the other participants in the game. Each of the two
groups of participants played the quiz game 6 times, giving a
total number of 12 games, and 60 interactions (questions).
Each of the 12 sessions lasted approximately 5 minutes.

Although the interaction was complex in terms of robot and
task design, the ID-Match system task was simple: each time
a new skeleton is tracked by the camera the system will at-
tempt to match that skeleton to one of the RFID tags out of
all the tags currently visible to the RFID reader. Figure 12
shows a plot of the average accumulated ID to human assign-
ment accuracy of the system over time.

The “individual” (red line) shows the accuracy of the system
at identifying each individual people approaching the robot in
a group. It is important to mention here that at any moment in
time, there was always two additional static tags in the envi-
ronment that were not held by a person. The results show that
the system is able to recognize each individual at 94.8% ac-
curacy within 5 seconds starting from when the person enters
the scene. This is consistent with the controlled studies pre-
sented earlier in the paper. This fast acquisition time gave the
robot the ability to customize the interaction, and address the
individual person by name, almost by the time they completed
their approach and came to a stop by the robot. The“group”
blue line in Figure 12 shows the accuracy of the system in
identifying all individuals in the five-person group with time
starting at the moment when the first person enters the scene.
Here the system is capable of accurately identifying all indi-
viduals with 91.6% accuracy in 12 seconds. Although this
group acquisition time is highly dependent on actions and
speed of the participants, it is important to include this result
as a benchmark for a group of people naturally approaches
the robot for interactions.



Figure 12. A plot showing the accuracy of the system over time. The
top red line shows the accuracy of detecting each person in the FoV of
the camera at any point in time, plotted against the time since they ap-
peared. Lower blue line shows the accuracy of the system detecting the
whole group (detecting the 5 different users) over time, starting from the
moment the first user enters the FoV of the camera.

Occupancy Monitoring Scenario
The second uncontrolled user study evaluated ID-Match ’s
ability to passively monitor the flow of people in an office as
they pass through a “virtual gates” and checkpoints. The sys-
tems task is to quickly recognize the identity of the passersby
while they are visible to the camera and determine in which
direction they are moving over a long period of time.

Physical Space
The study was conducted in an office setting as shown in Fig-
ure 13 consisting of a central hallway with offices one side
and workstations in an open floor plan on the other side. The
ID-Match system was configured to log data for a full work-
ing day (i.e. continuously for 7.5 hours). Out of 40 employ-
ees on site during that day, 16 were assigned RFID tags and
registered in the system, the other employees had no other
RFID tags. In the same area where the system was setup, two
additional static RFID tags were placed and were visible to
the reader at all times. Additionally, 3 of the 16 employees
with RFID tags had workstations within the read range of the
RFID antennas, being visible to the reader at almost all times,
but not visible to the camera. This causes a greater level of
uncertainty when attempting to match the IDs to people. The
Kinect camera was set up pointing towards the hallway with
a 30-degree side view as demonstrated in 13, panel A. In or-
der to increase system reliability a second RFID antenna was
used to insure tags were properly read as participants either
walked towards and away from the Kinect.

As mentioned earlier, 40 participants took part in the exper-
iment, 16 of them were carrying a registered RFID tag. The
environment and the users were not controlled during the day.
The participants were not informed about the purpose of our
study in order to maintain their usual behavior. The only
requirement placed on the participants was to wear the tags
around their chest position, at the time they entered the office
till the time they left for the day.

During the day-long experiment, 302 instances of people
passed through the hallway where the experiment was set up.

Figure 13. Snapshots of the physical setup of the occupancy study.

129 of these were people who carried an RFID tag, and 173
did not carry a tag. The system’s task was to recognize the
identity of any visible skeleton, whether it belongs to one of
the registered users, or whether that skeleton did not have a
registered tag in the system. Out of the 129 instances of peo-
ple wearing tags, the ID-Match system was able to correctly
recognize 122 users (at an accuracy of 94.5%). For people
not wearing tags, the system incorrectly assigned 5 identifi-
cations, yielding a 2.9% false positive rate, while the rest was
correctly identified as not wearing tags.

By using the 3D skeleton tracking of the Kinect, the system
was able to recognize the direction of movement of the cor-
rectly identified skeletons at a 100% accuracy. Although this
study is set up in a highly uncontrolled environment, the main
objective of the study is to show the ability to function equally
for registered users and unregistered users, giving bigger con-
text for the application space where the system can be de-
ployed.

CONCLUSION
This work presents a novel hybrid computer vision and RFID
system that is capable of seamlessly matching the identity of
an individual (as stored on an RFID tag) to the 3D image of
that person as captured by a depth camera. This real-time
system is capable of determining the identity of individuals
within 4 seconds at an accuracy of 96.6% and groups of five
people in 7 seconds with 95% accuracy.

Users studies show that the ID-Match system is indeed capa-
ble of robustly identifying people with enough speed and ac-
curacy to enable a humanoid autonomous robot to naturally
interact with up to five people simultaneously. The system
has also been shown to be effective at passively monitoring
both tag and un-tag participants without requiring active par-
ticipation for identification and tracking.

In order to demonstrate that this approach is scalable to other
usage scenarios several controlled lab experiments are pre-
sented that cover many of the edge conditions and worst case
scenarios. Including participant re-acquisition after visual
tracking is lost, and the systems ability to distinguish be-
tween nearly identical tag motion. Ultimately ID-Match is
a novel sensor fusion technique providing a valuable method
for enabling automated computing systems to quickly and ac-
curately recognize multiple people simultaneously.
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