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ABSTRACT
We present a method to generate aesthetic video from a
robotic camera by incorporating a virtual camera operat-
ing on a delay, and a hybrid controller which uses feedback
from both the robotic and virtual cameras. Our strategy em-
ploys a robotic camera to follow a coarse region-of-interest
identified by a realtime computer vision system, and then
resamples the captured images to synthesize the video that
would have been recorded along a smooth, aesthetic camera
trajectory. The smooth motion trajectory is obtained by op-
erating the virtual camera on a short delay so that perfect
knowledge of immediate future events is known.

Previous autonomous camera installations have employed
either robotic cameras or stationary wide-angle cameras with
subregion cropping. Robotic cameras track the subject us-
ing realtime sensor data, and regulate a smoothness-latency
trade-off through control gains. Fixed cameras post-process
the data and suffer significant reductions in image resolution
when the subject moves freely over a large area.

Our approach provides a solution for broadcasting events
from locations where camera operators cannot easily access.
We can also offer broadcasters additional actuated camera
angles without the overhead of additional human operators.
Experiments on our prototype system for college basketball
illustrate how our approach better mimics human operators
compared to traditional robotic control approaches, while
avoiding the loss in resolution that occurs from fixed camera
system.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.4.8 [Image Pro-
cessing and Computer Vision]: Scene Analysis

General Terms
Experimentation, Theory
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Camera, control, tracking, planning
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Figure 1: Hybrid Camera. We first use a robotic pan-
tilt-zoom camera to follow the centroid of player positions
estimated by a realtime person detector. After a short delay,
we then resample the image to generate the video frame of
a virtual camera (highlighted) which has a smooth camera
motion trajectory because the path planning algorithm can
take into account how the players will move in the immediate
future (see accompanying video for full effect).

1. INTRODUCTION
Robotic cameras which can record live events autono-

mously have the potential to streamline and improve cur-
rent broadcast production models. For example, the optimal
shooting location may be impractical for a human operator
(which arises often in sports) or the cost of hiring a pro-
fessional camera operator may not justify the benefit of an
additional perspective. In these instances, methods to im-
prove or automate the control of robotic cameras would be
extremely useful. Automatically planning where the cam-
era should look is a key challenge [14], especially when the
source information is noisy sensor data. Fundamentally, the
camera must be controlled to ensure it tracks the intended
target. Although path planning and camera control are sep-
arate tasks, the two are highly coupled: there is no point
planning a motion path which the camera is physically un-
able to follow.

The camera should also move smoothly and purposefully
to avoid disorienting the viewer. Although smooth mo-
tion can be achieved through low control gains (which limit
changes in acceleration), the resulting system will be unable
to follow dynamic object trajectories. Instead, the auton-
omous camera should mimic human behavior and plan a
trajectory which balances smooth motion against tracking
error. As a result, planning requires anticipating object mo-



tion, or as Owens writes: “understanding the intricacies of
the event . . . gives camera operators the ability to predict
how they should be moving their cameras” [20].

An online, realtime system is preferable because the event
can then be broadcast live. Furthermore, if the sensor data
can be processed in realtime, a robotic pan-tilt-zoom (PTZ)
camera can follow the subject of interest and capture high-
resolution images using all pixels from its image sensor.
However, to output aesthetic video, the system must also be
able to anticipate future object locations so that a smooth
trajectory can be planned. Previous online autonomous ro-
botic camera systems have only been employed in environ-
ments with limited dynamic motion such as lecture halls and
video conference facilities. We handle

Team sports, on the other hand, have highly dynamic ob-
ject motions. As a result, all implementations to date have
employed non-realtime offline resampling approaches. In the
resampling framework, one or more high-definition station-
ary cameras capture live action, and video from a virtual
camera is synthesized after the fact by resampling the pixels
from the fixed cameras (often by simply cropping a rectan-
gular subregion). As Gleicher and Masanz [11] point out, the
offline approach is attractive because complex non-realtime
algorithms can be used to plan the camera trajectory, and
more importantly, there is no need to accurately anticipate
future object motions because the true future motion infor-
mation is readily available. Similarly, there are no control
issues because the virtual camera can move anywhere im-
mediately. The downside of resampling is that only a frac-
tion of the system’s resolution is used in the output. For
instance, in a sport like basketball, all players typically oc-
cupy only half the court at any given time. Therefore, with
a set of fixed cameras covering the entire court, at least half
the recorded pixels would never be used in the output video.
In addition, it is impossible to gain high-resolution close-up
images.

In this work, we propose a hybrid robotic/virtual camera
which balances the strengths and weakness of both online
and offline approaches: a robotic PTZ camera is equipped
with a wide angle lens and tracks sports players in realtime,
and a second virtual camera resamples the original source
video in realtime, but on a short temporal delay (see Fig. 1).
Our proposed solution has several interesting properties:

• The hybrid camera remains an online, realtime system
with small latency, but gains the offline benefit of per-
fect knowledge about future events (up to the duration
of the induced temporal delay).

• The synthesized video of the virtual camera exhibits
minimal loss in image resolution (unlike offline resam-
pling systems) because the robotic camera follows the
action.

• The hybrid camera is a redundantly actuated system,
which presents certain control issues.

The amount of delay is a critical design factor which reg-
ulates the hybrid nature of the system: zero delay produces
a completely online system, and infinite delay produces a
completely offline system. A longer delay improves the vir-
tual camera’s ability to plan a good trajectory because it
has knowledge about events further into the future. How-
ever, the robotic camera must be controlled in realtime to

ensure the virtual camera remains within the frame bound-
ary so that the resampling process has sufficient information
to synthesize the image that would have been captured had
the robotic camera looked where the virtual camera is now
looking. Longer delays make the controlling feedback loop
more unstable. As a result, our hybrid camera has a suit-
able delay which balances the benefits of improved planning
against the drawbacks of more difficult control.

We demonstrate the effectiveness of our proposed hybrid
robotic/virtual camera through a prototype system deployed
for broadcasting college basketball games. Our experiments
demonstrate how the introduction of a small delay improves
the system’s ability to plan a smooth and purposeful path
for the virtual camera using a hysteresis filter which appears
to anticipate state changes because of knowledge about the
immediate future. The robotic camera is controlled to follow
a live prediction of where the virtual camera is expected
to look, as well as monitoring where the virtual camera is
actually looking. As expected, we show how the control
stability of the robotic camera decreases as delay increases.
Our supplementary video shows how a hybrid camera is able
to produce live footage which more closely resembles the
work of a human operator.

2. RELATED WORK

Autonomous Cameras
Previous work in autonomous camera systems for sports pro-
duction [1,3,4,7] has employed a common framework: one or
more high-resolution fixed cameras capture the game, and
features such as player and ball locations are extracted of-
fline. The output broadcast is then generated as a post
process by determining the optimal subregion of the appro-
priate fixed camera at each time instant. There has been
significant variety in how the optimal subregion is deter-
mined at each time instant. Daigo and Ozawa [7] augment
player features with audience gaze angles. Images of the
three fixed cameras are stitched together using cylindrical
projection and a rotational offset based on player and audi-
ence gaze features. Ariki et al. [1] considered three different
shot sizes depending on the estimated game situations. A
smooth path was achieved using a Schmitt trigger which only
put the camera in motion when the ball neared the edge of
the frame. Chen and De Vleeschouwer [3] generated a vir-
tual camera trajectory for basketball using an MRF chain
to balance smoothness against deviating from the optimal
virtual camera state at each time instant.

In addition to sports, autonomous camera systems have
been deployed in lecture halls, video conferences, and tele-
vision production stages. In these situations, the motion of
subjects is significantly less dynamic than team sports, and
a range of camera solutions has been employed. Pinhanez
and Bobick [21] demonstrated how a user-supervised auton-
omous camera system could automatically frame shots for
a cooking show. Various vision algorithms were deployed
depending on the type of shot as requested by the human
director. Yokoi and Fujiyoshi [24] used a fixed 1080i camera
to record a lecturer. A cropping window was computed from
frame differencing, and the authors investigated both bilat-
eral filtering and human specified control points for a learned
acceleration model to smooth the noisy input signal. Sun et
al. [23] controlled a virtual camera to record a lecturer. The
motion of the virtual camera was regulated using a Kalman



filter augmented with a three state rule-based post filtering
technique to prefer a stationary cameras unless the lecturer
was moving significantly. Zhang et al. [25] use a fixed cam-
era to estimate a saliency map of the video conference room
and computed an optimal cropping window which balanced
a loss of information from aperture and resolution effects.
Instead of cropping from the wide-angle camera, the desired
subregion is used to control a robotic PTZ camera.

Our work is most similar to Zhang et al. [26] who also
used a hybrid robotic/virtual camera. The robotic camera
tracked a lecturer and moved as necessary to keep the sub-
ject in the center of the image. A subregion of the image
was then cropped to compensate for motor control errors.
There was no delay between the virtual and robotic cam-
eras. In effect, the virtual camera was to used to achieve
ideal perfect control by compensating for any discrepancy
between the plan for where the physical camera was sup-
posed to look, and where the physical camera was actually
looking. In a more complex environment, such as basketball,
accurate prediction of object motion is necessary for gener-
ating aesthetic video. Instead, we operate a virtual camera
on a delay to avoid the need to anticipate player movements.

Path Planning and Control
Determining where the cameras should look is a key compo-
nent of any autonomous system. Additionally, the planned
trajectory must be smooth, which means the process to de-
cide where the camera should look at any given time instant
must take into account where the camera should be look-
ing during a temporal window which spans both before and
after the current time instant.

Camera planning continues to be a popular topic in com-
puter graphics (see the recent survey by Christie et al. [5]).
However, computer graphics algorithms rarely consider in-
complete and noisy data generated from computer vision
and other sensing modalities.

The tasks of moving a physical camera to keep an object
of interest within the field of view is referred to as visual
servoing in the robotics literature. Stanciu and Oh [22] em-
ployed a proportion-only feedback control algorithm to ad-
just the pan-tilt angle of a camera mounted on the end of a
human operated boom to keep a target object in the center
of the camera image. When multiple targets are tracked,
control algorithms often monitor features derived from the
point set, such as mean and standard deviation. Farag and
Abdel-Hakim [9] use proportion-only control to position the
centroid of detected image features near the centers of the
images of a stereo camera pair. Gans et al. [10] use task-
priority kinematic control to keep a set of interest points
within the camera field of view. They showed how the mean
and variance are independent objectives: pan-tilt values are
modified to keep the mean near the center of the image, and
zoom is regulated to keep the standard deviation within the
image boundary.

Two recent works in machine learning and computer vi-
sion have examined the problem of determining where cam-
eras should look based on player motions. Dearden et al. [8]
used a K nearest neighbor classifier to learn the relationship
between features (such as player position) and the PTZ state
of cameras operated by professionals. Kim et al. [17] track
individual players using a particle filter and extrapolate a
global motion vector field on the ground plane using Gaus-
sian process regression. The authors show how convergence
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Figure 2: Camera Operation Techniques. We com-
pare our proposed hybrid robotic/virtual camera operation
technique to an autonomous camera operated using visual
servoing. Our objective is to mimic human operation, so we
express the performance of both the baseline and proposed
autonomous systems relative to the benchmark of a human
operated camera.

regions in the vector field correlate with actual broadcast
camera movements.

Finally, both robotics and computer vision have exam-
ined the problem of planning smooth trajectories for cam-
eras. Nieuwenhuisen and Overmans [19] use a probabilistic
roadmap to generate an initial estimate of linear segments
which link the current camera state to the desired future
camera state. The path is refined by fitting circular arcs
between segments and computing a smooth velocity plan
which depends on path curvature. Gleicher and Liu [12]
developed a video stabilization technique by estimating the
trajectory of a hand held camera using inter-frame homogra-
phies, and identifying segments of constant velocity linked
together with ease in/out curves. Grundmann et al. [13]
refine a noisy trajectory using a linear program which gen-
erates a trajectory preferring constant postion or constant
velocity segments.

3. EXPERIMENTAL DESIGN
In this work, we investigate two critical aspects of robotic

camera operation: path planning and motor control. A plan-

ning algorithm generates a saliency signal s(t) = [φ̂, θ̂,
ˆ̇
φ,

ˆ̇
θ]T

specifying a desired instantaneous pan-tilt position (φ̂, θ̂)

and velocity (
ˆ̇
φ,

ˆ̇
θ) for the camera at every time instant. The

control algorithm regulates the speed of the pan-tilt motors
so that the camera follows the planned state space trajectory
s(t) as best as possible.

To gauge the success of our proposed hybrid robotic/virtual
camera solution, our experimental set-up consist of three dif-
ferent camera operation techniques (see Fig. 2):

Benchmark Our objective is to mimic a human operator.
Therefore, we measure the performance of a human
operator using a joystick with direct control over the
pan-tilt motor speeds.

Baseline We use a standard visual servoing implementa-
tion as our baseline: a realtime, zero-latency moving
average causal filter generates a saliency signal from
noisy player detections. An instantaneous position er-
ror proportion-only controller is used to regulate the
pan-tilt motor speeds.



Figure 3: Experimental Setup. Two Allied Vision GX
1920C machine vision cameras mounted near the ceiling of
the gym are used to detect and track the basketball play-
ers (see Fig. 4). Three Sony EX3 cameras situated behind
the spectator seating at center court capture the broadcast
video. Each camera is mounted on a FLIR D48-E robotic
pan-tilt head. The motion of each camera is determined
from either a human operated joystick, or an autonomically
generated plan based on the realtime analysis of the player
positions (see Fig. 5).

Proposed Our proposed solution employs a zero-latency
causal filter for the robotic camera, and an M second
delay inducing non-causal filter for the virtual camera.
The position errors of both the robotic and virtual
cameras are used to regulate the speeds of the pan-tilt
motors or the robotic camera.

Because each technique regulates the pan-tilt motor speeds
in a different way, our experimental setup (see Fig. 3) in-
cludes three Sony EX3 cameras mounted on FLIR D48-E
robotic pan-tilt units. As a result, we are able to compare
the three operation techniques on the same live data. The
benchmark camera requires a human operator, whereas the
baseline and proposed autonomous techniques both rely on
a realtime computer vision system to detect the (x, y) loca-
tions of basketball players. Therefore, our setup includes two
Allied Vision GX 1920C machine vision cameras mounted
near the ceiling. We use the method of Carr et al. [2] to
detect players at 25fps with one frame latency (see Fig. 4).

Changes in tilt are highly unaesthetic, so we employ a
constant tilt angle for all three Sony EX3 broadcast cameras.
For simplicity, the remainder of the paper only refers to the
planning and control aspects of each camera’s instantaneous
pan position and velocity, but the theory and techniques
which will be discussed shortly apply equally well to tilt.
Similarly, we only consider the X coordinate of locations on
the basketball court (corresponding to the lengthwise axis).

We first describe how a path is planned in each of the
three scenarios, and examine how planning improves with
increased delay. We then discuss the details of the resam-
pling algorithm used to synthesize the images of the virtual
camera. Finally, we detail how the robotic pan-tilt motors
are controlled for each operation technique, and demonstrate
how increased delay reduces the controllability of the hybrid
camera.

Figure 4: Player Detections. Example frames from the
machine vision cameras and corresponding detections.
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Figure 5: Centroid of Players. The vision system out-
puts a set of player locations (blue circles) for a given time
instant. The centroid (green circle) approximates the ap-
propriate fixation point. The trace of the centroid r(t) over
time is shown on the right, where the current time is ∼ 90
seconds.

4. PATH PLANNING
In this work, planning refers to the problem of generating

the saliency signal s(t) from the detected player positions
output by the vision system. It is equivalent to framing a
shot in cinematography. The first task is to identify the sub-
ject(s) of interest, which in basketball corresponds to the
players, ball and nets. Afterwards, the rules of shot com-
position [14, 16, 20] then dictate how the camera should be
operated such that objects of interest appear in salient re-
gions of the image (see Fig. 6). It is important to compose
the shot such that the viewer can draw the correct interpre-
tation. In basketball, the shot should be framed based on
the current and anticipated player positions.

Perfect tracking of the players and ball is not yet pos-
sible in either online or offline approaches. Therefore, the
autonomous understanding of the scene in realtime includes
missed players and false detections. As a result, we employ
assumptions common in visual servoing [9, 10] and approxi-

mate the camera fixation point as the centroid r(t) = [X, Ẋ]
of detected player positions.

PTZ Projection
The vision system outputs a fixation point r(t) in the world
coordinate system, but the path planning algorithm must

generate a trajectory s(t) = [φ̂,
ˆ̇
φ]T in each camera’s pan-tilt

coordinate system. Before describing how an suitable cam-
era path can be extracted from r(t), we briefly describe how
a target location in the world coordinate system is converted
into the pan-tilt coordinate system of a PTZ camera.



Figure 6: Rule of Thirds. Camera operators frame shots
such that important objects fall on imaginary lines which
divide the image into thirds. Objects in motion should have
‘lead room’ to illustrate where the object is going.

The PTZ cameras are calibrated using point correspon-
dences between the ground plane and image plane (and as-
suming square pixels) [15]. The 3 × 4 projection matrix P

maps a homogeneous 3D world point X = [X,Y, Z, 1]T to a
homogeneous 2D image point x = [u, v, w]T via

x = PX. (1)

The projection matrix factors into matrices representing pro-
jective K (3× 3), rotation R (3× 3) and position parameters
C (3× 1)

P = KR[I| −C]. (2)

The intrinsic matrix K contains the focal length f and prin-
cipal point (u0, v0)

K =

 f 0 u0

0 f v0
0 0 1

 . (3)

The rotation matrix of each Sony EX3 camera changes as
its corresponding robotic head moves. As a result, we factor
R into two rotation matrices Q and S such that

R
def
= QS. (4)

The rotation matrix S represents the rotational aspects of
the transformation from the world coordinate system to the
home (0,0) pan-tilt position and remains fixed. The matrix
Q is the 3D rotation for the current pan-tilt position (φ, θ)
relative to the coordinate system of the pan-tilt motor axes
and must be recomputed whenever the robotic head moves

Q(φ, θ) =

 cos(φ) 0 − sin(φ)
− sin(φ) sin(θ) cos(θ) − cos(φ) sin(θ)
sin(φ) cos(θ) sin(θ) cos(φ) cos(θ)

 .
(5)

Oracle
The purpose of the path planning algorithm is to generate a
saliency signal s(t) defined in each camera’s pan-tilt coordi-
nate system based on the centroid r(t) of player locations as
observed by the vision system. We begin by evaluating the
assumption that the centroid of player positions is a reason-
able approximation for the true fixation point.
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Figure 7: Human and Oracle Signals. The human
operated joystick (red) reasonably tracks the oracle signal
(blue), although it lags on occasion and misses the optimal
pan angle at each end of the court. The raw player de-
tections centroid (green) also follows the oracle signal, but
with substantially more noise, and tends to lead and lag the
oracle signal more than the human controlled camera.

We generate a ground truth oracle saliency signal s?(t)
for the first half of a basketball game by manually identi-
fying key pan positions every second which generate well
composed shots. For example, the player with the ball is
placed on the appropriate third so that the majority of the
image shows where the ball may go next, while at the same
time, the amount of visible court area is maximized.

Over the same period of the game, the human operated
camera reasonably traces the oracle signal (see Fig. 7). In
addition, the centroid of player positions also tracks the ora-
cle signal reasonably well, although it does lag or lead signif-
icantly at times. The centroid is not a good approximation
in certain basketball situations such as fast breaks, or slow
approaches by the point guard (when the defending team
falls back to half court defense). However, it is a reasonably
good fixation point the majority of the time.

Error Measure
Good camera operation should follow the target of interest
with smooth, purposeful motion. Therefore, when compar-
ing a saliency signal s(t) to the oracle s?(t) signal we eval-
uate discrepancies between position (for accurate tracking),
velocity (for smooth motion) and changes in direction (for
purposeful motion). We arbitrarily assign equal importance
to these three factors, although one could tailor the weight-
ing for a specific preference. Additionally, we normalize the
measured discrepancy with respect to the oracle based on
the performance of the human operated camera.

Causal Filtering
Online systems require causal filters which only depend on
current and previous values. Our benchmark implementa-
tion of visual servoing uses a moving average filter to smooth
out the noise in the pan angles from the noisy centroid of
player positions. The filter buffers the pan angles previously
computed over the last N seconds and outputs the average of
the buffered values (see Fig. 8). As N increases, the filtered
signal sN (t) becomes more smooth, and changes in direction
are reduced. However, the filter performance saturates for
large N because any gain in smooth and purposeful motion
is offset by tracking errors arising from significant filter lag.
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Figure 8: Causal Filter. Left: The performance of moving average causal filter (red) as a function of buffer size is plotted
relative to the human operated camera (green) and oracle (blue). A larger buffer size produces smoother and more purposeful
camera motion, but struggles to track a rapidly moving target, which is why performance saturates at roughly 2×. Right:
The filter for N = 2.0s produces a slightly smother output than the noisy input signal (green) without introducing significant
lag with respect to the oracle (blue).
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Figure 9: Non-Causal Filter. Left: The performance of the L1 trend non-causal filter (red) increases with a larger
induced delay M . In effect, the filter is able to look further into the future before determining whether the camera should
maintain its current trajectory or transition to a different trajectory. Right: The filter for M = 2.0s generates a reasonable
approximation of the oracle signal (blue). For clarity, the filter output has been shifted M seconds into the future in order to
align temporally with the raw input (green) and oracle signals.

Non-Causal Filtering
Offline and delayed online systems can use non-causal fil-
ters which consider previous, current and future values to
output a filtered response at the current time. We buffer
N = 10.0s into the past and M seconds into the future.
We begin by approximating the buffered signal as a series
of constant velocity segments using L1 trend filtering [18].
The filtered pan positions at the current time and up to four
seconds into the future are examined by a Schmitt trigger to
produce a hysteresis effect (moving the camera when track-
ing error is large, and stopping the camera when tracking
error is small). If the Schmitt trigger anticipates a change
in state, the filter applies a fourth-order polynomial to ease-
in/out from the current position/velocity to the anticipated
position/velocity [6].

We evaluate the non-causal filter’s performance for differ-
ent values of M (see Fig. 9). The hysteresis aspect of the
filter produces a dramatic improvement in purposeful cam-
era movement. As expected, the filter exhibits diminishing
returns for larger and larger values of M because distant
future events should not significantly impact the decision of
how the camera should be moved at the current time in-
stant. Unlike the causal filter, the non-causal filter does not

introduce any lag dependent on N because the L1 trend fil-
ter fits constant velocity segments to the raw signal (and
knowledge about future events prevents the constant veloc-
ity model from overshooting).

Although the non-causal filter produces a trajectory that
is similar to the oracle, the filtering process is unable to re-
move the systematic errors associated with the assumption
that the centroid of player positions is an adequate proxy for
the correct camera fixation point. Quite often the centroid
leads the oracle signal when easing out of a stationary state
(since the defending team often falls back to half court de-
fense). To overcome these systematic measurement errors,
more complex feature extraction and planning algorithms
would be needed.

5. SPHERICAL RESAMPLING
The non-causal filter generates a trajectory sN,M (t) for

the virtual camera operating on a delay of M seconds. The
video of the virtual camera must be synthesized from the
video of the robotic camera. The virtual camera is operat-
ing on a delay of M seconds, and we denote its current time
t. To generate the current virtual image, we must resam-
ple the image I(t −M) captured by the robotic camera M



Figure 10: Spherical Resampling. The image captured by the robotic camera (left) at pan φrobotic(t−M) is resampled to

synthesize the image of the virtual camera (right) oriented at φ̂virtual(t). Here, the virtual camera is looking further to the right
than where the robotic camera had looked, which is why only pixels from the right side of the image are used for resampling.

seconds ago. At that time, the robotic camera was at pan
position φrobotic(t −M). The non-causal filter will generate

a target pan angle φ̂virtual(t) for the virtual camera, which

should be similar to both the planned φ̂robotic(t − M) and
actual φrobotic(t−M) robotic camera positions.

Similar to [7, 11, 12], we synthesize the video of virtual
PTZ camera via a projective warping (see Fig. 10). In this
situation, the mapping from virtual image plane to the ro-
botic image plane is governed by a purely rotational homog-
raphy [15]

Hreal→virt = KvirtualRvirtualR
−1
roboticK

−1
robotic (6)

which can be obtained by substituting φ̂virtual(t) and φrobotic(t−
M) into (5). If the video of the virtual PTZ is synthesized
by cropping a rectangular subregion from a stationary cam-
era, the resulting video no longer has its optical axis near
the center of the image which makes the camera appear as
though it is translating left/right on a track or up/down on
pedestal.

It is important to note that the size of the image gen-
erated by (6) remains constant regardless of any change in
focal length between the robotic and virtual cameras. How-
ever, as the focal length of the virtual camera increases, the
number of pixels sampled from the robotic camera decreases;
lowering the effective resolution of the virtual camera. Addi-
tionally, we currently assume there is no significant motion
blur in the images captured by the robotic camera, and do
not render blur effects into the synthesized images of the
virtual camera based on its virtual motion.

If there is a large discrepancy between the virtual camera’s
planned position φ̂virtual(t) and the actual state φrobotic(t−M)
of the robotic camera, it is entirely possible that (6) will map
all or part of the virtual camera’s image beyond the bound-
ary of the robotic camera’s image. In this situation, the
system can clamp the planned state of the virtual camera
to ensure it remains within the field of view of the robotic
camera, or render empty/black regions in the virtual cam-
era image. Neither solution is ideal. Clamping the virtual
camera motion will induce jitter into the smooth trajectory,
and black regions rendered in the images of the virtual cam-
era are unaesthetic. In the next section, we mitigate these
non-ideal boundary effects by controlling the pan-tilt mo-
tors to balance the deviation of the virtual camera from the
center of the robotic camera’s image against the deviation of

the robotic camera from its planned state space trajectory
sN (t).

6. CAMERA CONTROL
With plans for the robotic and virtual cameras estab-

lished, the final task is to operate the robotic camera such
that the virtual camera is able to follow its planned trajec-
tory as much as possible (since the broadcast video origi-
nates from the virtual camera, not the robotic camera). We
first discuss the control aspects of each camera individually,
and then address the issues of controlling both cameras in a
holistic fashion.

Robotic Control
Each FLIR pan-tilt unit is operated with a 30Hz control
loop that gets the current pan-tilt positions (φrobotic, θrobotic)

and sets the pan-tilt velocities (φ̇robotic, θ̇robotic). In traditional
visual servoing, the task of getting the robotic camera to fol-
low the trajectory srobotic(t) generated by the causal filter is
regulated based on the residual erobotic(t) between the actual
pan position and the desired position

erobotic(t) = φ̂robotic(t)− φrobotic(t). (7)

We employ proportion-only feedback

φ̇robotic(t) =
ˆ̇
φrobotic(t) + κ erobotic(t). (8)

Virtual Camera
The virtual camera represents an infinitely fast, massless
system which compensates for the deviation between the
current planned position generated by the non-causal filter,
and where the robotic camera was looking M seconds ago

evirtual(t)
def
= φ̂virtual(t)− φrobotic(t−M). (9)

If the deviation is large, it is entirely possible the virtual
camera will move beyond the boundary of the image cap-
tured by the robotic camera M seconds ago. One possibility
is to restrict |evirtual(t)| ≤ ∆φ by modifying φ̂virtual(t). An-
other possibility is to increase the zoom of the virtual cam-
era. In our experiments, we define the focal length of the
virtual camera to be equal to that of a Sony EX3 camera
equipped with a standard lens (so that we can make side-by-
side comparisons between the video synthesized by the vir-
tual camera and that captured by a visual servoed camera).
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Figure 11: We control the hybrid camera by modifying
the control of the robotic camera to consider not only the
discrepancy erobotic(t) of where the robotic camera should
look (determined by the output of the causal filter) but also
the discrepancy evirtual(t) (highlighted in red) of where the
virtual camera should look (determined by the non-causal
filter). The robotic camera’s feedback control loop contains
delayed values which decreases the stability of the system as
the delay grows in magnitude.

The change in focal length between the virtual and robotic
cameras is equivalent to a 1.5× zoom factor applied to the
wide angle lens of the robotic camera. The robotic cam-
era has a horizontal field of view of ∼ 80◦, and the virtual
camera ∼ 60◦. As a result, the virtual camera can deviate
±∆φ = 10◦ before hitting the frame boundary. If the focal
length of the virtual camera is increased, the deviation ∆φ
would increase as well, with exact values determined by (6).

Arbitrarily restricting the virtual camera to remain within
the image captured by the robotic camera may create an er-
ratic motion path. Ideally, the non-causal filter should take
deviation limits into account when planning the trajectory.
However, even if a maximum deviation ∆φ were enforced in
the non-causal filter, the system would not be correcting the
error in the robotic camera, and the virtual camera may drift
further from the planned trajectory. In this work, we investi-
gate an alternative solution: as the virtual camera deviates
from the center of the captured image, we incorporate an
addition term into the robotic camera’s velocity controller
(8) to induce motion which pushes the virtual camera back
to the center of the image (or equivalently pulls the robotic
camera to follow the plan of the virtual camera).

Hybrid Camera
We control the robotic and virtual cameras in a holistic fash-
ion by defining the deviation of the hybrid camera as a linear
combination of the robotic and virtual camera deviations

ehybrid(t) = erobotic(t) + γ evirtual(t) (10)

The robotic deviation indicates how the robotic camera
should move to follow φ̂robotic(t). The virtual deviation in-
dicates how the robotic camera should move to return the
virtual camera to the center of the image.

= φ̂robotic(t)− φrobotic(t)+

γφ̂virtual(t)− γφrobotic(t−M) (11)

Substituting ehybrid(t) for erobotic(t) in (8) results in a propor-
tional feedback control

φ̇robotic(t) =
ˆ̇
φrobotic(t) + κ ehybrid(t) (12)
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Figure 12: Independent Control. In the above scenario,
the virtual camera operates on a 1.0 second delay and is
restricted to remain within the image plane of the robotic
camera. There is no feedback between the virtual camera
and the robotic camera (i.e. the signal evirtual(t) in Fig. 11 is
not sent to the robotic controller). As a result, the relative
position (blue) of the virtual camera with respect to robotic
camera fluctuates between ±10◦. When the virtual camera
hits either of its pan limits, there is a deviation between
where the virtual camera is looking (green) and where the
non-causal filter had planned for it to look (red).

which balances how well the robotic and virtual cameras
follow their plans while encouraging the robotic camera to
deviate from its plan to ensure the virtual camera does not
go outside the image boundary. The challenge with the pro-
posed formulation is that the hybrid feedback includes a
delayed term γφrobotic(t −M) which decreases the stability
of the system (see Fig. 11).

Stability Analysis
We evaluate the hybrid camera’s ability to follow the plan
generated by the non-causal filter for a variety of values of
γ and M (the two parameters introduced into our proposed
control loop). We limit the virtual camera’s movement to
remain within the field of view of the robotic camera — i.e.
φvirtual must be within ±10◦ of φrobotic.

We consider the case of γ = 0 as our baseline because
there is no delayed feedback from the virtual camera in this
situation. Effectively, the robotic and virtual cameras are
controlled independently. The performance of this configu-
ration for M = 1.0s is shown in Figure 12. The relative pan
angle (blue) of the virtual camera with respect to the robotic
camera illustrates the situations when the virtual camera
reaches the frame boundary of the robotic camera (for ex-
ample, saturating at +10◦ at roughly 20 seconds). When
this occurs, the tracking performance deteriorates and the
virtual camera (green) is no longer able to follow the desired
non-causal plan (red). Over this 150s sequence, the virtual
camera was at the frame boundary 10.5% of the time, which
resulted in an average per-frame control error (the deviation
from the non-causal filter output) of 0.21◦ per frame. On
average, the virtual camera was looking 5.9◦ from where the
robotic camera had looked M seconds ago.

Next, we examine the situation when delayed feedback
from the virtual camera is incorporated into the control
loop. The hybrid camera’s performance when γ = 0.5 and
M = 1.0s is shown in Figure 13. In this configuration, the
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Figure 13: Stable Hybrid Control. The simulation now
incorporates a delay M = 1.0s, and the relative position of
the virtual camera evirtual(t) is incorporated into the robotic
camera’s control algorithm. As the virtual camera moves
away from the center of the robotic camera’s image, the
robotic controller will adjust the robotic camera’s speed to
drive the virtual camera back to the image center. Similarly,
the resulting path of the hybrid camera (green) more closely
follows its plan (red).

virtual camera is able to track the plan generated by the
non-causal filter quite well. Over the same 150s sequence,
the virtual camera was only at the frame boundary 5.1%
of the time (roughly a 2× improvement over independent
control). Similarly, the average per-frame deviation was re-
duced to 0.11◦. Furthermore, the hybrid controller was able
to balance the errors of both cameras so that the virtual
camera remained closer to the center of the robotic cam-
era’s image at all times: the average discrepancy in pan
angles was reduced to 4.6◦. Qualitatively, hybrid control
has increased the frequency of the virtual camera’s relative
pan angle (blue), but has reduced its overall energy.

However, if the feedback gain γ is too high, or the de-
lay M becomes too large, the resulting control loop may be
unstable. Figure 14 shows how a hybrid controller config-
ured with γ = 0.75 and M = 2.0s begins to exhibit signs
of an unstable system: the virtual camera begins to oscil-
late rapidly from one side of the robotic camera’s frame to
the other. Similarly, the robotic camera also oscillates be-
cause the controller is attempting to regulate the robotic
camera’s pan angle to keep the virtual camera in the cen-
ter of the frame. For the same 150s sequence (although the
non-causal plan is slightly different since the value of M has
changed), the virtual camera now spends 12.6% of its time at
the frame boundary, which results in an average per-frame
tracking error of 0.30◦. Furthermore, at 90s, the impact of
unstable control becomes evident: the magnitude of the ro-
botic camera’s oscillation about a constant pan angle is so
large, the virtual camera is unable to fully compensate, and
the virtual camera exceeds the soft 33◦ pan limit.

7. SUMMARY
Autonomous camera systems have traditionally been im-

plemented with either robotic cameras or virtual cameras
resampled from fixed cameras. The offline resampling pro-
cess can generate smooth aesthetic trajectories because the
algorithm has full information about all future events. How-
ever, because the physical cameras do not move, the reso-
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Figure 14: Unstable Hybrid Control. When κ = 0.75
and M = 2.0s, we see the adverse effects of incorporating
too much gain and delay in the feedback signal. The ro-
botic camera oscillates around its target trajectory, and the
virtual camera oscillates from one frame boundary to the
other. As a result, the virtual camera exceeds the 33◦ pan
limit at ∼ 90s.

lution of the system is limited. In addition, it is impossible
to broadcast a live event. Robotic cameras, on the other
hand, generate plans in realtime with no information about
future events. Aesthetics aspects are often neglected be-
cause it is extremely difficult to track and accurately antic-
ipate object motions in realtime and zero latency. In this
work, we propose a hybrid system which operates a virtual
camera on a delay (so that it can plan smooth purpose-
ful motion based on perfect knowledge about immediate fu-
ture events) and controls a robotic camera to follow the live
action (which maximizes the resolution of the synthesized
broadcast video). As we have shown, the amount of delay is
a crucial design parameter. Longer delay improves the path
planning process, but makes stable robotic control more dif-
ficult.

We employ hysteresis to generate purposeful camera mo-
tion; it is better to maintain the camera’s current trajectory
than to deviate slightly to make a small improvement in
shot composition. Incorporating hysteresis into a zero la-
tency system is difficult because switching from one state to
another may generate a discontinuous plan or introduce tem-
porary latency while the system transitions between states.
However, by operating a virtual camera operating on a de-
lay, our non-causal hysteresis filter is able to anticipate state
changes based on actual future information.

If the operating delay is sufficiently short, controlling the
robotic camera to keep the virtual camera within its field
of view is advantageous. However, if the delay becomes too
large, the system may become unstable. In this situation,
the robotic camera should be controlled in a traditional vi-
sual servoing manner with no delayed feedback; the video
can still be resampled with an independently controlled vir-
tual camera operating on a delay. Although our example
prototype system is geared towards autonomous cameras,
the idea of a hybrid robotic/virtual camera can apply to
robotic cameras with remote human operators.
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