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Abstract— We present an algorithmic framework for the
early classification of human intentions, and use it to accurately
predict future human motions when planning the path of a
robot in an environment that is shared with humans. During
an off-line learning phase, a classifier that can recognize when a
human intends to interact with the robot is trained. At runtime,
this trained classifier allows us to recognize humans who intend
to interact with, or obstruct, the robot in some way. We
validate our approach using both recorded and simulated data
in an environment in which some humans intentionally obstruct
the robot. Our classifier identifies these potential blockers,
thus allowing the robot to safely and efficiently navigate the
environment by minimizing the chances of being blocked.

I. INTRODUCTION

In the past, robots have mainly been deployed in industrial
environments in confined spaces where humans are typically
not allowed. Recently, however, there is a trend towards the
development of robots that perform tasks in the presence of
humans, such as collaborative robots that share a person’s
workspace, or service robots that directly interact with their
owners. Planning for the safe motion of such robots is
therefore an important challenge and has consequently been
an active research area [1], [2]. Many previous approaches
assume a scenario in which the robot has to be aware of just
the interaction subject or a few people in the workspace, as
is typical for service robots.

More recently, however, robots have been appearing in
public spaces such as streets or parks for service or enter-
tainment purposes. In such environments, robots are required
to be aware of multiple humans or even crowds in order to
navigate safely. Several works have modelled this situation
by considering the humans to be dynamic obstacles that the
robot needs to avoid [3], [4], whereas others compute joint
motions between the robot and the humans [5] based on the
assumption that both the humans and the robot will try to
avoid each other in a collaborative manner. This assumption
is reasonable when considering service robots that assist in
people’s daily tasks. However, predicting different human
motions using a single motion model may not be relevant in
situations where the behaviors of the humans with respect to
the robot are much more unpredictable.

Consider a robot that wanders around a public space
during an event and interacts with guests for entertainment
purposes. Some of the guests will almost certainly approach,
as opposed to avoid, the robot and may even engage in
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potentially harmful activities. For example, it has recently
been observed that children will sometimes exhibit abusive
behavior towards a social robot and persistently obstruct
its path [6]. Therefore, it is imperative that the robot can
recognize such human intentions early in order to react
appropriately and perform ameliorative actions.
Contribution: In this paper, we propose an algorithmic
framework for the early classification of human intentions,
and use it to accurately predict future human motions.
Our approach uses an off-line learning phase based on the
recorded trajectories of a robot and humans interacting in a
communal space. Based on the features extracted from the
human trajectories, we train a classifier to detect high-level
human intentions to interact with the robot.

At runtime, we use the classification data provided from
offline training with the state-of-the-art robot planner [5] to
compute safe and efficient robot trajectories. We implement
and analyze simulated scenarios as a proof-of-concept for our
approach, where some humans intend to obstruct the robot,
and the robot classifies humans likely to block and avoids
them to minimize the chances of being blocked.

The rest of the paper is organized as follows: We give a
brief overview of prior work on human-aware robot planning
and navigation in crowds (Section II) and then present an
overview of our planning algorithm (Section III). Off-line
classifier training and runtime planning and prediction are
described in Sections IV and V, and the performance of our
algorithm in different scenarios is discussed in Sections VI
and VII.

II. RELATED WORK

In this section, we provide a brief overview of the most
relevant prior work on human motion models for robot
navigation and human intention recognition.

A. Human Motion Models for Robot Motion Planning

Predicting accurate future human motion is important for
planning safe and efficient robot navigation and interaction
with humans. Proxemic interpersonal distances [7] define
the social norms of different human interactions and there
has been extensive work on developing models to predict
future human motions that are based on preserving these
social distances. The problem is formulated using several
different models, including potential and force computa-
tion of particles [8], velocity steering [9], and collision-
free velocity computation [10], [11] of multiple humans.
However, in all of these approaches the same motion model
is applied to all agents, which is different from most real



world scenarios in which a person’s motion and reactions to
the environment vary depending on individual characteristics.
These interpersonal differences can lead to large variations in
the motions of humans in a scene, as demonstrated by Guy et
al. [12] for simulated agents with predefined heterogeneous
traits.

Although a study of it has been shown that the same
proxemic distances apply between humans and robots with a
friendly demeanor [13], navigation algorithms for a robot in
a crowd need to focus in particular on avoiding collisions
between the robot and humans. The uncertainties which
can be caused from the human motion model or imperfect
sensing must therefore be taken into account. Thus, the future
motion of a human is represented as a Belief state, which
corresponds to the probability distribution over all possible
motions. However, most robot navigation algorithms use
the same motion model for all humans. Some approaches
treat humans as stationary obstacles or assume that they
are always cooperative with robots [14], [5]. On the other
hand, Li et al. [15] proposes a robot motion planner which
computes the safest robot trajectory by assuming the worst
case scenario that all humans who react to the robot will
hamper its motion.

Recently, online learning techniques with tracking filters
have been integrated with motion models [16], [3], [5] in
order to incorporate the past prediction error of individual
humans into the prediction of future motions. Our work
differs from these approaches in that we not only rely on
a priori estimation, but also integrate it with the trained
high-level intention information, thus facilitating the early
classification of human intentions.

B. Human Intention Recognition

Human motion is usually caused by an individual’s desire
to achieve a particular goal or to perform an intended
action, so the recognition of human actions or intentions
has been a very active area of research [17], [18], [19].
Hansen et al. [20] use case based reasoning on human
poses to estimate whether a human wants to interact with a
robot, and demonstrate that the robot can be trained to react
to different human behaviors with example-based learning.
Chung and Huang [21] predict human behaviors based on
their spatial properties (e.g., positions, orientations) relative
to each other. Brscic et al. [6] (also mentioned in Sec. I) take
a similar approach; by assuming that only unaccompanied
children will perform abusive behaviors towards the robot,
they compute the probability of abuse using the following
features: (i) interaction time with robot; (ii) number of
children present.

Other recent approaches use offline learning of intentions
with additional information such as temporal relations be-
tween actions [22], [23] or object affordance [24], which
results in early recognition of human actions. We use a
learning-based method to detect the spatial relationships
between the robot and humans, in order to react appropri-
ately to the different human behaviors. For example, in our
navigation approach, we use offline learning to detect when

Fig. 1: A snapshot1of our capture environment showing the
robot being blocked intentionally.

humans intend to block the robot, and use this information
to compute a trajectory that avoids those humans who are
likely to obstruct the robot’s path.

III. PLANNING FRAMEWORK OVERVIEW

In this section, we introduce the notation and terminology
used in the rest of the paper and give an overview of our
planning algorithm.

A. Notations and Assumptions

We assume that the robot (or the environment) has sensors
with a known accuracy, which can track the position of
multiple humans in the environment and use that information
for realtime planning. The goal of our planning algorithm
is to compute an efficient and safe robot trajectory to a
given goal position while multiple humans are present in
the robot’s workspace. We assume that some of the humans
can freely approach and interact with the robot. Based on
this assumption, we detect humans who have the intention
to interact with the robot based on their past trajectories. In
our test-case, where the main interaction is to block the robot,
the robot’s path is re-planned by avoiding such humans in
order to minimize the chances of being blocked.

We denote a robot’s position as q0 and its trajectory as
Q0(t), which is a function of time t. The robot trajectory is
also represented as a matrix Q0, which consists of discretized
robot positions qt

0. We denote human trajectories as Q1(t),
..., QN (t), or Q1, ..., QN , where N is the number of humans
in the robot workspace. We denote the trajectory set {Q0,
Q1, ..., QN} as QALL.

B. Gaussian Process

Classification and regression are machine learning prob-
lems which involve computing the input-output mapping
function Y = f(X) from an empirical data set, where X
denotes a set of input features, i.e., X = [x1,x2, ...,xM ]T ,
and Y is the corresponding output, Y = [y1,y2, ...,yM ]T .
We use Gaussian process models [25] for (i) the classification
of humans who block the robot path and (ii) the regression
of future human and robot trajectories based on their past
trajectories.

1Intentionally blurred to prevent subjects’ recognition.



Bayes 

Estimator

Human Intention 

Classifier

Human Trajectory Regression

Bayes 

Estimator

Human Intention 

Classifier

Human Trajectory Regression

Bayes 

Estimator

Human Intention 

Classifier

Human Trajectory Regression

Q0

Q1

Q2

QN

Bayes 

Estimator

Human Intention 

Classifier

Human Trajectory 

Regression

q0
t+1

Compute

Maximum 

a-posteriorip(Qi)

ci

Compute

Repulsive

Potential

Fig. 2: An overview of the runtime planning framework. At
each time step, the tracked past human trajectories are used
to compute the probabilistic distributions of the trajectories
and to classify the human blocking intentions. We compute
the joint probabilistic distribution of all trajectories with
the repulsive potential computed from the estimated human
blocking intention. The robot position at the next time step
qt+1
0 is computed from the robot trajectory that maximizes

the joint trajectory probability.

A Gaussian process is defined as a collection of random
variables, which have a joint multivariate Gaussian distribu-
tion. A Gaussian process f(X) can be specified using a mean
function m(X) and a covariance function k(x,x′), as

f(X) ∼ GP (m(X),k(x,x′)). (1)

Unlike other learning techniques, the Gaussian process does
not rely on a specific function model, but computes a func-
tion f(X) by maximizing the smoothness of the covariance
in terms of the covariance function k(x,x′). Therefore, the
selection of the covariance function k(x,x′) is important for
the Gaussian process, while the mean function is usually
ignored and defined as a zero function without loss of
generality. We will discuss the details of the covariance
function selections and the computation of the outputs for
classification and regression in Sections IV and V, respec-
tively.

C. Human Intention-aware Planning

Our planning framework is shown in Fig. 2, which results
in a robot trajectory that avoids humans who have intentions
to approach the robot and block its path. We use a human
intention classifier that is trained using supervised offline
learning to compute the likelihood that the corresponding
human will interfere with the robot motion. We compute the
classification results for each past position qt

i in a human
trajectory Qi, then we compute the cumulative probability
ci from the individual classification results using a Bayes
estimator.

In order to navigate in a populated environment, we replan
the robot trajectory to avoid the blocking humans. We track
the position trajectories of the humans Q1, Q2, ..., QN with
the robot trajectory Q0. At each time step t, we compute the
probabilistic distribution of each individual human trajectory
p(Qi). We use Interaction GP (IGP) [5] as the underlying
navigation algorithm to compute the robot trajectory. IGP
computes the joint probability of the robot and human trajec-
tories from the independently predicted trajectories p(Qi),
by introducing the repulsive potential between trajectories.

This joint probability is solely computed from the distance
between trajectories, and assumes cooperative behaviors to-
ward the robot for all humans. IGP does not consider the
possible difference in the human intentions for the robot
interactions. We formulate the repulsive potential φ() to be
also affected by the classification results ci, which lowers
the joint distribution probability as ci has a higher value.
Therefore a high blocking likelihood ci of the i-th human
causes the robot to avoid the corresponding human with more
space than others. The joint probabilistic distribution of all
trajectories, pHI(QALL) is computed as:

pHI(QALL) = φ(QALL, c1, c2, ..., cn)

N∏
i=0

p(Qi). (2)

From pHI(QALL), we compute the maximum a poste-
riori robot trajectory Q∗0, that maximizes the probability of
pHI(QALL), and compute the robot position at the next time
step qt+1

0 on Q∗0.

IV. LEARNING HUMAN INTENTIONS

In this section, we provide the details of the off-line
training for human intention detection from recordings of
real humans interacting with a robot.

A. Recording of Training Data

Our training data is collected from a communal kitchen
area within a work environment (Fig. 1). Employees visit
the kitchen to use the facilities and to converse with others,
or simply walk through the area without stopping.

In order to collect the empirical data for the human
intention classifier, we run experiments with a real robot. The
robot we used in the experiments is a custom wheeled robot
with a friendly demeanor. It has an integrated 1D LIDAR
sensor attached to the front of the body near the ground
to detect human feet, animals or other small objects. We
programmed our robot to repeatedly follow a predefined path
and to perform simple collision avoidance or stop its move-
ment when a blocking obstacle is detected nearby. When
stopped, the robot detours from its path to the next waypoint.
As a safety measure, an operator with an emergency e-stop
oversees the experiment.

(a) Training data (b) Labeled by classifier

Fig. 3: (a) Trajectories of the robot (green) and humans who
do (red) or do not (blue) block the robot. (b) Trajectories
correctly labeled by our classifier.

In addition to the robot’s local sensing, four Velodyne
LIDAR sensors installed on the walls are used to detect
the 3D positions of humans. An in-house algorithm is used



to detect the head and shoulder silhouette and the person’s
3D position is calculated as the center of the head. The
positions of the humans and the robot are collected in
a sensing framework with a common coordinate system.
These positions were recoded and used in our classifier
for training and evaluation. For our supervised learning of
human intentions to interact with the robot, we recorded
two sessions with a total length of 2.5 hours from which
we extracted over 3000 trajectories. The number of people
present in the kitchen during the recording ranged between
1 and 20.

We annotated segments of each human trajectory where
the robot was approached and consequently stopped, and set
the human position samples in such segments as positive
samples, and other positions as negative samples. For train-
ing, we used 7789 samples of positive (blocking) human po-
sitions and the same number of negative (non-blocking) sam-
ples randomly picked from the remaining trajectories. Some
examples of annotated trajectories are shown in Fig. 3(a).

B. Classification of Human Intentions

(a) Input feature data (b) Human-intention classifier

Fig. 4: (a) The input data of the human intention classifier:
relative positions, relative orientations, and absolute speeds.
Blue and red dots represent positive and negative sets, respec-
tively. (b) The plot of the trained classifier: 0.0 represents no
blocking intentions, and higher values indicate an increased
probability of blocking.

We assume that the intention of blocking the robot can be
detected from the past trajectory of humans before the actual
blocking happens, and use a Gaussian process to generate
a classifier for such intentions. As the goal is to use the
classifier to plan the robot’s path, we transformed all the
recorded trajectories into the robot-centric view. Among the
multiple candidate input features that can be extracted from a
position in the human trajectories, we choose our feature vec-
tor x to contain the relative positions, the relative (velocity)
orientations, and the absolute speeds of past positions, which
are invariant to environment coordinates, and also maximize
the accuracy of the trained classifier (see Section VI). The
training input data and trained classifier are plotted in Fig. 4.

As described in Section III-B, the Gaussian process is
mainly computed using the covariance function k(x,x′).
There are commonly used covariance functions which are
solely used or combined to capture the different characteristic
of the input data (e.g., linear or non-linear) [25]. The
training of the Gaussian process classifier aims to compute

the optimal hyperparameters of those covariance functions
which best fit the input data. For the classification of hu-
man blocking intentions, we choose the combination of the
squared exponential, which is known as the de-facto default
kernel for the classification due to its universal property that
it can integrate different functions [26], and the noise kernel,
which can deal with the position errors due to the sensor
noise, as the covariance function:

k(x,x′) = σ2
fexp

(
− (x− x′)2

2l2

)
+ σ2

nδ(x,x
′), (3)

where l, σ2
f and σ2

n are hyperparameters which are optimized,
and δ(x,x′) is a Kronecker delta function which is 1 for
x = x′ and 0 otherwise.

With Mc (7789 x 2) input features X = [x1,x2, ...,xMc ]
T ,

and their known output y = [y1, y2, ..., yMc ]
T which are set

to 1 for blocking human positions and 0 for non-blocking
positions, the Gaussian process predicts the output y∗ of x∗
as

p(y∗|y) ∼ N (K∗K
−1y,K∗∗ −K∗K

−1KT
∗ ), (4)

where K, K∗, and K∗∗ are defined as

K =


k(x1,x1) k(x1,x2) · · · k(x1,xMc)
k(x2,x1) k(x2,x2) · · · k(x2,xMc

)
...

...
. . .

...
k(xMc ,x1) k(xMc ,x2) · · · k(xMc ,xMc)

 ,
K∗ =

[
k(x∗,x1) k(x∗,x2) · · · k(x∗,xMc)

]
,

K∗∗ = k(x∗,x∗) (see [25]).
(5)

C. Runtime Human Intention Classification
When training the human intention classifier, we compute

the probability of blocking intentions from a single past
position. From k1 past positions in a human trajectory
Qi, the classifier computes k1 probability values [ct−k1+1,
ct−k1+2, ..., ct]. For computing the cumulative blocking
probability ci of the trajectory Qi from [ct−k1+1, ct−k1+2, ...,
ct], we consider two criteria: (i) handling sudden appearances
of humans; and (ii) giving higher weights for the latest time
steps. In the former case, a human can suddenly appear in
a position close to the robot for many reasons (e.g., sensing
error or obstacle occlusion). When the past trajectory does
not have enough data, the errors from the sensing noise and
the classification model affect the results more. In the latter
case, we use the classification results of multiple positions
to improve the prediction accuracy from the classification
errors, but the humans can change their blocking intentions
during the motion. Therefore, it is desired to assign higher
weights to the latest classification results than to the old
position results. With these criteria, the blocking probability
ci of a trajectory Qi is computed as a weighted sum of k1
probability values and the default estimate (0.5):

ci =

∑k1−1
j=0 aj · ct−ji + 0.5 ∗ we∑k1−1

j=0 aj + we

, (6)

where a is a weight attenuation ratio (a < 1), and we is the
weight given to the default estimate.



V. HUMAN MOTION PREDICTION AND ROBOT
NAVIGATION

In this section, we present the details of the runtime robot
planning algorithm, which combines trajectory regression
with the classification of human intentions.

A. Trajectory Regression of Humans and Robot

As described in Sec. III-C and Fig. 2, our robot navi-
gation algorithm combines individual trajectory regression
with human-intention classification to predict the trajectories
using a joint probabilistic distribution.

For each tracked human trajectory Qi, we use an online
Gaussian process regression to compute the probabilistic
distribution of the trajectory p(Qi). At a time step t, we
use the positions of the last k1 time steps as the input of the
regression to compute the probabilistic distribution of the
positions of k1 past and k2 future time steps. The regression
is computed as

p(Qi) = p(Y∗|Y) ∼ N (K∗K
−1Y,K∗∗ −K∗K

−1KT
∗ ),

(7)
where the regression inputs are time X = [t−k1+1, t−k1+
2, ..., t]T and positions Y = [qt−k1+1

i ,qt−k1+2
i , ...,qt

i]
T .

We also redefine K, K∗, and K∗∗ to appropriate forms by
defining x∗ as a vector [t + 1, t + 2, ..., t + k2] to compute
Y∗ = [qt+1

i ,qt+2
i , ...,qt+k2

i ].
For the training of the human intention classifier, we use

the squared exponential kernel function as the covariance, be-
cause we have no prior knowledge of the model (Section IV-
B). However, there are known models for the estimation of
dynamic human motion behaviors. We use a linear covari-
ance function with a non-linear Matérn covariance function
to capture both linear and non-linear motion behaviors, along
with the noise covariance function for the sensor noise. The
covariance function is defined as

k(x,x′) =
x · x′ + 1

σ2
v

+

(
1 +

√
3(x− x′)

l

)
exp

(
−
√
3(x− x′)

l

)
+ σ2

nδ(x,x
′).

(8)

We optimize the hyperparameters σ2
v , l, and σ2

n, with the
recorded trajectories used in the offline classifier training.

The regression of the robot trajectory is computed in the
same manner as in the case of the human trajectory. The
only difference is that the robot has a known goal position.
We add this position qgoal

0 and the approximated arrival time
tgoal to the regression inputs Y and X to incorporate it in
the prediction to guide the future robot trajectory to the goal.

B. Human Intention-aware Robot Planning

The final step of the runtime robot planning is to com-
pute the joint probabilistic distribution of the trajectories
pHI(QALL), and extract the maximum a posteriori robot tra-
jectory Q∗0. As described in Section III-C, we extend IGP [5]
to use the computed blocking likelihoods of humans to vary
the repulsive potential of each human, whereas IGP assumes

Fig. 5: The intention-aware repulsive potential curves
φ(q,q′, c) for c = 0, 0.5, and 1 with w = 0.01, h = 10,
s0 = 120 and s1 = 80.

that all humans will always exhibit cooperative behavior
toward the robot and applies the same repulsive potential.
This extension allows the robot to navigate more efficiently
in situations where some humans are not cooperative, as
shown in Section VII-B.

The repulsive potential φ(QALL, c1, c2, ..., cN ) in (2) is
computed as

φ(QALL, c1, c2, ..., cn) =

N∏
i=1

t+k2∏
j=t+1

φ(qj
0,q

j
i , ci) (9)

φ(q,q′, c) =
1

1 + w · e−
(q−q′)−s0−s1·c

h

, (10)

where w and h are constants that determine the stiffness
of the curve, and s0 and s1 determine the transition along
the distance between the robot and humans. φ(q,q′, c) is
a sigmoid function translated along the distance between q
and q′. Based on Proxemic distances [7], we set s0 and s1
to reduce the probabilities of trajectories where the distance
between the robot is less than the personal space (d <= 120
cm) when c is close to 1.0, while the robot is allowed to
navigate the personal space (45 cm< d < 120 cm) for small
c values. Fig. 5 presents φ(q,q′, c) for c = 0, 0.5, and 1.

Since the joint probability distribution pHI(QALL) com-
puted from (2) is a non-Gaussian multi-modal distribution,
we use stochastic approximation to compute the distribution.
From the approximated pHI(QALL), we compute the joint
trajectory Q∗ALL that maximizes the probability, i.e.,

Q∗ALL = argmax
QALL

pHI(QALL). (11)

The robot position at the next time step qt+1
0 can be extracted

from Q∗0 in Q∗ALL. This position maximizes pHI(QALL),
which means it is the next position toward the goal while
avoiding the humans by considering their blocking inten-
tions. This position is used as the result of the planner and
executed by the robot, and the planning is repeated at the
next time step with the updated sensor information.

VI. CLASSIFICATION RESULTS

The ability to accurately classify blockers is the novel and
crucial part of our proposed motion planning framework. We
labeled most of the blocking behaviors in the dataset and
used them for training. To evaluate our classifier we used a 5-
fold cross validation approach. We considered classification



Predicted NO Predicted YES
Actual NO TN=7220 FP=569
Actual YES FN=222 TP=7567

TABLE I: Confusion matrix of our human intention classifier.
Classification is considered YES (blocking) for ci >= 0.5
and NO for ci < 0.5.

Fig. 6: A confusion histogram of the classifier for probability
intervals with a 0.1 range. We plot the distribution of true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) in different colors.

(a) Training data (b) Labeled by classifier

Fig. 7: False positive example in the intention classification:
the person with id=3557 is not intentionally blocking the
robot but is classified as a blocker with a high probability.

as positive (blocking) for probability ci >= 0.5 and negative
for ci < 0.5. The classification ci was computed from a
single past position as described in Section IV-B. The overall
achieved Accuracy is 0.95, Recall 0.97 and Precision 0.93.
Table I shows the computed confusion matrix. The result
of our classifier is the probability of blocking in the [0, 1]
interval and the confusion matrix captures only the overall
binary accuracy. To better analyze the results we draw a
confusion histogram of classifications for each 0.1 range,
as shown in Figure 6.

The classifier has a much higher number of false positive
(FP) samples than false negative (FN). This is mainly due
to mis-classification of people who are passing by at a close
distance, standing next to the robot or on the robot’s path
without intentionally blocking it. Figure 7 shows such an
example. Even though these people are not blocking the robot
intentionally, many of these cases can actually qualify as an
obstruction of the robot’s movement.

VII. MOTION PLANNING RESULTS

A. Methodology

We tested our motion planner’s ability to circumvent
blockers on the training dataset. This data was used during
simulation to generate independent blocking events. We

picked events where a human blocked the robot intentionally
during the real-life data collection. First, the simulated robot
followed the recorded path until 1/6s before the blocking
event. Then, the planner was enabled with a goal point set on
the recorded path 4s after the blocking event. Finally, when
the simulated robot reached the goal, it was teleported back
to the recorded path at that time stamp. This way, later human
positions were not invalidated by a cumulative displacement
of the robot. This method was similar to the technique used
in previous work [27], where the robot replaced a pedestrian
walking through a crowd in pre-recorded data.

Most metrics in robot-crowd motion planners fall into one
of two categories: safety or efficiency. The number of times
an emergency stop is called for the robot has been considered
as a safety metric and the time taken to navigate through the
crowd was used to measure efficiency. In previous work [27],
the minimum distance the robot has been to a pedestrian has
been used to measure safety and the length of the path for
efficiency. Running our planner on a simulated robot with
pre-recorded data, we chose a similar approach to the latter
method, measuring the minimum distance to a pedestrian
during a blocking event as well as the distance required
to reach the goal during that blocking event. We recorded
metrics for 34 blocking events across two sets of recorded
data.

B. Evaluation

In order to validate the benefit of our planner based on hu-
man intention classification and to compare it with previous
work that assumes unvarying human behaviors, we evaluate
the performance of 4 robot planners which have different
behaviors toward humans, in two benchmark scenarios. The
recorded data in the first benchmark is of a much denser
crowd with more blocking behavior exhibited, while the data
for the second benchmark is more sparse, with only a few
individual blockers occasionally trying to block the robot.
We compare our human-intention aware planner with the
following planners with static human intention prediction
values, each of which emulate the different assumptions of
previous works:
• c = 0.2 : the planner assumes that every human is

unlikely to block the robot.
• c = 0.5 : the planner makes no assumptions about the

humans.
• c = 0.8 : the planner assumes that every human is likely

to block.
The results shown in Table II demonstrate how our planner

scales with increasing crowd density. In a less dense area,
all the planners perform similarly because, regardless of the
classification, they are at least weighted to avoid an individ-
ual blocker. In the dense benchmark however, our planner
takes advantage of people who seem less likely to block and
thus generates a more efficient path through the crowd. The
robot avoids risky situations that may have led to a long
delay, but at the same time it could exploit the knowledge
of which pedestrians are unlikely to be blockers by cutting
across in front of them based on the high probability that



Benchmark Intention
Classified

Not Classified
c = 0.2 c = 0.5 c = 0.8

Dense
Crowd

Length 100.00% 110.53% 128.32% 163.99%
Safety 0.5017 0.5454 0.5354 0.5192

Sparse
Crowd

Length 100.00% 96.460% 97.530% 105.52%
Safety 0.6321 0.5643 0.6222 0.6582

TABLE II: We evaluate the performance of our human
intention-aware planner with 3 other planners having differ-
ent assumptions on the human behavior in two benchmarks.
The results demonstrate that in the dense situation, our
planner computes the most efficient routes with only minimal
reductions in the safety margin.

those pedestrians would not get in its way. This way, our
planner achieves the most efficient routes around blockers on
average, with only minimal reductions in its safety margin.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we present an algorithmic framework that
takes human intentions into account when planning safe
and efficient trajectories for robots, in particular in crowded
and unpredictable environments. We use an off-line learning
process to train a classifier to detect human intentions to
block the robot. At run-time, we use the trained classifier
with regression based on past trajectories to predict where the
human pedestrians will move to in the future. Our planning
algorithm thus allows the robot to navigate amongst crowds
of people more efficiently and safely. We validate our algo-
rithm on different benchmark scenarios and compare with
prior work using real recorded trajectories and a simulated
framework.

There are many avenues for future work. So far, we
have only used past human trajectories to predict their
future motions. Additional features such as height [6], age,
or gender can be used to improve the accuracy of the
classification. Multiple class classification of humans rather
than binary blocking and non-blocking can be used to model
other human behaviors. Finally, we intend to integrate our
planning algorithm into the real robot hardware architecture.
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