
Globally Continuous and Non-Markovian Activity
Analysis from Videos

He Wang1,2?and Carol O’Sullivan1,3

1 Disney Research Los Angeles??, United States of America
2 University of Leeds, United Kingdom

realcrane@gmail.com
3 Trinity College Dublin, Ireland

carol.osullivan@scss.tcd.ie

Abstract. Automatically recognizing activities in video is a classic problem in
vision and helps to understand behaviors, describe scenes and detect anomalies.
We propose an unsupervised method for such purposes. Given video data, we dis-
cover recurring activity patterns that appear, peak, wane and disappear over time.
By using non-parametric Bayesian methods, we learn coupled spatial and tempo-
ral patterns with minimum prior knowledge. To model the temporal changes of
patterns, previous works compute Markovian progressions or locally continuous
motifs whereas we model time in a globally continuous and non-Markovian way.
Visually, the patterns depict flows of major activities. Temporally, each pattern
has its own unique appearance-disappearance cycles. To compute compact pat-
tern representations, we also propose a hybrid sampling method. By combining
these patterns with detailed environment information, we interpret the semantics
of activities and report anomalies. Also, our method fits data better and detects
anomalies that were difficult to detect previously.

1 Introduction

Understanding crowd activities from videos has been a goal in many areas [1]. In com-
puter vision, a number of subtopics have been studied extensively, including flow es-
timation [2], behavior tracking [3] and activity detection [4,5]. The main problem is
essentially mining recurrent patterns over time from video data. In this work, we are
particularly interested in mining recurrent spatio-temporal activity patterns, i.e., recur-
rent motions such as pedestrians walking or cars driving. Discovering these patterns
can be useful for applications such as scene summarization, event counting or unusual
activity detection. On a higher level, such patterns could be used to reduce the dimen-
sionality of the scene description for other research questions.

Pattern finding has been previously addressed [6,7,4], but only either for the spatial
case, a Markovian progression or local motifs. To consider temporal information in
a global non-Markovian fashion, we propose a Spatio-temporal Hierarchical Dirichlet
Process (STHDP) model. STHDP leverages the power of Hierarchical Dirichlet Process
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(HDP) models to cluster location-velocity pairs and time simultaneously by introducing
two mutually-influential HDPs. The results are presented as activity patterns and their
time-varying presence (e.g. appear, peak, wane and disappear).

Combined with environment information, our approach provides enriched informa-
tion for activity analysis by automatically answering questions (such as what, where,
when and how important/frequent) for each activity, which facilitates activity-level and
higher-level analysis. The novelty and contributions of our work are as follows:

1. We present an unsupervised method for activity analysis that requires no prior
knowledge about the crowd dynamics, user labeling or predefined pattern numbers.

2. Compared to static HDP variants, we explicitly model the time-varying presence of
activity patterns.

3. Complementary to other dynamic HDP variants, we model time in a globally con-
tinuous and non-Markovian way, which provides a new perspective for temporal
analysis of activities.

4. We also propose a non-trivial split-merge strategy combined with Gibbs sampling
to make the patterns more compact.

1.1 Related Work

Activities can be computed from different perspectives. On an individual level, tracking-
based methods [8,9] and those with labeled motion features [10,11] have been success-
ful. On a larger scale, flow fields [2,12] can be computed and segmented to extract
meaningful crowd flows. However, these methods do not reveal the latent structures
of the data at the flow level well where trajectory-based approaches prove to be very
useful [5,13,14,15]. Trajectories can be clustered based on dynamics [5], underlying
decision-making processes [14] or the environment [15,13]. However, these works need
assumptions or prior knowledge of the crowd dynamics or environment. Another cat-
egory of trajectory-based approaches is unsupervised clustering to reveal latent struc-
tures [7,4,16,17]. This kind of approaches assumes minimal prior knowledge about the
environment or cluster number. Our method falls into this category.

Non-parametric Bayesian models have been used for clustering trajectories. Com-
pared to the methods mentioned above, non-parametric Bayesian models have been
proven successful due to minimal requirements of prior knowledge such as cluster
numbers and have thus been widely used for scene classifications [18,19], object recog-
nition [20], human action detection [21] and video analysis [22,7]. Initial efforts on
using these kinds of models to cluster trajectories mainly focused on the spatial data
[7]. Later on, more dynamic models have been proposed [16,4,17]. Wang et al. [16]
propose a dynamic Dual-HDP model by assuming a Markovian progression of the ac-
tivities and manually sliced the data into equal-length intervals. Emonet et al. [4,23]
and Varadarajan et al.[17] model time as part of local spatio-temporal patterns, but no
pattern progression is modeled. The former requires manual segmentation of the data
and assumes the Markovian property, which does not always apply and could adversely
affect detecting temporal anomalies. The latter focuses on local continuity in time and
cannot learn time activities well when chunks of data are missing.

Inspired by many works in Natural Language Processing and Machine Learning
[24,25,26,27,28,29], we propose a method that is complementary to the methods above
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in that we model time in a globally continuous and non-Markovian way. We thus avoid
manual segmentation and expose the time-varying presence of each activity. We show
how our method fits data better and in general more aligned with human judgments. In
addition, our method is good at detecting temporal anomalies that could be missed by
previous methods.

2 Methodology

2.1 Spatio-temporal Hierarchical Dirichlet Processes

Given a video, raw trajectories can be automatically estimated by a standard tracker
and clustered to show activities, with each activity represented by a trajectory cluster.
One has the option of grouping trajectories in an unsupervised fashion where a distance
metric needs to be defined, which is difficult due to the ambiguity of the associations be-
tween trajectories and activities across different scenarios. Another possibility is to clus-
ter the individual observations of trajectories, such as locations, in every frame. Since
observations of the same activity are more likely to co-occur, clustering co-occurring
individual observations will eventually cluster their trajectories. This problem is usually
converted into a data association problem, where each individual observation is associ-
ated with an activity. However, it is hard to know the number of activities in advance,
so Dirichlet Processes (DPs) are used to model potentially infinite number of activities.
In this way, each observation is associated with an activity and trajectories can be clus-
tered based on a softmax scheme (a trajectory is assigned to the activity that gives the
best likelihood on its individual observations). During the data association, DPs also
automatically compute the ideal number of activities so that the co-occurrences of ob-
servations in the whole dataset can be best explained by an finite number of activities.
To further capture the commonalities among the activities across different data seg-
ments, Hierarchical DPs (HDPs) are used, where one DP captures the activities in one
data segment and another DP on a higher level captures all possible activities.

To cluster video data in the scheme explained above, we discretize the camera image
into grids, that discretizing a trajectory into locations. We also discretize the velocity
into several subdomains based on the orientation so that each location also comes with
a velocity component. Finally, we can model activities as Multinomial distributions of
time-stamped location-velocity pairs {w, t}, w = (px, py , p′x, p′y) where (px, py) is the
position, (p′x, p′y) is the velocity and each {w, t} is an observation. Given multiple data
segments consisting of location-velocity pairs, we can use the HDP scheme explained
above to cluster trajectories. In addition, our STHDP also has a temporal part. Consider
that a time data segment is formed by all the time stamps of the observations associated
with one activity, then the distribution of these time stamps reflect the temporal changes
of the activity. Since these time stamps might come from different periods (e.g. an
activity appears/disappears multiple times), we need a multi-modal model to capture it.
Again, since we do not know how many periods there are, we can use a DP to model
this unknown too, which can be captured by an infinite mixture of Gaussians over the
time stamps. Finally, to compute the time activities across different time data segments,
we also use a HDP to model time. The whole scheme is explained by a Bayesian model
shown in Figure 1.
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Fig. 1. STHDP model Fig. 2. Model used for sampling.

To mathematically explain our model, we first introduce some background and ter-
minologies. In a stick-breaking representation [30] of a DP:G =

∑∞
k=1 σk(v)βk, where

σk(v) is iteratively generated from σk(v) = vk
∏k−1

j=1 (1 − vj),
∑∞

k=1 σk(v) = 1,
v ∼ Beta(1, ω) and βk ∼ H(η). βk are DP atoms drawn from some base distribution
H and σk(v) are stick proportions. We refer to the iterative generation of sticks σk(v)
from v as σ ∼ GEM(v), as in [24]. Following the convention of topics models, we re-
fer to a location-velocity pair as a word, its time stamp as a time word, activity patterns
as word topics and time activities as time topics. A data segment is called a document
and a time stamp data segment is called a time document. The whole dataset is called a
corpus. The overall activities and time activities we are aiming for are the corpus-level
word topics and time topics.

Figure 1 depicts two HDPs: a word HDP and a time HDP, respectively model-
ing the spatial and temporal data as described above. The word HDP starts with a DP
over corpus-level word topics v ∼ GEM(ω). In each document, there exists a DP
πd ∼ DP (v, σ) governing the document-level topics. For each word, a topic indicator
is sampled by Zdn ∼ πd and the word is generated from wdn|βZdn

∼ Mult(βZdn
).

The time HDP models how word topics evolve. Unlike previous models, it captures two
aspects of time: continuity and multi-modality. Continuity is straightforward. Multi-
modality means a word topic can appear/disappear several times. Imagine all the time
words associated with the words under one word topic. The word topic could peak
multiple times which means its time words are mainly aggregated within a number of
time intervals. Meanwhile, there can be infinitely many word topics and some of their
time words share some time intervals. Finally, there can be infinitely many such shared
time intervals or time topics, which are modeled by an infinite mixture of Gaussians, of
which each component is a time topic. A global DP e ∼ GEM(λ) governs all possible
time topics. Then, for each corpus-level word topic k, a time DP γk ∼ DP (ζ, e) is
drawn. Finally, when a specific time word is needed, its Zdn indicates its word topic
based on which we draw a time word indicator Odn ∼ γZdn

and a time word is gener-
ated from tdn|αOdn

∼ Normal(αOdn
). In this way, each word topic corresponds to a

subset of time topics with different weights. Thus a Gaussian Mixture Model (GMM)
is naturally used for every word topic. Due to the space limit, the generative process of
Figure 1 is explained in the supplementary material.
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2.2 Posterior by Sampling

To compute the word and time topics we need to compute the posterior of STHDP.
Both sampling and variational inference have been used for computing the posterior of
hierarchical models [24,31]. After our first attempt at variational inference, we found
that it suffers from the sub-optimal local minima because of the word-level coupling
between HDPs. Naturally, we resort to sampling. Many sampling algorithms have been
proposed for such purposes [25,32,33]. However, due to the structure of STHDP, we
found that it is difficult to derive a parallel sampling scheme such as the one in [32].
Finally, we employ a hybrid approach that combines Gibbs and Metropolis-Hasting
(MH) sampling based on the stick-breaking model shown in Figure 2, the latter being
the split-merge (SM) operation. For Gibbs sampling, we use both Chinese Restaurant
Franchise (CRF) [24] and modified Chinese Restaurant Franchise (mCRF) [25]. As
there are two HDPs in STHDP, we fix the word HDP when sampling the time HDP
which is a standard two-level HDP, so we run CRF sampling [24] on it. For the word
HDP, we run mCRF. Please refer to the supplementary material for details.

HDPs suffer from difficulties when two topics are similar, as the sampling needs
to go through a low probability area to merge them [34]. This is particular problem-
atic in our case because each observation is pulled by two HDPs. Split-merge (SM)
methods have been proposed [34,35] for Dirichlet Processes Mixture Models, but they
do not handle HDPs. Wang et al. [26] proposes an SM method for HDP, but only for
one HDP, whereas STHDP has two entwined HDPs. We propose a Metropolis-Hasting
(MH) sampling scheme to perform SM operations. In our version of the CRF metaphor,
word topics and time topics are called word dishes and time dishes. Word documents
are called restaurants and time documents are called time restaurants. Some variables
are given in Table 1. Similar to [26], we also only do split-merge on the word dish level.
We start with the SM operations for the word HDP. In each operation, we randomly
choose two word tables, indexed by i and j. If they serve the same dish, we try to split
this dish into two, and otherwise merge these two dishes. Since the merge is just the
opposite operation of split, we only explain the split strategy here.

Table 1. Variables in CRF

vw a word in the vocabulary
Vw the size of the vocabulary
njik the number of words in restaurant j at table i serving dish k
zji the table indicator of the ith word in restaurant j
mjk the number of word tables in restaurant j serving dish k
mj· the number of word tables in restaurant j
K the number of word dishes

Following [34], the MH sampling acceptance ratio is computed by:

a(c∗, c) = min{1, q(c|c
∗)

q(c∗|c)
P (c∗)

P (c)

L(c∗|y)
L(c|y)

} (1)
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where c∗ and c are states (table and dish indicators) after and before split and q(c∗|c)
is the split transition probability. The merge transition probability q(c|c∗) = 1 because
there is only one way to merge. P is the prior probability, y are the observations, so
L(c∗|y) and L(c|y) are the likelihoods of the two states. The split process of MH is:
sample a dish, split it into two according to some process, and compute the acceptance
probability a(c∗, c). Finally, sample a probability φ ∼ Uniform(0, 1). If φ > a(c∗, c),
it is accepted, and rejected otherwise. The whole process is done only within the sam-
pled dish and two new dishes. All the remaining variables are fixed.

Now we derive every term in Equation 1. The state c consists of the table and dish
indicators. Because the time HDP needs to be considered when sampling the word HDP,
the prior of table indicators is:

p(zj) =
δmj·

∏mj·
t=1(njtp(t|•)− 1)!∏nj·
i=1(i+ δ − 1)

(2)

where p(t|•) represents the marginal likelihood of all time words involved. Similarly,
for word dish indicators:

p(k) =
ωK

∏K
k=1(m·kp(t|•)− 1)!∏m··
i=1(i+ ω − 1)

(3)

Now we have the prior for p(c):

p(c) = p(k)
D∏

j=1

p(zj) (4)

where D is the number of restaurants; p(c∗) can be similarly computed.
Now we derive q(c∗|c). Assume that tables i and j both serve dish k. We denote S

as the set of indices of all tables also serving dish k excluding i and j. In the split state,
k is split into k1 and k2. We denote S1 and S2 as the sets of indices of tables serving
dishes k1 and k2. We first assign table i to k1 and j to k2, then allocate all tables indexed
by S into either k1 or k2 by sequential allocation restricted Gibbs sampling [35]:

p(SK = kj |S1, S2) ∝ m·kj
fkj

(wSK)p(tSK |•) (5)

where j = 1 or 2, SK ∈ S, wSK is all the words at table SK and m·kj is the total
number of tables assigned to kj . All the tables in S are assigned to either k1 or k2. We
still approximate p(tSK |•) by p̂(tSK |•) as we do for Gibbs sampling (cf. supplemen-
tary material). Note that during the process, the sizes of S1 and S2 constantly change.
Finally, we compute q(c∗|c) by Equation 6:

q(c∗|c) =
∏
i∈S

p(ki = k|S1, S2) (6)

Finally, the likelihoods are:

L(c∗|y)
L(c|y)

=
f likk1

(wk1 , tk1 |c∗)f likk2
(wk2 , tk1 |c∗)

f likk (wk, tk|c)
(7)
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where

f lik(w, t|c) = Γ (Vwη)

Γ (n··k + Vwη)

∏
vw
Γ (nvw

··k + η)

ΓVw(η)
p(t|•) (8)

Γ is the gamma function, n··k is the number of words in topic k, nvw··k is the number of
words vw assigned to topic k, and p(t|•) is the likelihood of the time words involved.

Now we have fully defined our split-merge operations. Whenever an SM operation
is executed, the time HDP needs to be updated. During the experiments, we do one
iteration of SM after a certain number of Gibbs sampling iterations.

We found it is unnecessary to do SM on the time HDP for two reasons. First, we
already implicitly consider the time HDP here through Equations 2 - 8 and an SM
operation on the word HDP will affects the time HDP. Second, we want the word HDP
to be the dominating force over the time HDP in SM. A merge operation on the word
topics will cause a merge operation on the time HDP, which makes the patterns more
compact. The reverse is not ideal because it can merge different word topics. However,
this does not mean that the time HDP is always dominated. Its impact in the Gibbs
sampling plays a strong role in clustering samples that are temporally close together
while separating samples that are not.

3 Experiments

Empirically, we use a standard set of parameters for all our experiments. The prior
Dirichlet(η) is a symmetric Dirichlet where η is initialized to 0.5. For all GEM
weights, we put a vague Gamma prior, Gamma(0.1, 0.1), on their Beta distribution
parameters, which are updated in the same way as [24]. The last is the Normal-Inverse-
Gamma prior, NIG(µ, λ, σ1, σ2), where µ is the mean, λ is the variance scalar, and σ1
and σ2 are the shape and scale. For our datasets, we set µ to the sample mean, λ = 0.01,
σ1 = 0.3 and σ2 = 1. Because both the Gamma and NIG priors are very vague here, we
find that the performance is not much affected by different values, so we fix the NIG
parameters. For simplicity, we henceforth refer to all activity Patterns with the letter P.

3.1 Synthetic Data

A straightforward way to show the effectiveness of our method is to use synthetic data
where we know the ground truth so that we can compare learned results with the ground
truth. Similar to [7], we use grid image data where the ground truth patterns (Figure 3
P1 and P2) are used to generate synthetic document data. Different from [7], to show the
ability of our model in capturing temporal information, we generate data for 4 periods
where the two ground truth patterns are combined in different ways for every period.
Documents are randomly sampled from the combined pattern for each period. Figure 3
Right shows the learned patterns and their time activities from HDP [24] and STHDP.
The time activities for HDP are represented by a GMM over the time words associ-
ated with the activity pattern. For STHDP, a GMM naturally arises for each pattern by
combining the time patterns and their respective weights.
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Fig. 3. Left: Two ground truth patterns on a 5 × 5 grid (one distributed over a horizontal bar, the
other over a vertical bar) and generated data over four time periods (P1 is used for generating
data in phase 1 and phase 3, P2 is used for data in phase 2 and both are used for phase 4. Some
document examples and the histogram of observation numbers are shown for each phase). Right:
Learned patterns and their time activities by (a) HDP [24] and (b) STHDP.

Both HDP and STHDP learn the correct spatial patterns. However, HDP assumes
exchangeability of all data points thus its time information is not meaningful. In con-
trast, STHDP not only learns the correct patterns, but also learns a multi-modal repre-
sentation of its temporal information which reveals three types of information. First, all
GMMs are scaled proportionally to the number of associated data samples, so their in-
tegrals indicate their relative importance. In Figure 3 Left, the number of data samples
generated from P1 is roughly twice as big as that from P2. This is reflected in Figure 3
Right (b) (The area under the red curve is roughly twice as big as that under the blue
curve). Second, each activity pattern has its own GMM to show its presence over time.
The small bump of the blue curve in (b) shows that there is a relatively small number of
data samples from P2 beyond the 210th second. It is how we generated data for phase
4. Finally, different activity patterns have different weights across all the time topics.
Conversely, at any time, the data can be explained by a weighted combination of all
activity patterns. Our method provides an enriched temporal model that can be used for
analysis in many ways.

3.2 Real Data

In this section, we test our model on the Edinburgh dataset [36], the MIT Carpark
database [16] and New York Central Terminal [13], referred to as Forum, Carpark
and TrainStation respectively. They are widely used to test activity analysis methods
[16,13,7,37,38]. Each dataset demonstrates different strengths of our method. Forum
consists of indoor video data with the environment information available for semantic
interpretation of the activities. Carpark is an outdoor scene consisting of periodic video
data that serves as a good example to show the multi-modality of our time modeling.
TrainStation is a good example of large scenes with complex traffic. All patterns are
shown by representative (high probability) trajectories.

Forum Dataset The forum dataset is recorded by a bird’s eye static camera installed on
the ceiling above an open area in a school building. 664 trajectories have been extracted
as described in [36], starting from 14:19:28 GMT, 24 August 2009 and lasting for 4.68
hours. The detailed environment is shown in Figure 4 (left). We discretize the 640 *
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480 camera image into 50×50 pixel grids and the velocity direction into 4 cardinal
subdomains and then run a burn-in 50 iterations of Gibbs sampling. For the first 500
iterations, MH sampling is done after every 10 Gibbs sampling iterations. Then we
continue to run it for another 1500 iterations.

Nine patterns are shown in Figure 4, where the semantics can be derived by also con-
sidering the environment information in the form of Zones Z1: Stairs, Z2-Z7: Doors,
Z8: Conference room, Z9: a floating staircase that blocks the camera view but has no se-
mantic effect here. P3 and P4 are two groups of opposite trajectories connecting Z1 and
Z2. We observe many more trajectories in P3 than P4. From the detailed environment
information, we know that the side door outside of Z2 is a security door. This door can
be opened from the inside, but people need to swipe their cards to open it from outside,
which could explain why there are more exiting than entering activities through Z2. P2
is the major flow when people come down the stairs and go to the front entrance. P1 has
a relatively small number of trajectories from Z6 to Z7, i.e., leaving through the front
entrance. From the temporal point of view, the two major incoming flows can be seen
in Figure 4 P4 and Figure 4 P5, spanning the first half of the data. We also spot a pat-
tern with a high peak at the beginning (around 2:34pm), shown by Figure 4 P7, which
connects the second part of the area and the conference room. We therefore speculate
that there may have been a big meeting around that time.

Fig. 4. Top Left: Environment of Edinburgh dataset. Bottom Left: Trajectories overlaid on the
environment. Right: Some activities shown by representative trajectories and their respective time
activities. Colors indicate orientations described by the legend in the middle.

Carpark Dataset The Carpark dataset was recorded by a far-distance static camera
over a week and 1000 trajectories were randomly sampled as shown in Figure 5 Left.
Since this dataset is periodic, it demonstrates the multi-modality of our time modeling.
We run the sampling in the same way as in the Forum experiment.

Four top activity patterns and their respective time presence are shown in Figure 5.
P1 is the major flow of in-coming cars, P2 is an out-going flow, and P3 and P4 are two
opposite flows. Unfortunately, we do not have detailed environment information as we
do from Forum for further semantic interpretations. The temporal information shows
how all peaks are captured by our method, but different patterns have different weights
in different periods.
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Fig. 5. Top Left: Environment of the car park. Bottom Left: Observation numbers over time.
Right: Some activities shown by representative trajectories and their respective time activities.
Colors indicate orientations described by the legend in the middle.

TrainStation Dataset The TrainStation dataset was recorded from a large environment
and 1000 trajectories were randomly selected for the experiment. The data and activities
are shown in Figure 6.

Fig. 6. Top Left: Environment of the New York Central Terminal. Bottom Left: Observation num-
bers over time. Right: Some activities shown by representative trajectories and their respective
time activities. Colors indicate orientations described by the legend on the right.

3.3 Split and Merge

We test the effectiveness of split-merge (SM) by the per-word log likelihood by:

Pper−word =

∑N
n=1 P (wn, tn|β, v, α, e)

N
=∑N

n=1(
∑K

k=1 P (wn|βk, vk)
∑L

l=1 P (tn|αl, el, •))
N

(9)

where N , K and L are the number of observations, learned spatial activities and time
activities respectively. β and v are the spatial activities and their weights, α and e are
the time activities and their weights, • represents all the other factors. In general, we
found that SM increases the likelihood thus improves the model fitness on the data.
Also, we found that MH sampling is more likely to pick a merge operation than a split.
One reason is the time HDP tends to separate data samples that are temporally far away
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from each other, thus causing similar patterns to appear at different times. A merge on
those patterns has higher probability, thus is more likely to be chosen. Merging such
spatially similar patterns makes each final activity unique. It is very important because
not only does it make the activities more compact, it also makes sure that all the time
activities for a particular spatial activity can be summarized under one pattern.

3.4 Anomaly Detection

For anomaly detection, Figure 7 shows the top outliers (i.e., unusual activities) in three
datasets: (g) and (l) show trajectories crossing the lawn, which is rare in our sampled
data; (i) shows a trajectory of leaving the lot then returning. In the latter case, the tra-
jectory exited in the upper lane, whereas most activities involve entering in the upper
lane and exiting in the bottom lane. The outliers in the Forum are also interesting. Fig-
ure 7 (a) shows a person entering through the front entrance, checking with the reception
then going to the conference room; (b) shows a person entering through Z2 then leaving
again;(d) is unexpected because visually it should be in Figure 4 (P7), but we found that
the pattern peaks around 2:34pm and falls off quickly to a low probability area before
2:27:30pm whereas Figure 7 (c) occurs between 2:26:48pm-2:26:53pm. This example
also demonstrates that our model identifies outliers not only on the spatial domain but
also on the time domain. We also found similar cases in Figure 7 (k), (l) and (o) that
are normal when only looking at the spatial activities but become anomalies when the
timing is also considered.

Fig. 7. Top: Outliers in Forum. Middle: Outliers in Carpark. Bottom: Outliers in TrainStation.

3.5 Comparison

Qualitative Comparison Our model is complementary to dynamic non-parametric
models such as DHDP [16] and MOTIF [4]. Theoretically, our time modeling differs in
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two aspects: continuity and multi-modality. Wang et.al [16] manually segment data into
equal-length episodes and Emonet et.al [4] model local spatio-temporal patterns. Our
method treats time as a globally continuous variable. Different time modeling affects
the clustering differently. All three models are variants of HDP which assumes the
exchangeability of data samples. This assumption is overly strict when time is involved
because it requires any two samples from different time to be exchangeable. The manual
segmentation [16] restricts the exchangeability within segment. Enforcing a peak-and-
fall-off time prior [4] has similar effects.

For DHDP, we segment both datasets equally into 4 episodes. We run it for 5000
iterations on each episode. For MOTIF, we used the author’s implementation [4]. For
parameter settings, we use our best effort at picking the same parameters for three mod-
els, e.g. the Dirichlet, DP, Gamma and Beta distribution parameters on each level. Other
model-specific parameters are empirically set to achieve the best performance. Also,
since there is no golden rule regarding when to stop the sampling, we use the time
DHDP models takes and run the other two for roughly the same period of time.

Since all three methods learn similar spatial activities, we mainly compare the tem-
poral information. Figure 8 shows one common pattern found by all three methods.
The temporal information of DHDP is simply the weight of this activity across differ-
ent episodes. To get a dense distribution, smaller episodes are needed, but the ideal size
is not clear. Therefore, we only plot the temporal information for MOTIF and STHDP.
In Figure 8 Left, (c) is the starting time probability distribution of Figure 8 Left (b).
The distribution is discrete and shows how likely it is that this pattern could start at a
certain time instance, which reports quite different information from our pattern. Fig-
ure 8 Left (d) shows the time activities of Figure 4 (P3), which is continuous and shows
its appearance, crescendo, multiple peaks, wane and disappearance. An interesting fact
is that both methods capture this pattern within the first 8000 seconds while our model
also captures a small bump beyond the first 8000 seconds. By looking at the data, we
find that there are indeed a few trajectories belonging to this pattern beyond the first
8000 seconds. Figure 8 Right shows a common pattern in the Carpark dataset. Both
MOTIF and STHDP capture the periodicity as seen in P3 and P4. They mainly differ at
the start in that P3 captures two peaks whereas P4 captures one. Note that the two peaks
that P3 captures depict how likely it is that the activity starts at those time instances,
while STHDP captures the time span of that activity, which is essentially the same.

Quantitative Comparison Because all three methods model time differently, it is hard
to do a fair quantitative comparison. As a general metric to evaluate a model’s ability to
predict, we use the per-word log likelihood (Equation 9). We hold out 10% of the data
as testing data and evaluate the performance of the three models with respect to how
well they can predict the testing data. We show the best per-word log likelihood of the
methods after the burn-in period in Table 2.

This experiment favors DHDP and MOTIF. Because DHDP learns topics on dif-
ferent episodes, when computing the likelihood of a testing sample {w, t}, we only
weighted-sum its likelihoods across the topics learned within the corresponding episode.
So the likelihood is p(w|t, •) instead of p(w, t|•) where • represents all model param-
eters and the training data. For MOTIF, the learned results are topics as well as their
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Fig. 8. Left: Forum dataset. (a) A pattern learned by DHDP. (b) A pattern learned by MOTIF. (c)
The topic starting time distribution over time from MOTIF. (d) The time activities of Figure 4
(P3) from STHDP. Right: Carpark dataset. (a) A pattern learned by DHDP. (b) A pattern learned
by MOTIF. (c) The topic starting time distribution over time from MOTIF. (d) The time activities
of Figure 5 (1) from STHDP.

STHDP DHDP MOTIF
Forum -3.84 -9.8 -54.38

Carpark -2.8 -7.75 -62.13
TrainStation -3.5 -4.9 -62.2

rcorrect/rcomplete STHDP DHDP MOTIF
Forum 0.92/0.88 0.95/0.63 0.87/0.78

Carpark 0.83/0.9 0.89/0.31 0.85/0.42
TrainStation 0.84/0.75 0.72/0.55 0.69/0.58

Table 2. Left: Best per-word log likelihoods. Right: rcorrect and rcomplete accuracies from 0-1,
1 is the best.

durations in time. We compute the likelihood of a testing sample by averaging the like-
lihoods across all topics whose durations contains t, i.e., p(w, t|βk, t ∈ rtk, •) where βk
is the topic with duration rtk. For STHDP, the likelihood is computed across all word
topics and all time topics, p(w, t|•), which is much more strict. We found that STHDP
outperforms both DHDP and MOTIF, with MOTIF performing more poorly than the
other two. We initially found the results surprising given the fact that MOTIF learns
similar spatial activities to the other two. Further investigations showed that, since the
testing data is randomly selected, this causes gaps in the training data in time. As a con-
sequence of the discrete nature of the time representation in MOTIF, all MOTIF topics
have low probabilities in those gaps, thus causing the low likelihoods. Removing the
time and only considering spatial activities in this case may help but would not be fair
to the other two methods.

Next, we compute the correctness/completeness of the three methods as in [16].
Correctness is the accuracy of trajectories of different activities not clustered together
while completeness is the accuracy of trajectories of the same activity clustered to-
gether. To get the ground truth data for each dataset, the trajectories were first roughly
clustered into activities. Then 2000 pairs of trajectories were randomly selected where
each pair comes from the same activity and another 2000 pairs were randomly selected
where each pair comes from two different activities. Finally these 4000 pairs of tra-
jectories for each dataset were labeled and compared with the results of our method.
We denote the correctness as rcorrect and the completeness as rcomplete. Because es-
timating the number of clusters is hard, it was only needed to judge whether a pair
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of trajectories was from the same activity or not. The correctness/completeness metric
indicates that grouping all the trajectories in the same cluster results in 100% complete-
ness and 0% correctness while putting every trajectory into a singleton cluster results in
100% correctness and 0% completeness. So only an accurate clustering can give good
overall accuracies. Table 2 Right shows the accuracies. STHDP outperforms the other
two on rcomplete across all datasets. Its rcorrect is higher in TrainStation and slightly
worse in Forum and Carpark but the difference is small (within 6%).

Finally, we discuss how different temporal modeling could lead to different tem-
poral anomaly detection. Most of the outliers in Figure 7 are spatial outliers and also
detected by DHDP. However, some are not (Figure 7 (d) (k) (l) (o)). Figure 7 (d) is a
good example. Spatially its probability is high because it is on one major activity shown
in Figure 4 P7. However, if its temporal information is considered, our method gives a
low probability because its timing is very different from the observations in Figure 4
P7. In contrast, DHDP gives a high probability because it first identifies the segment in
which this trajectory is, then computes the probability based on the activities computed
within the segment and the segments before. Since Figure 4 P7 and Figure 7 (d) are
in the same segment, a high probability is given. The result is caused by the fact that
DHDP models progressions between segments but the temporal information within a
segment is not modeled. Meanwhile, MOTIF reports a higher probability on Figure 7
(d). However, it suffers from the situation explained by the low likelihoods in Table 2
Left. When a continuous chunk of data are missing, there is a void spanning a short
period in the training data, which causes low probabilities on any observations in the
time span. This kind of temporal information loss leads to false alarms for anomaly
detections (all our testing data report low probabilities). In our method, if an activity
is seen before and after the void, it will be inferred that there is a probability that the
activity also exists in the middle by putting a Gaussian over it. Even if the activity only
appears before or after the missing data, the Gaussian there prevents the probability
from decreasing as quickly as it does in MOTIF.

4 Limitation and Conclusions

For performance comparison, we tried to run three models and stopped them once satis-
factory activities were computed and compared the time. Our method is approximately
the same as DHDP and can be slightly slower than MOTIF depending on the dataset.
But we did not use larger datasets because although being able to report good likeli-
hoods, sampling is in general slow for largest datasets and it applies to all three models.
So we focused on experiments that show the differences between our model and the
other two. Also, we find the data is abundant in terms of activities where a random sam-
pling suffices to reveal all activities. Quicker methods for training such as variational
inference [39] or parallel sampling can be employed in future.

In summary, we propose a new non-parametric hierarchical Bayesian model with
a new hybrid sampling strategy for the posterior estimation for activity analysis. Its
unique feature in time modeling provides better likelihoods, correctness/completeness
and anomaly detection, which makes it a good alternative to existing models. We have
shown its effectiveness on multiple datasets.
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