Fin Textures for Real-Time Painterly Aesthetics
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Figure 1: This painterly cat can be rendered at 165 FPS using our fin texture approximation while the original scene achieves only 4 FPS.

Abstract

We present a novel method for real-time stylized rendering in video
games. Recent advances in painterly character authoring and ren-
dering allow artists to create characters represented by 3D geometry
as well as 3D paint strokes embedded on and around that geome-
try. The resulting 3D paintings are rendered in screen space us-
ing special-purpose offline rendering algorithms to achieve a unique
painterly style. While providing novel styles for offline rendering,
existing techniques do not support real-time applications. In this
paper, we propose a method to interactively render these complex
3D paintings with a focus on character animation in video games.
After observing that off-surface paint strokes can be interpreted as
volumetric data in the proximity of 3D meshes, we review existing
volumetric texture techniques and show that they are not adapted to
paint strokes, which can be sparse and have a significant structure
that should be preserved. We propose a method based on fin tex-
tures in which mesh edges are extended orthogonally off the surface
and textured to replicate the results of the custom offline rendering
method. Our algorithm uses a per-pixel normal calculation in order
to fade in fin textures along boundary views. Our results demon-
strate real-time performance using a commodity game engine while
maintaining a painterly style comparable to offline methods.

Keywords: real-time rendering, stylization, painterly rendering,
non-photorealistic rendering

1 Introduction

Through their unique combination of visual, narrative, auditory,
and interactive elements, video games provide an engaging medium
of expression within our society. Video game exhibitions at top
art museums such as the Museum of Modern Art [MoMA Press
2012] and the Smithsonian American Art Museum [Melissinos and
O’Rourke 2012] attest to the fact that games have grown to be re-
spected as an art form on par with film and animation. The visual
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design of a video game plays a significant role in the game’s over-
all artistic impact. In the design phase, artists craft a vision for the
game’s look that supports the interaction style and narrative signif-
icance of the game. For example, the soft and glowing aesthetic
of Flower [Chen 2009] supports the game’s poetic nature, while
the dark and gritty visuals of Heavy Rain [Cage 2010] enhance the
game’s film noir style.

Although a game’s visuals contribute greatly to its overall feeling
and impact, fully realizing the desired artistic vision for a game
within the constraints of modern game engines is often impossible.
Games are, by nature, interactive and rely on a sophisticated set
of technological tools to support character models, rigging, anima-
tion, environments, camera control, lighting, texturing, and render-
ing within this interactive setting. The game engine, which encom-
passes this technology, must deliver stunning, rendered imagery at
high frame rates to support smooth interaction. The strict real-time
demand naturally requires tradeoffs in the engine’s overall visual
expressivity. As a result, the game engine may not accommodate
the visual style envisioned for a game, requiring alterations to con-
form to the engine’s technical limitations. Consequently, the final
look of the game may deviate significantly from the artist’s original
vision.

Our work expands the aesthetic range of video game styles by re-
formulating costly offline expressive rendering methods to work in
real time using commodity game engines. We place special atten-
tion on the difficult case of game characters, which are particularly
challenging since they are animated and can be viewed from any
perspective. In order to give the artist direct control over the char-
acter’s visual style, we build upon a stroke-based 3D painting and
animation system called OverCoat [Schmid et al. 2011; Baran et al.
2011; Bassett et al. 2013] that allows artists to craft a character’s
look through painting with expressivity that is akin to creating 2D
concept art. While OverCoat requires a costly, custom, offline ren-
dering step, we propose a new formulation that can be rendered in
real time while maintaining comparable aesthetic quality. Since our
goal is to open up new visual styles to as many game designers as
possible, we develop our work for the industry standard Unity game
engine [Unity 2015].



Technically, our method expands on the concept of shell textures
[Meyer and Neyret 1998]. For each mesh polygon, we generate
edge polygons, or “fins,” by extending the polygon edges orthog-
onally off the surface. We then provide an algorithm to generate
alpha textures for the fins based on an input OverCoat painting. We
use a per-pixel normal calculation in order to fade in such polygons
along boundary views. The method fits naturally within Unity’s
rendering procedure, and only requires a back-to-front polygon sort
as overhead. We extend character skinning weights to deform our
fin meshes to support animation. Taken together, our method can
reproduce the painterly aesthetic of OverCoat at real-time speeds.
Figure 1 shows one example.

Our core contributions include an edge polygon representation, a
rendering procedure for per-pixel boundary visibility, and a tex-
ture calculation method designed for offline stroke-based non-
photorealistic rendering methods. We show several examples of
how our method expands the range of aesthetic styles that can be
achieved with a commodity game engine.

2 Related Work

Stylized rendering in animation

Non-photorealistic rendering aims at depicting a digital scene using
a specific visual style. Many industrial applications exist, in partic-
ular in the context of CAD, where specific shading algorithms can
improve the legibility of technical illustrations, as demonstrated in
[Gooch et al. 1998]. However, most existing non-photorealistic ren-
dering techniques were developed for a specific aesthetic intent. In
particular, a large palette of methods target painterly rendering, in
an effort to stylize 3D objects and characters by reproducing the
look of traditional 2D paintings.

Two major research directions can be identified within painterly
rendering. First, following the seminal work by Meier ([Meier
1996]), a variety of methods place particles in screen space or di-
rectly onto 3D geometry to act as seeds for the instantiation of
paint strokes. The other main lineage of work consists of screen
space image processing methods that act on videos or rendered im-
ages. Techniques include example-based stylization [Hertzmann
et al. 2001] and screen space stroke generation [Litwinowicz 1997].
We refer the reader to Hedge, Gatzidis, and Tian’s review article
[Hegde et al. 2013] for a more exhaustive study of existing painterly
rendering methods.

In our work, we wish to place the artist at the core of the styl-
ization process so that they can directly craft the desired painterly
look. Offline methods such as WYSIWYG NPR ([Kalnins et al.
2002]), Deep Canvas ([Katanics and Lappas 2003]), and OverCoat
([Schmid et al. 2011]) share this goal. OverCoat’s novelty resides in
the possibility to place paint strokes around meshes, which is anal-
ogous to painting in 2D outside of strict contours, thus allowing
for fluffy painterly characters to be authored and rendered. Recent
extensions support character animation [Bassett et al. 2013] while
maintaining motion and temporal coherence, which are challeng-
ing but critical qualities in non-photorealistic rendering [Bénard
et al. 2011]. Although ideal for character stylization, OverCoat’s
rendering method as well as the more elaborate one published in
[Baran et al. 2011], both target offline rendering, and are not suit-
able for framerate demanding applications such as video games. As
such, we use the OverCoat framework as the basis for our research
and develop an algorithm to reformulate OverCoat’s costly, offline,
special-purpose rendering algorithm into one that is amenable to
commodity game engines in real time.

Stylized rendering in interactive applications

Some expressiveness of non-photorealistic rendering has already
been leveraged in video games. In particular, emphasis has been
put on flat-looking renderings, mimicking 2D celluloid animations.
Such a visual style was first brought to video games using painted
pre-rendered flat textures in Fear Effect [Platten 1999], and was
first computed in real time in Jet Set Radio [Kikuchi 2000], thus
pioneering the technique now commonly referred to as cel shading.
Cel shading has since become common in real-time rendering appli-
cations such as video games. Many variations exist, using shaders
to enforce a specific color scheme, simulate unrealistic lighting, or
copy features commonly found in 2D art, such as rendering the sil-
houette of a character using tapered lines.

More advanced real-time stylization methods have been published
in the past, aiming at achieving existing non-photorealistic render-
ing styles in real-time. In [Markosian et al. 1997], the authors
propose a real-time method for line-based stylization. More spe-
cific styles can be achieved in real-time, such as hatching ([Praun
et al. 2001]), line art rendering ([Elber 1999]) or charcoal drawing
([Majumder and Gopi 2002]). These real-time non-photorealistic
rendering techniques are all fantastic for replicating particular, spe-
cialized styles, but offer only a restricted amount of flexibility to
the artist over the final appearance. Fine-scale customizations in
character appearance are typically not possible. Furthermore, pro-
grammable interfaces such as those inspired by cel shading require
technical skills, and are an indirect way of controlling the final look
of a rendering. By targeting a 3D painting system that provides di-
rect control over character stylization, we bring this new level of
stylized control to game design.

Capturing and rendering volumetric shells

Paint strokes embedded around 3D characters can be interpreted
as volumetric structures. Several publications have already tar-
geted volumetric data rendering around meshes. Indeed, volumetric
structures are inherent to realistic digital scenes, and adding hair,
fur, or small-scale geometry to the surface of a 3D character in-
creases its visual richness. In the early days of computer graphics,
modeling complex structures such as fur using geometry was too
complex for state-of-the-art hardware. Kajiya and Kay proposed a
seminal solution using texels [Kajiya and Kay 1989] that inspired
researchers to use the space surrounding a mesh, commonly re-
ferred to as shell space, to embed renderable data.

In a similar fashion to textures that get applied to 3D models, texels
with toroidal symmetry can be deformed to fit in each shell around
a mesh. Such volumetric shell textures are used to add repetitive
detail to a 3D model. Neyret extended that technique to shell tex-
tures around arbitrary resolution meshes to render complex natural
scenes [Neyret 1998]. Further works making use of shell space
include [Chen et al. 2004], in which the authors define shell tex-
ture functions, that describe complex volumetric materials around
meshes for advanced rendering in the context of subsurface scat-
tering. Porumbescu and colleagues present a bijective mapping be-
tween shell space and texture space, called a shell map, in order to
synthesize geometric detail onto meshes [Porumbescu et al. 2005].

These methods target offline rendering through ray-tracing, or ge-
ometry generation. Meyer and Neyret [Meyer and Neyret 1998]
introduce a technique to slice a shell texture into layered poly-
gons, enabling real-time rendering of shell textures using z-buffers.
Sliced, or layered shell textures were then used for rendering fur
using level of detail [Lengyel 2000] and over arbitrary surfaces
[Lengyel et al. 2001]. These methods are powerful for stochas-
tic and repetitive data like fur, but are not directly applicable in
our context, since we aim at reproducing 3D paintings where every



locally painted detail contributes to the artist’s intended character
design.

In order to render 3D paintings using shell textures, we must devise
a new method for reformulating paint strokes rendered in screen
space as shell textures. Some existing techniques target the related
problem of rendering complex 3D data acquired from screen space
capture. In particular, [Matusik et al. 2002] capture opacity hulls,
which are rendered by projecting surfels onto the screen. Further
work presented in [Vlasic et al. 2003] provide a hardware-oriented
algorithm to render opacity light fields using a multi-pass render-
ing. Both methods impose specific rendering algorithms that target
real-time lighting. Our method is designed to be compatible with
commodity game engines and only requires back-to-front polygon
sorting and a one-pass OpenGL rendering. More recently, Okabe
and colleagues [Okabe et al. 2015] compute 3D models of fluid in
motion from images. These three methods must infer the shape
of the captured object or phenomenon from the 2D views they use
as input. Our fin texture method makes use of the 3D paintings’
proxy geometry which gives the artist control over the complexity
and topology of the mesh.

3 Method

Overview

Our method takes as input a 3D painting as well as an offline non-
photorealistic renderer for such paintings. For this paper we used
the OverCoat method described in [Schmid et al. 2011] where a 3D
painting consists of paint strokes positioned in 3D space around a
proxy geometry. At render time, those paint strokes are projected
to the camera space and are populated with paint splats, as shown
in Figure 2.

Taking inspiration from shell textures, we use the proxy geometry
to generate a fin mesh that will ultimately be rendered in real-time.
We use OverCoat’s rendering routine to compute a texture for each
polygon of the fin mesh. At runtime, the fin mesh is rendered using
per-fragment alpha blending depending on the camera state. In this
section, we explain the different steps of the fin mesh construction
as well as the texture acquisition. In section 4, we present the results
rendered using this method.

Figure 2: The stroke rendering model in OverCoat (figure courtesy
of Schmid and colleagues [2011])

3.1 Fin Mesh Generation

Paint strokes located around 3D geometry can be seen as volumetric
data. Traditionally, volumetric data around a mesh can be rendered
using ray tracing as originally presented in [Kajiya and Kay 1989],
or using shell textures as can be seen in [Meyer and Neyret 1998].
We are approximating paintings that cannot be exactly represented
by 3D data since they are rendered in screen space, making a tra-
ditional ray tracing approach unsuitable. We therefore choose to
follow an approach inspired by shell textures, and create a fin mesh
by extruding the edges of a proxy 3D mesh into fin quads.

The 3D painting used as input in our method comprises a 3D proxy
mesh. We extrude each edge of the proxy geometry by offsetting
its vertices along their normal. Figure 3 shows this process on a toy
example, while Figure 4 shows a triangle mesh and the generated
fin mesh using this method.

Figure 3: Example fins extruded from mesh edges
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(a) Cat proxy geometry (b) Fin mesh

Figure 4

To approximate a 3D painting in an ideal way, the volume spanned
by the fins should tightly enclose the paint strokes. We let the user
define what offset should be used when extruding the proxy geom-
etry edges. In cases of non-uniform paint repartition, the user can
split the proxy geometry in parts and prescribe different offsets for
each of the parts. In figure 5, the strokes around the cat’s tail are
much further away from the proxy geometry than the strokes cov-
ering the cat’s body, and different offsets are used for those parts.

After the texture generation described in section 3.2, a final opti-
mization process is applied to the mesh that discards the geometry
that is not necessary due to completely empty or transparent tex-
tures.

(a) Offset mesh

(b) Offset mesh with 3D painting

Figure 5: The resulting mesh, when offsetting the vertices by their
normals, is shown in (a). The OverCoat painting in (b) is mostly
contained within the volume spanned by the fin mesh.



3.2 Capturing Fin Textures

The fin rendering, as explained in section 3.3, consists in depicting
the original 3D painting using a textured proxy geometry mesh as
well as textured fin quads that are faded in as they face the camera
position.

We provide two different approaches for capturing the textures for
the proxy geometry and fins. Both methods share the idea of render-
ing for each polygon its neighboring volume using a camera aimed
as orthogonally as possible at the polygon. This technique is simi-
lar to the slicing technique employed in [Meyer and Neyret 1998],
however theirs cannot be directly applied to the context of screen
space rendered paint strokes. Moreover, in our context both types
of polygons will be rendered using different procedures which both
require specific texture captures.

In the original OverCoat method, 3D paint strokes are sampled in
screen space. This means that as the camera moves around a paint
stroke, its projected length on the screen changes, and the number
and position of the paint splats it carries constantly changes. In our
work, paint strokes can often span more than one proxy geometry
triangle. Directly using that rendering method would mean that the
stroke is sampled differently when captured onto adjacent proxy
geometry triangles, which inevitably leads to discontinuities. We
therefore force the paint strokes to be sampled in world space in-
stead of screen space for our application. This leads to minimal
changes in appearance while allowing us to capture consistent tex-
tures.

Proxy geometry textures

In order to generate the texture for a single proxy geometry poly-
gon, we first triangulate it. We then successively place an ortho-
graphic camera orthogonally above each triangle and set its view-
port to match the triangle shape. The near and far planes of the
camera are set to only capture the volume between the triangle and
the top of the fins it touches. Challenges arise from such a simple
approach and we explain here how we tackle them.

First, rendering using an orthographic camera placed above two ad-
jacent triangles will ignore a volume above their common edge in
the convex case, as shown in Figure 6. In the concave case, we
end up rendering splats multiple times. We tackle this problem by
first projecting each splat carried by a paint stroke onto its closest
mesh polygon. We refer to the splat’s new position as the projected
splat position. Note that since splats then lie directly on polygons,
special care has to be taken depending on the renderer’s precision.
Typically, offsetting the near and/or far planes of the orthographic
camera by an epsilon ensures that all splats will be rendered during
the texture capture phase.

Figure 6: Capturing textures for the red and blue triangles using
orthographic cameras ignores the green volume.

Another challenge comes from splats that contribute to more than
one triangle. This scenario happens in all the 3D paintings we ob-

(a) Projecting splats

(b) Rotating splats

Figure 7: Simply projecting the splats on the target plane as in (a)
leads to discontinuities in the textures. Using rotations solves this
problem as shown in (b).

served, for example when painting using a large paint stroke di-
ameter relative to the proxy geometry triangle size, or when paint
strokes are embedded close to proxy geometry edges. This means
that splats cannot be discarded during the capture solely based on
the position of their center. When rendering the volume above a
proxy mesh triangle ¢, we therefore consider all splats which radius
puts them within reach of ¢. Each of those splats can potentially
contribute to the texture being computed. Splats placed on an ad-
jacent triangle are rotated around the shared edge between the two
triangles to lie in the plane defined by ¢. Figure 7 shows the differ-
ence of rotating a splat in its correct position rather than offsetting
it. For more distant splats, we use the shortest path from the splat’s
projected position to the current triangle ¢ and execute a series of
such rotations along the edges that connect the triangles of the path,
which corresponds to a “wrapping” of the splat around the mesh.

When computing the texture for a specific triangle ¢, several splats
in its vicinity are projected onto t. When rendering using an ortho-
graphic camera placed above ¢, the splats are therefore at an equal
depth from the camera, although their original positions would ex-
hibit a depth order. Moreover, splats on adjacent triangles are seen
at inconsistent depths from different cameras, as shown in Figure 8.
In order to render the splats onto the texture with consistent depth
information, we therefore sort them based on the distance between
their original position and the proxy mesh. This ensures a consis-
tent depth ordering of the splats even across triangle borders. Note
that for splats having exactly the same distance to the proxy geom-
etry, we render the most recently painted stroke last, inspired by

OverCoat [Schmid et al. 2011].

Figure 8: The two cameras assign the splats an inverted depth or-
der when relying on the camera space z-position.

Finally, since the orientation of splats in OverCoat is defined in
screen space, viewing paint strokes from cameras with different up
vectors causes inconsistencies in the rendered splat orientations, as
seen in 9 (a). In general it is not possible to assign a continuous
orientation across a mesh without singularities, not even on simple
meshes such as topological spheres, as stated by the Poincaré-Hopf



(a) Uncorrected orientation

(b) Fixed orientation

Figure 9: Dealing with the splats’ orientation is necessary when
rendering small parts of the scene to generate textures. Discontinu-
ities arise at the polygon borders if the camera orientation changes.

theorem. In our case however, we obtain satisfying results simply
by assigning a global orientation to all triangles. We compute that
global orientation by projecting a single arbitrary vector onto each
face. For faces where such a projection does not exist, we propagate
the direction using the neighboring faces’ triangles. Figure 9 (b)
shows the influence of using such corrected orientations. While
one could envision defining a consistent orientation for every stroke
individually, we found that our method provided good results.

Fin textures

Fins are represented as quads and may not be planar. If we trian-
gulate each fin and capture the textures for each triangle separately,
special care will have to be taken to avoid discontinuities between
the obtained textures, in a similar fashion as the method described
for the proxy geometry texture. However, in most cases fin quads
are not strongly distorted. We therefore simplify the texture cap-
ture by using one stroke rendering pass for each fin. We place the
camera so that it faces the lowest triangle orthogonally. Since the
lowest triangle shares an edge with the proxy geometry, we can as-
sume that it is less dependent on the fin deformation.

In a similar fashion to the proxy geometry texture capture, the near
and far planes of the camera are adjusted to contain the whole vol-
ume spanned by the proxy mesh triangle and its connected fins.
Analog issues arise from that method. For example, similar to the
ignored volume depicted in Figure 6, rendering the volume spanned
by fins and cropping it onto a fin quad will ignore some splats. In
general, fixing this issue by projecting splats as described above
introduces unpleasing perspective distortions, and the best way to
remove such artifacts is to modify the input mesh to be locally
smoother.

Since the view direction can change dramatically from one fin
quad to the next, discontinuities between neighboring fins cannot
be avoided. We however propose a solution consisting in captur-
ing each fin texture several times, while interpolating the camera
position from a fin to the next. We generate the final fin texture
by concatenating strips of the multiple generated textures. Figure
10 shows how this method helps remove discontinuities between
neighboring fin textures.

3.3 Fin Texture Rendering

To render our approximation scenes, we apply at each frame a
back-to-front sorting on all the polygons and use per-fragment al-
pha blending to achieve visually correct results with our semi-
transparent textures. While the proxy geometry is always rendered,

(a) No interpolation (b) With view interpolation
Figure 10: Interpolating the view direction helps to reduces hard
changes in adjacent fin textures. While the change in the view di-
rection is clearly visible in (a), a smooth transition is achieved in

(b).

fin textures should only be visible when their normal is close to or-
thogonal with the camera plane. Existing methods such as [Lengyel
et al. 2001] blend whole fin quads in and out at once, which pro-
vides satisfying results when used to render noisy structures like fur.
However, in our context, having a fin blended in while its neighbors
are not visible creates discontinuities, and makes the fin structure
obvious to an observer. Since our goal is to give the impression that
a 3D painting is being rendered in real-time, we fade fin textures
in and out per fragment, using a normal continuously interpolated
across fin polygons.

Contrary to manifold meshes, interpolated normals across fins are
not straightforward to define for fin meshes. We therefore add an
additional step to our workflow prior to rendering, that computes
proper vertex normals for fin meshes.

Fin mesh vertex normal interpolation

When rendering fins, we want to use a per-fragment normal di-
rection for blending. That normal direction should continuously
transition from a fin to its next visible neighboring fins, to avoid
discontinuities in the fin mesh rendering. While defining a continu-
ous normal direction on a manifold mesh can easily be obtained by
interpolating vertex normals across faces, the concept of a “neigh-
boring fin” is not well defined in our case. We observed that when
viewing a fin mesh from an arbitrary angle, fins that are visible and
appear to be neighbors are fins that make a close to flat angle with
each other. This makes sense, since two fins that share an edge will
both be visible if they are both facing the camera.

We therefore conduct an additional processing step on our fin mesh,
that needs to run only once after the fin mesh generation. During
that processing step, we assign to each fin its best neighboring fin.
Since each fin quad is based on a proxy mesh edge, two fin quads
are as good neighbors as their respective edges on the mesh make an
flat angle. Our neighbor assignment is fairly simple: to each mesh
edge, we first find the pair of its best neighboring unmarked edges at
its two ends, while discarding pairs of neighbors making a too sharp
angle (we chose 7/2 as an angular threshold for discarding). Once
all pairs are listed, we define two edges as neighbors if they listed
each other as their best neighbor, and we mark them. We then iterate
until no new matching is found. Finally, edges left unassigned are
paired to their best neighbor, even if that one is already marked.

The neighboring information on the edges is transferred to the fins
they support, and this information on fin continuity lets us render fin
meshes without discontinuities, as exhibited in Figure 11. In some
cases, a fin does not admit a valid neighbor, due to the proxy geom-
etry not providing the corresponding edge with neighbors making a
valid (over 7/2) angle. This can create artifacts where a sole fin is
rendered on the silhouette of a mesh. Using proxy geometry with a
consistent edge flow helps avoiding these issues.



(a) Fin mesh with face normals (b) Adjusted fin mesh vertex normals

Figure 11: Using the fin mesh’s face normals for the fading results
in harsh discontinuities as shown in the left figure. Calculating the
interpolated vertex normals on the fin mesh helps to obtain smooth
transitions on the fins.

Scene OverCoat FPS | Unity FPS | OverCoat Splats | Unity Triangles
Cat 4.2 165 196468 18214
Magicans 0.7 55 1469633 49790
Panda 12.5 190 60992 16204
Bee 13 125 861114 23604
UFO X 72 417215 27122
Van Gogh 14 180 527143 16205
Dog 1.5 120 677355 28231

Table 1: Comparison of frame rates when rendering paintings and
their fin-texture approximations. Note that there is no value for the
OverCoat FPS field of the UFO since that character is assembled
in Unity from five independent OverCoat scenes.

4 Results

All the results shown in this paper are rendered in Unity [Unity
2015] using our custom Unity surface shader for blending poly-
gons in and out, as well as our back-to-front polygon sorting imple-
mentation. Rendered images are attached to the end of this paper
in section 6. The supplemental video shows side by side compar-
isons of OverCoat paintings with the output of our method, as well
as live game sequences, that proof that our implementation can be
used conveniently in commodity game engines such as Unity. The
output of our method can easily be integrated with other special ef-
fects, as is demonstrated with the smearing and stretching effects
shown in the video.

Frame Rate

Table 1 shows the frame rate obtained when rendering different
scenes using OverCoat, as well as rendering the fin-texture approx-
imations using our method in Unity. Our measurements were taken
running Unity on an Intel Core 17 2.80 GHz, with 12 GB of RAM
and an NVIDIA GeForce GTX 580. The frame rate of the approx-
imated scenes is mostly dependent on the number of triangles of
the input geometry. Our triangle sorting script uses a fast linear-
time bucket sort, and most of the rendering time in Unity is spent
accessing the mesh data using the Unity API, and writing it back
once sorted. Note that for static game objects, the mesh vertex po-
sitions do not change and the mesh data does not need to be read
at every frame. Since the bucket sort does not guarantee the abso-
lute correct order of triangles, flickering artifacts can appear if the
number of buckets is chosen to be too low. Therefore, we added to
our sorting algorithm the possibility to adapt the number of buck-
ets used. In our tests, 1000 buckets were usually enough to avoid
popping artifacts. The FPS table shows that our approximations
can be rendered with a substantial speed up of one to two orders of
magnitude compared to the original OverCoat scenes, making them
suitable for real-time applications such as games.

Offline Approximation Time

The running time of the offline algorithm linearly depends on the
number of triangles of the proxy mesh. Without fin interpolation,
for each triangle L + 3 scene renderings are necessary, where L
is the number of layers used and 3 is the number of fins per tri-
angle. The second important factor is the rendering time for the
scene. We render a lot of images that only show a small part of
the scene. Therefore we calculate the bounding box of each stroke
and use it to skip strokes efficiently when they are not intersecting
the rendered volume. The bounding boxes provide a huge speed up
which allows regular scenes, like the ones referred to in table 1, to
be approximated in ten to twenty minutes. Using many fin view di-
rection interpolation steps can increase the approximation running
time up to one or two hours, but are not necessary in general.

Rendering Quality

The rendered approximations are a satisfying reproduction of the
original 3D paintings. We noticed that input meshes modeled as
quad meshes, even if they are then triangulated, achieve in general
better results than models of arbitrary mesh topology. Indeed, they
exhibit a consistent edge flow, with few sharp angles between adja-
cent mesh edges. The fins created from such edges have a similar
normal to their neighboring fins, which is beneficial for our results
as explained in section 3.3.

Contrary to existing shell texture methods such as [Lengyel et al.
2001], we only used a proxy mesh and fins, and did not define lay-
ered textures. We observed that in most cases our method achieves
satisfying results, while benefiting from a lower polygon count.
A low polygon count naturally increases the frame rate during
rendering, but also helped us target real-time rendering using the
Unity game engine. Indeed, that engine enforces a maximum of
65536 triangles or vertices in a single mesh, and that limit can be
quickly reached when using many layers or complex input meshes.
Nonetheless, a single fin quad per edge was sufficient to render the
fluffy bee body, the yellow smoke around the genie, or the dog’s tail
in figure 14.

Rare artifacts along object silhouettes can appear due to poorly
suited fins. Indeed, if the original painting exhibits a striking fea-
ture such as a single paint stroke relatively far from all its neigh-
boring fins, it can be captured by several fins, or by a distant fin,
as described in 3.2, and the feature can then be duplicated when
rendering the approximation of the painting, or seen away from its
intended location, as shown in Figure 12.

Figure 12: The blue paint stroke is captured by all three surround-
ing fins.

In the absence of well-fitting proxy geometry for sparse paint
strokes, additional layers can help establish a good real-time ap-
proximation of the input painting. Our method can easily support
such a layering. By connecting the edges at the top of fin quads
into new triangles, and basing new fins on those triangles, layered
shells can be created. Capturing textures for the layered geome-
try can be done using the method described in 3.2, and we capture



(b)

Figure 13: The OverCoat scene (a) of painted grass is approx-
imated using a single subdivided plane as input mesh. While in
figure (b) the grass is still connected with 15 layers, it clearly splits
up with five layers in figure (c), revealing the underlying structure.

strips of fins using a single camera view, to avoid discontinuities
as mentioned in 3.2. Figure 13 shows painted grass on a flat plane
mesh. If the plane tesselation does not closely match the positions
of the grass strokes, fins cannot capture the grass appearance in a
satisfying way, as previously described and illustrated in Figure 12.
Adding layers help convey the volumetric appearance of the grass.

One important variable in our implementation is the function for
blending fin textures in and out. The default function described in
3.3 was satisfying in most of our tests. However, in specific regions
where fins are relatively large compared to the mesh they base on,
the fin geometry becomes visible to the user. We let the user correct
this behavior by allowing them to change the fade in speed and
threshold for selected parts of a character. The cat example visible
in the trailer of this paper has longer fin quads along its tail than
on its body, which was specified by the user to capture the whole
volume spanned by the 3D paint strokes. The structure of such
long fins can easily be seen using a default implementation, the
user could therefore decide to blend the tail fins 50% faster than the
body ones, to create a fuzzier effect on the tail.

5 Conclusion And Future Work

We presented a novel algorithm that uses precomputation to gen-
erate fin-texture approximations of complex 3D paintings that pre-
serve the artist’s original design. The approximations can be ren-
dered in real-time and combine layer textures (on and around the
proxy geometry) together with fin textures that are orthogonal to
the proxy geometry and fade in using a per-vertex normal value
when facing the camera. Our results show that layer textures on
the proxy geometry reduce 3D paintings to textured meshes which
exhibit sharp edges on screen, while the generated fin textures help
convey the original painterly style in real-time by covering the sharp
borders of the layer textures. While our composited results pro-
vide a satisfying depiction of the input 3D paintings, our experience
helped us identify limitations of capturing and using textures from
shells constructed by offset mesh generation.

First, as previously stated, using complex meshes or high num-
bers of shell layers can result in polygon counts that overshoot the
Unity limitation. A possible solution to bypass this limitation is
to split complex objects into several independent ones. In our cur-
rent implementation, the back-to-front sorting of polygons is per-
formed per object. Splitting paintings into several game objects
would require adapting our sorting algorithm to be performed glob-
ally. While a naive implementation would slow down the rendering
time, adding a collision detection pass across game objects would
help optimize the polygon sorting to remain local across colliding
objects.

The dependency of the results on adequate input geometry as well
as the shell distortion could be circumvented by a better construc-
tion algorithm for the offset mesh. Although more elaborate al-
gorithms for creating smooth offset meshes exist, to the best of

our knowledge, no existing solution focuses on avoiding distorted
shells. A possible solution could be to formulate the offset mesh
construction as an optimization problem that would solve for the
offset vector from each vertex on the proxy geometry mesh while
penalizing the distortion of the shells. Additional energy terms
could be used to avoid the self-intersection of shells or to force fin
quads to be planar, making the capture of their texture more accu-
rate.

An interesting way to further improve the appearance of the fins
would be to create offset meshes with independent topology. Thus,
parts of a mesh with a particularly high curvature could be subdi-
vided as they are offset, while highly convex parts could be deci-
mated as they are offset. In such a process, self intersections could
be avoided and the number of polygons in offset meshes would be
locally more suited to our application.

To the best of our knowledge, no real-time lighting solution for 3D
paintings such as those presented in [Schmid et al. 2011] has been
proposed. Indeed, 3D paint strokes rendered in screen space do not
admit an exact volumetric description, and cannot be represented as
a manifold. Adapting existing shading algorithms to such paintings
is therefore an ill-defined problem. In our context, the shell mesh
and fins approximating a painting have an exact 3D representation
and could in theory be lit using traditional shading principles. Spe-
cial care would have to be taken for fins as they should not be lit
according to their normal, but according to the normal of the mesh
layer to which they are attached. Whether an accurate 3D shading
would be aesthetically pleasing when used on stylized structures
such as our paintings remains to be explored.
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6 Additional Results

Figure 14: Left: OverCoat rendering, right: fin mesh rendered using our method
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Figure 15: From left to right: Panda game scene, “Dog vs. Bird” characters, UFO game scene



