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Abstract— In this paper, we present a humanoid robot which
extracts and imitates the person-specific differences in motions,
which we will call style. Synthesizing human-like and stylistic
motion variations according to specific scenarios is becoming
important for entertainment robots, and imitation of styles is
one variation which makes robots more amiable. Our approach
extends a learning from observation (LFO) paradigm which
enables robots to understand what a human is doing and to
extract reusable essences to be learned. The focus is on styles
in the domain of LFO and the representation of them using the
reusable essences. In this paper, we design an abstract model of
a target motion defined in LFO, observe human demonstrations
through the model, and formulate the representation of styles in
the context of LFO. Then we introduce a framework of gener-
ating robot motions that reflect styles which are automatically
extracted from human demonstrations. To verify our proposed
method we applied it to a ring toss game, and generated robot
motions for a physical humanoid robot. Styles from each of
three random players were extracted automatically from their
demonstrations, and used for generating robot motions. The
robot imitates the styles of each player without exceeding the
limitation of its physical constraints, while tossing the rings to
the goal.

I. INTRODUCTION

Teaching robots has been one of the most important
issues in the field of robotics. Learning skills through ob-
serving human demonstrations is an intellectual ability we
desire from intelligent robots. To achieve such capability
our group has introduced a learning from observation (LFO)
paradigm [1] and developed an abstract model called task
model in the concept. In contrast to a burst of reinforcement
learning approach [2], this model gives robots the prior
knowledge to understand what a human is doing and to
extract reusable essences within a specific task domain. The
concept of task models has been successfully applied to
complex manipulation tasks [1] [3] [4]. The use of robots is
expanding beyond industrial purposes to the entertainment
area. It is also used to imitate full-body human motions
such as a dance performance [5]. These examples illustrate
a potential of task models in a wide range of applications.
Accumulation of such applications is one of our ultimate
goals.
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Fig. 1. An example of person-specific styles in ring toss motions. Four
players are tossing rings in their own way. Differences in hand position,
attitude of body trunk, and bend angle are especially noticeable.

Synthesizing human-like and stylistic robot behavior [6][7]
is becoming more important as entertainment robots become
popular. This kind of topic has been tackled in the animation
community to synthesize realistic, emotional and animated
motions of CG characters [8][9]. Similarly we expect such
technologies that generate expressive motions according to
scenarios can make robots very human-like and amiable. In
this paper we especially focus on styles in terms of person-
specific differences in motions. As shown in Fig. 1, even
when we perform a simple task such as tossing rings to
the goal, details of the throwing motions vary according to
individuals. We are interested in formulating this vaguely
defined concept and imitating it using humanoid robots.
We expect that such ability would expand the capability of
entertainment robots.

In the robotics community synthesizing human-like mo-
tions from motion capture data has been investigated. To ab-
sorb kinematic differences, Pollard et al [10] modified joint-
angle trajectories preserving the wave pattern of them within



the constraints. On the other hand, Nakaoka et al [5] ab-
stracted dance motions based on task models. Deriving mo-
tions from a pre-segmented motion capture database [7] [11]
also have been actively developed. To make robot motions
look as much like original human motions as possible,
optimization-based methods [12] [13] [14] have been devel-
oped. However their cost functions in optimization are fixed
regardless of target tasks; There is no guarantee that those
functions are essential for any other motions. In addition to
those factors, our proposed method considers the variability
in motions of one particular person. In the animation commu-
nity there are also a number of studies on stylistic motion
synthesis. Neff [15] extracts correlations between compo-
nents of motion for an interactive editing tool of motion
styles. Torresani et al [16] used Laban Movement Analysis to
describe styles in the domain of three-dimensional perceptual
space: flow, weight, and time. These factors are quantified
manually by the designer. Various studies analyze and learn
time-varying vectors in joint angles using HMMs [17],
PCA [18], ICA [9], and DP matching [19]. Comparing styles
in terms of mood/emotion-specific variations, few studies
consider person-specific styles.

The proposed method in this paper allows a humanoid
robot to extract person-specific styles from human demon-
strations. Moreover, it allows the robot to imitate the motion
based on the extracted styles within the physical limitations
of robots. This is done automatically by extending the task
model representation [5] without losing its high applicability.
In our method a robot analyzes multiple demonstrations per-
formed by a person, and then extracts the common behaviors
as styles for that particular person.

In a motion analysis, a human demonstration is decom-
posed into a sequence of predefined primitive actions called
task, which describe “what to do”. Skill parameters for each
task describe “how to do” it. We focus on and extract styles
that describe the tendencies of how to do each task from
multiple demonstrations of one particular person.

Our framework for a robot motion generation first extracts
skill parameters for all demonstrations of a person. Then a
robot motion is computed by solving a non-linear optimiza-
tion problem. The set of skill parameters, together with other
constraints, is used in the objective function to generate the
motion that is considered similar in style.

To verify the proposed framework, we used a ring toss
game. The task model for a ring toss game is designed
by analyzing multiple demonstrations of various players.
The statistical distribution of all sets of skill parameters
that are extracted from the same player, defines the styles
for that player. The generated motions based on the styles
were actually performed by a physical humanoid robot, and
compared with each original motion of the players. The robot
could imitate their style of tossing the rings to the goal within
the limitation of its physical constraints.

This paper is organized as follows: Sec. II gives the design
of the style based on a task model. Sec. III describes the
process to generate robot motions considering styles. Sec. IV
reports the experiment with a physical humanoid robot for
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Fig. 2. Movements of the dominant hand in a sample motion of a player.
Upper graph shows time-series data of hand speeds, and lower graph shows
that of hand positions represented in the X-axis of the world coordinate.
To define the world coordinate, the standing position of a human player is
considered as the origin, and the goal of a ring toss game is assigned to be on
the X-axis. Timings circled with purple and blue represent a local maximum
of hand positions and the global maximum of hand speeds, respectively.
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Fig. 3. Design of task sequence in the ring toss motion.

validation. Finally, Sec. V concludes this paper.

II. OBSERVATION AND REPRESENTATION OF STYLE IN A
TASK MODEL

This section begins with the description of a task model
that is used to represent motions in a ring toss game. Then, a
method to extend the task model to represent styles is given.

A. Task Model

In task models, a series of movements are segmented
based on transitions of state, and a segment is recognized
as a primitive action called task. Skill parameters of a task
explain how this is done. Whole motions are abstracted into a
sequence of tasks and then reused to generate robot motions.

1) Task: First, to design tasks in a ring toss game, we
asked seven human players chosen at random to toss the
ring to the goal from the same standing position without
any other specific instructions. Fig. 1 shows sample motion
sequences from four, out of a total of seven, human players.
Each player has their own style of motions, but a common
structure also can be discovered among them; they first take
the ring back spontaneously and then release it through the
air to the goal.

Secondly we analyzed movements of the dominant hand in
a typical sample motion of a player (See Fig. 2). The upper
graph suggests that the player stops the hand just anterior
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Fig. 4. Design of skill parameters for each task in the ring toss. These
skill parameters characterize the trajectory of each task by giving details at
end timing and a specific intermediate timing of each task.

to, and behind, the timing of maximum speed (circled with
blue). The former is the end timing of a preliminary action
before throwing rings, where the hand is pulled closer to
the player’s body trunk. The latter is that of releasing rings,
where the hand is the closest to the goal and then pulled
back. We labeled these two stopping states as AIM state and
FINISH state, while labeling the initial state of the whole
motion as READY state. This paper focuses on movements
from READY state to FINISH state, while movements after
FINISH state are not considered as essential behavior for the
ring toss game.

Based on these specific states, the series of movements
can be divided into two segments. We defined those two
segments as two different tasks: TAKEBACK and RELEASE
(See Fig. 3).

TAKEBACK
is a preliminary action before throwing rings, and is
defined as a transition from READY state to AIM
state.

RELEASE
is a throwing action, and is defined as a transition
from AIM state to FINISH state.

Based on the definitions, all of the human demonstrations
we captured could be automatically segmented. This supports
the generality of our task representation in the ring toss game.
There might be other alternative motion structures to toss the
ring; however, we assume that the motions of human players
from this observation covers all patterns of tossing.

2) Skill parameter: We chose skill parameters based on an
observation of the ring toss motions as shown in Fig. 4. Skill
parameters are designed in common for each task, TAKE-
BACK and RELEASE. These skill parameters characterize
how to do the task by describing the status at the initial
state, the specific intermediate timing, and the finishing state
of the task. Every status during the task execution can be

interpolated using a cubic spline. Concrete definitions are
given as follows. Without loss of generality, all players are
assumed to be right-handed and throw the ring with their
right hand.

r : Hand position
represents a position of the right hand in a Cartesian
coordinate. It is defined in a Cartesian coordinate
with the origin at the right shoulder and each axis
is parallel to the corresponding axis of the world
coordinate. To neglect the effect from the difference
in limb length, the position of the right hand is
normalized by the length of the right arm.

θH , ψH : Wrist angle
represents a pitch angle and a yaw angle of the right
wrist. The yaw axis corresponds to the direction
from the right wrist to the right elbow, and the pitch
axis is orthogonal to the yaw axis in a plane parallel
to the flat of the right hand.

θE , φE : Elbow direction
represents angles corresponding to the position of
the arm from the right shoulder to the right elbow
in the spherical coordinate with the origin at the
right shoulder. X,Y, and Z-axis of the spherical
coordinate are parallel to the world coordinate axes.

ϕB , θB , ψT : Bend and Twist angle
A roll angle represents a torso leaning, a pitch
angle represents a torso bending, and a yaw angle
represents the twisting of the upper body. It should
be noted that the order of the torso joint is assumed
to be yaw-roll-pitch.

ψS : Stance to the goal
represents a yaw angle of the attitude of the waist.
This is used to represent the stance to the goal of
the ring toss.

Duration
represents the interval of time required for the task
execution.

Midtiming
represents a specific intermediate timing in the task
execution. A mid timing in TAKEBACK is defined
as a timing corresponding to a local maximum of
hand position in Fig. 2 between READY state and
AIM state (circled in purple). If candidates are more
than two, the closest inflection point to AIM state is
chosen as the mid timing in TAKEBACK. If there
is no candidate in TAKEBACK, the intermediate
timing between READY state and AIM state is
chosen. A mid timing in RELEASE is defined as a
timing corresponding to a global maximum of hand
speed (circled in blue).

Skill parameters described above cover some features
which are not parameterized as skills. For example, a speed
of the hand is partially overlapped with r and timings of task
execution. A ring position can be described by r, θH , and
ψH . Although our skill parameters might not be enough to
represent the motions perfectly for each player, describing
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Fig. 5. Distributions of skill parameters r in RELEASE tasks in a total
of 60 ring toss motions from three human players (20 motions per player).
Note that r is defined in a Cartesian coordinate with the origin at the right
shoulder. Clusters circled in the same color represent statistical distributions
of hand positions r at start, a specific intermediate, and end timings in
RELEASE tasks by a specific human player. The comprehensive transitions
from start to end timings in RELEASE tasks are indicated by arrows. The
color of the plot, circles, and arrows differentiates human players.

motions perfectly using too many skill parameter is out of
our focus. The purpose of task model is to abstract the
target motion by will or choice of elements to be described.
Skill parameters can be added flexibly according to the
capability of the robot platform or according to the belief
of the designers on what is important or noticeable from
observation.

B. Style Parameter

This subsection describes the representation of person-
specific styles in the task model. We first observed the
difference in statistical distributions of skill parameters of
a task between human players, and then defined a style
representation to represent the individual differences in the
context of the task model.

For observation, we captured a total of 60 ring toss
motions from three human players (20 motions per player)
using an optical motion capture system from VICON. The
distance between the specified standing point and the goal
on the floor was set to 2.5 [m] for each player. We focus on
the difference in statistical distributions of skill parameters
in RELEASE tasks in this observation. First, distribution of
skill parameters of hand positions r in RELEASE tasks were
plotted for each player (See Fig. 5). Clusters circled in the
same color mean statistical distributions of hand positions at
start, a specific intermediate, and end timings in RELEASE
tasks by a specific human player. The comprehensive tran-
sitions from start to end timings in RELEASE tasks are
indicated by arrows. The color of the plot, circles, and arrows
differentiates human players. Similarly, distributions of bend
angle ϕB and θB in RELEASE tasks were plotted for each
player in Fig. 6.
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Fig. 6. Distributions of skill parameters ϕB and θB in RELEASE tasks in
a total of 60 ring toss motions from three human players (20 motions per
player). Clusters circled in the same color represent statistical distributions
of hand positions r at start, a specific intermediate, and end timings in
RELEASE tasks by a specific human player. The comprehensive transitions
from start to end timings in RELEASE tasks are indicated by arrows. The
color of the plot, circles, and arrows differentiates human players.

These figures show that the statistical distribution of each
skill parameter varies from player to player. Fig. 5 shows
that a player with blue markers tends to throw rings at
higher positions, in a Cartesian coordinate with the origin
at the right shoulder, compared to the other players. On the
other hand, a player with green markers tends to throw rings
from lower positions. A player with red markers has a style
which is similar to that of the player with green markers, but
the difference appears at the end timings. Additionally, this
player moves the hand carefully; variances at each timing
tend to be small compared to the others. Fig. 6 shows that
the player with blue markers tends to bend more both forward
and sideways, while the subject with red markers does not
bend as much. In this way we can compare and discover
the differences and similarities in style of two or more
human players based on the distributions of skill parameters.
Moreover, the variance of these distributions can also suggest
the importance of each skill parameter.

As illustrated in the observation, distributions of skill
parameters of a task vary from player to player. In fact,
distributions describe the personal styles in the domain of the
specific task. We use the distributions of skill parameters to
represent person-specific style. To describe the distributions,
we introduce style parameters in the concept of task model,
one style parameter for each task. A style parameter consists
of vectors of averages and variances of all skill parameters
in the task. Skill parameters are assumed to be normally-
distributed.

A style parameter D for a task is defined as follow based
on mean and variance of skill parameters:

D = (s̄,σ), (1)

s̄ = (s̄1, s̄2, s̄3, · · · , s̄k, · · · , s̄N )T , (2)

σ = (σ1, σ2, σ3, · · · , σk, · · · , σN )T , (3)



where N is the number of skill parameters for the task, s̄
is the vector consisting of s̄k which represents the mean of
the k-th skill parameter, and σ is the vector consisting of σk
which represents the variance of the k-th skill parameter.

In the context of this extended task model, a style parame-
ter describes “tend to do” of the skill parameters, while skill
parameters describe “how to do” of the task. s̄ represents the
most typical set of skill parameters for the task of a specific
person. On the other hand, σ represents the flexibility of
each skill parameter for the style. A set of skill parameters
which consist of s̄ can be used to reconstruct a typical motion
that reflects a personal style. However, it is difficult to use
them directly to generate robot motion due to the physical
constraints of the robot. In this case, the refinement of skill
parameters according to the robot platform is required during
the process of robot motion generation. The refinement in
previous works [5] were based on ad-hoc rules, and could
impair the features of style. σ suggest to us the importance
of each skill parameter for the style. A proposed framework,
to generate robot motion, is based on s̄ and σ effectively,
and preserves the personal style in robot motion generation.

III. IMITATION OF PERSON-SPECIFIC MOTION STYLE
BASED ON STYLE PARAMETER

This section describes a proposed framework to generate
robot motion based on style parameters described in the
previous section. The framework consists of three phases:

• Phase 1: Style parameters are extracted from the
demonstrations of a player.

• Phase 2: A set of skill parameters are optimized based
on the style parameter so that robots can imitate the
style while satisfying the constraints.

• Phase 3: Whole body motions are reconstructed by the
optimized skill parameters.

Phase 1: Using multiple demonstrations of a player
as inputs, states are detected based on their definitions.
Motions are segmented as tasks and their corresponding skill
parameters are extracted. Then, style parameters for each task
are calculated from the mean and variance of skill parameters
of multiple demonstrations.

Phase 2: Skill parameters for each task are optimized
based on the style parameters so that the reconstructed
trajectory can mimic the style as closely as possible within
the physical constraints. This optimization is executed by
minimizing an objective function which consists of terms that
are derived from physical constraints of the robots, distance
between the ring and the goal, and preservation of the style.

Phase 3: Whole body motions are reconstructed from
the fully optimized skill parameters. Kinematics of the robot
at each time frame are reconstructed from skill parameters.
Then, trajectory in joint angle space of the robot is calcu-
lated.

A. Style preservation in skill optimization

Initial entry of skill parameters is set to the s̄ of the style
parameter. Then values of each component are updated iter-
atively to minimize the objective function based on physical

constraints of the robots, distance between the ring and the
goal, and preservation of the style. The objective function to
be minimized is designed as follows:

EStyle + λ1ERing + λ2(EAngle + EVelocity + ECollision), (4)

EStyle =
N∑
i=1

(
s̄i − si
σi

)
2

, (5)

EStyle is a term for preserving the style. si is the i-th skill
parameter, and N is the number of skill parameters. The
value of EStyle is increased in direct proportionality to the
difference between si and s̄i. In addition, each term is
weighted by 1/σi. A skill parameter with a smaller variance
is preserved by a larger weight coefficient, and that with a
larger variance is adjusted preferentially by a smaller weight
coefficient.

ERing = |rgoal − rring(s)|2, (6)

ERing is a term relevant to a distance between the goal and the
landing points of rings thrown by the robot. A landing point
rring(s) is simulated from a robot motion generated using
a value set of skill parameters s. Initial positions and initial
velocities of rings are given as those of the hand positions at
the moment in which hand speed becomes maximum during
RELEASE task. The gravity acceleration is assumed to be
9.8 [m/s2]. The air resistance and frictions are ignored in
the calculations of landing points. The larger the difference
between a position of goal rgoal and a landing point rring(s)
is, the more the value of this term will increase.

EAngle =
K∑

k=0

N∑
j=0

α2
j,k(s), (7)

αj,k(s) =


qj,k(s)− qmax

j (qj,k(s) > qmax
j )

qmin
j − qj,k(s) (qj,k(s) < qmin

j )

0 (otherwise)

, (8)

EAngle is a term relevant to constraints of joint angles.
First, trajectories in joint angle space generated using the
skill parameters s are simulated. Then exceeding of joint
limitations is detected for each time frame, and it increases
the term according to the level of excess. qj,k(s) represents
the angle of j-th joint at the k-th time frame. qmax

j and qmin
j

represents the upper boundary and lower boundary of the j-
th joint angle. The value becomes zero if the joint angle is
within the limit.

EVelocity =
K∑

k=0

N∑
j=0

β2
j,k(s), (9)

βj,k(s) =


q̇j,k(s)− q̇max

j (q̇j,k(s) > q̇max
j )

q̇min
j − q̇j,k(s) (q̇j,k(s) < q̇min

j )

0 (otherwise)

, (10)



EVelocity which is relevant to the constraint of joint angular
velocity is also treated in the same way as EAngle.

ECollision =
K∑

k=0

N∑
p=0

γ2p,k(s), (11)

γp,k(s) =

{
r1,p + r2,p − dp(s) (r1,p + r2,p > dp(s))

0 (otherwise)
,

(12)

ECollision is a term relevant to the constraint of self collisions.
In this implementation, collision is detected by calculating
the distance between swept sphere volumes which wrap
around body segments. First, positions of each body segment
in the whole motion are simulated using the skill parameters
s. Then upper body, lower body, right upper arm, right lower
arm, and right hand are wrapped around by each of the
five swept sphere volumes. The radius of each sphere is
determined empirically to wrap around each body segment
with enough margin. γp,k(s) which represents collision level
of p-th joint pair at the k-th time frame is calculated by
(r1,p+r2,p)−dp. Where dp is the minimal distance between
axes of each swept sphere volume of the p-th pair and
r1,p, r2,p are each radii of a sphere.
ERing, EAngle, EVelocity and ECollision are factors that should

be considered by hard constraints if it is possible. However
each component of s does not represent joint angles or land-
ing points of the ring linearly. Therefore, in this framework,
these factors are dealt with as soft constraints, and satisfied
by adjusting weight coefficients and thresholds.

Optimization of value set of skill parameters is executed by
minimizing the objective function described above. To solve
this optimization problem, we used the Levenberg-Marquardt
method [20]. λ1 and λ2 are given empirically.

B. Task reconstruction from skill parameters

This subsection describes the process to reconstruct the
trajectory of a task from a set of skill parameters to generate
the robot motion.

A trajectory of a task is reconstructed by interpolating
the state transition in the task. Timings of each key state:
a start, an intermediate, and an end timing of the task,
are given by skill parameters Duration and Midtiming.
Then skill parameters of hand position r, hand direction
θH , elbow direction θE , twist and lean ψT ϕB θB , and
stance ψS at those key states are interpolated. Interpolation
of each component is performed using a cubic natural spline
function.

Robot motions in the form of joint positions are calculated
using skill parameters interpolated in tasks. The postures of
the robot in each time frame are determined by the joint
positions. Finally, motions in the form of joint positions are
converted to trajectories in joint angle space of the robot
by solving inverse kinematics. As mentioned above, the
exceeding of physical limitations in interpolated motions is
also checked during the optimization process.
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Fig. 7. A physical humanoid robot with its degree of freedoms, a hand
plate for grasping, a ring on the plate, and a goal for the ring toss game.

IV. EXPERIMENT

A. Robot Platform

In this experiment, we employed a physical humanoid
robot as shown in Figure 7. The robot has 39 degrees of
freedom and each joint is driven by hydraulic motors. The
feet are fixed on the base. In default setting, the posture of
the robot is updated at 30 [fps] by the input data. Seven
degrees of freedom on the right arm and four degrees of
freedom on the torso are used. In addition, an auxiliary plate
for grasping the ring is designed as shown in Figure 7. The
ring set on the plate is fixed and released by the right thumb.

B. Experimental condition

Our system extracted style parameters for each of the
three players (A, B, and C), from demonstrations captured
at Sec. II-B, then it generated robot motions for each
style. Distance between standing position of the robot and
the goal is set to 2.5[m]. Instead of an on-board camera
system, position of the goal is given manually in the current
implementation.

C. Result

The robot imitated a total three types of styles in ring toss
motion. The three types of ring toss are shown in Fig. 8,
Fig. 9, and Fig. 10. Each upper row shows the sequence of
the player’s demonstration, and each lower row shows the
sequence of robot motion mimicking that player’s style.

Player A shown in Fig. 8 tends to take the ring back
slightly, and toss the ring in the front. His bending is small
compared to the others’, and his hand position, especially at
the end timing of RELEASE task, tends to be higher. These
features were imitated by the robot as shown in the picture.
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Ring
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Fig. 8. Top row: the sequence of the player’s demonstration. Bottom row: the sequence of robot motion mimicking that player’s style. Player A tends to
take the ring back slightly, and toss the ring in the front. His bending is relatively small compared to the others’, and his hand position, especially at the
end timing of RELEASE task, tends to be higher. These features are imitated by the robot as shown in the picture.

Ring
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Fig. 9. Top row: the sequence of the player’s demonstration. Bottom row: the sequence of robot motion mimicking that player’s style. Player B tends
to take the ring back lower, and toss the ring in the front. His bending is relatively deeper than first player, and his hand position during RELEASE task
tends to be lower. Although the robot seems to bend excessively, probably to satisfy the required flying distance of the ring within the joint constraints,
features described above are imitated by the robot.

Ring
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Fig. 10. Top row: the sequence of the player’s demonstration. Bottom row: the sequence of robot motion mimicking that player’s style. Player C tends to
take the ring back slowly and largely, and throw from the side position. His bending tends to be deep. These features are imitated by the robot as shown
in the picture.

Player B shown in Fig. 9 tends to take the ring back lower,
and toss the ring in the front. His bending is deeper than first
player, and his hand position during RELEASE task tends

to be lower. Although the robot seems to bend excessively,
probably to satisfy the required flying distance of the ring
within the joint constraints, features described above were
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sensors equipped to each joint of the robot.

imitated by the robot. Player C shown in Fig. 10 tends to
take the ring back slowly and largely, and throw from the
side position. His bending tends to be deep. These features
were imitated by the robot as shown in the picture.

In these experiments self collisions did not occur and
excess of joint limitations are avoided as shown in Fig. 11.
However, these factors should be considered as hard con-
straints in the optimization process for safety. Additionally,
success rate of the ring toss was not very high because we
did not consider the air and frictional resistances in this
implementation. These considerations will be a part of our
future work.

V. CONCLUSION

This paper presented a method to extract person-specific
styles in motions, and a framework to imitate them using
physical humanoid robots. Our approach is an extension of
the concept of task model and focuses on such styles in the
domain of task representations.

First we chose a ring toss game for a target motion
and designed a task model for it. We defined tasks and
corresponding skill parameters based on observations. Then
we introduced a style parameter to the concept of task model.
We observed statistical distributions of skill parameters and
used means and variances of them to represent styles. The
framework for generation of robot motion consists of three
phases: First phase extracts style parameters for each task
from human demonstrations. The second phase optimizes
a set of skill parameters based on style parameters so that
robots can imitate the style while satisfying their physical
constraints. The last phase generates whole motions using
the fully optimized set of skill parameters.

To verify the proposed framework, we conducted experi-
ments with a physical humanoid robot. The robot performed

the ring toss motions imitating each style, while tossing rings
to the specific goal. We were able to detect features of each
style in the robot motions.

For future work, we will apply our method to another kind
of target motion and robot platform. We expect our method
has equal applicability to previous task models, and we will
validate this.
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