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Abstract

This paper describes human classifiers that are ’view-
point specific’, meaning specific to subjects being observed
by a particular camera in a particular scene. The advan-
tages of the approach are (a) improved human detection in
the presence of perspective foreshortening from an elevated
camera, (b) ability to handle partial occlusion of subjects
e.g. partial occlusion by furniture in an indoor scene, and
(c) ability to detect subjects when partially truncated at the
top, bottom or sides of the image. Elevated camera views
will typically generate truncated views for subjects at the
image edges but our viewpoint specific method handles such
cases and thereby extends overall detection coverage.

The approach is - (a) define a tiling on the ground plane
of the 3D scene, (b) generate training images per tile us-
ing virtual humans, (c) train a classifier per tile (d) run
the classifiers on the real scene. The approach would be
prohibitive if each new deployment required real training
images, but it is feasible because training is done with a
virtual humans inserted into a scene model. The classifier
is a linear SVM and HOGs. Experimental results provide
a comparative analysis with existing algorithms to demon-
strate the advantages described above.

1. Introduction

Detecting people in scenes via a fixed camera has been
of great interest to the Computer Vision community in
the recent years, due to the multitude of their applica-
tions, and has been extensively studied in the literature (e.g.
[6, 1, 19, 24] ). Many of these works succeed at detect-
ing people in an open scene viewed from a generic view-
point far away from the people. However, their performance
typically suffers in more complicated cases; a human may
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not be detected when (a) occluders are present in the scene,
(b) he/she is only partially visible (e.g. due to lying partly
across an edge of the image) or (c) his/her appearance is sig-
nificantly skewed due to severe perspective foreshortening
caused by an oblique placement of the camera.

In this work, we propose viewpoint specific human de-
tection to attack these problems. By ’viewpoint specific’
detection we refer to a detection scheme where different
classifiers are trained for different parts of the image, thus
accounting for different human appearances across the im-
age as well as truncations and occlusions by fixed occlud-
ers; such an approach exploits more contextual informa-
tion about the scene, which can greatly improve the per-
formance of a classifier under the adverse conditions men-
tioned above.

Figure 1. Difficult cases for human detection, handled by our
method. Blue: Varying appearance due to perspective foreshort-
ening. Green: Truncation close to the image boundaries. Red: Oc-
clusion by static occluders. Yellow: Multiple people sitting close
to each other. See text for more details. Mosaicing and blur have
been applied for anonymization and confidentiality purposes.



Our test case is a restaurant scenario where both upright
(standing/walking) as well as seated people are detected
amidst a fixed furniture setting. This scenario exhibits all
of the issues mentioned above: (a) the furniture frequently
occludes the people, (b) humans are often truncated at the
image boundary, but still need to be detected in order to ex-
tend the system coverage!, and finally (c) the camera cap-
tures a wide angle and is placed at an elevated position, thus
the image appearance of people in different locations in the
scene varies greatly. We show examples of these problem-
atic cases in Fig. 1.

Our method assumes a known 3D model of the scene,
consisting of a coarse room map and approximate models
of the contained scene objects. We divide the ground plane
of the scene into a grid of overlapping square tiles, and train
a dedicated human classifier at each tile using synthetic im-
ages. Each classifier is specific to the projection of its cor-
responding tile in the image plane. At run-time, all the clas-
sifiers are run on the real camera imagery to provide human
detection at each tile. Naturally, capturing real image data
for the training of each of these classifiers would be pro-
hibitively time-consuming. We therefore avoid this require-
ment by inserting virtual humans (3D human models) and
placing them with physically correct behavior (e.g. walking
on the ground plane or seated at a table) in the scene, thus
obtaining photo-realistic images of the scene. This task is
automated, thus enabling us to reading generate as many
training images as needed.

In this paper, we demonstrate human detection that ac-
counts for scene occluders, perspective foreshortening, and
partial views of humans. The presence of specialized clas-
sifiers for each 3D location provides explicit control of the
training data at different scene locations and thus accounts
for variations in appearance; at the same time, the modeling
of the occluders (furniture) allows for detection of specific
activities at a given location (such as sitting at a table) which
would be impossible to do with a generic classifier.

Contributions: The contributions of the paper are - (a)
the description of a complete system for human detection,
(b) detection of two behaviors, standing and sitting, in a
complex environment with scene occluders, (c) a compara-
tive analysis of the system with state-of-the-art algorithms
for human detection.

Structure of paper: Section 2 describes related work;
Section 3 describes the setup of the 3D scene and how the
3D information is utilized to support human detection; Sec-
tion 4 describes our method; and Section 5 contains results
and a thorough comparison with state-of-the-art methods.

Requirement (b) can be solved by having more cameras, but economic
constraints limit this, while aesthetic constraints are especially important
in a restaurant.

2. Related Work

In a detection task, the general paradigm to find a tar-
get in an image is based on a sliding window multi-scale
search which is simple and effective, but also open to im-
provement. Recent works such as Alexe et al. [1] search for
objects more intelligently based on context, utilizing few
window evaluations. Our approach searches only at selected
image locations and scales, reducing drastically the number
of windows evaluated. Other works like [8, 19, 22, 23] ex-
plore the idea of using classifier grids in combination with
online learning. These grids are placed on the 2D image
and adaptive classifiers are trained online through boosting.
Different from them, our grids are placed on the 3D scene.
The works in [15] and [25] also make use of scene-specific
knowledge although without using a classifier grid. Sudowe
et al. [24] describe an efficient sliding-window object de-
tection algorithm that incorporates ground plane constraints
directly into the detector computation.

Detection methods can be broadly divided into silhouette
and appearance based. The former methods extract object
contours and match them to pre-computed people models.
Gavrila et al. [7] proposed the Chamfer System, while Wu
and Nevatia [26] propose to use edgelets (small Chamfer
segments up to 12 pixels long), in combination with Ad-
aBoost learning, for matching.

Methods based on appearance can be divided into holis-
tic and part-based. Holistic approaches model the person as
a unique region. Viola and Jones [10] embedded the Haar-
like features in a cascaded AdaBoost framework. Dalal and
Triggs [4] developed HOG features, which when trained
with linear SVM, generate a model used to detect people
in a sliding window multi-scale approach. Accepted as one
of the most powerful feature descriptors, [17, 28, 18] pro-
posed ways to speed-up the computation of HOGs.

Part-based approaches combine the classification of
various parts of the body (head, legs, arms, etc.), instead
of classifying the whole person. [14] use Haar wavelets
and a quadratic SVM to independently classify four hu-
man parts. Wu and Nevatia [27] propose to use the full
body, head-shoulder, torso, and legs and three view cate-
gories, to train an AdaBoost nested classifier with edgelets
as features. Felzenszwalb et al. [6] describe an object de-
tection system based on mixtures of multi-scale deformable
part models, having state-of-the-art performance. It utilizes
HOGs as features and training with partially labeled data
using a latent SVM for data-mining of hard negatives. The
final classifier is given by the sum of classifications scores
of the ROIs and six different dynamic parts. Similarly, Dol-
lar et al. [5] use a part-based scheme called Multiple Com-
ponent Learning with Haar features.

Belongie et al. [3] use a Hessian-Laplace keypoint detec-
tor and construct a codebook by computing shape context
descriptors for each keypoint and clustering them, while



Leibe et al. [11] and Seeman et al. [20] make use of the
Implisit Shape Model (ISM).

Holistic methods have a lower complexity than part-
based models, however, they do not support partial occlu-
sions or pose variations that are captured by the latter. Re-
gardless of the approach taken, HOG and Shape Contexts
seem to be the best feature descriptors independent of the
learning method. Hence, in this work we use HOG as fea-
ture descriptors and scene specific training (with virtual hu-
mans) to capture occlusions and pose variations.

Advances in computer graphics make it possible for very
realistic models to be generated on real backgrounds, en-
riching existing training datasets. Shotton et al. [21] pre-
dict 3D positions of body joints from a single depth im-
age extracted from a Kinect camera, and generate the train-
ing examples using only synthetic data acquired from MO-
CAP sequences. In Pischulin et al. [16], the real human
datasets are enriched by synthetic samples generated from
SCAPE [2]. Lastly, Marin et al. [13] propose a method for
pedestrian detection based on training sequences in virtual
scenarios where appearance-based pedestrian classifiers are
learnt using HOG and linear SVM, providing very good re-
sults. Similarly, we train classifiers solely based on virtual
humans placed in a 3D model of the scene.

3. 3D Scene Model and Virtual Humans

The focus of the paper is the advantages of viewpoint
specific classifiers, rather than the overall machinery in-
cluding the generation of training images using virtual hu-
mans. But this section is provided to discuss and motivate
the whole framework.

e 3D Scene Model: The 3D scene model in this work
was obtained by manually measuring a restaurant, and
artist creation of a 3D model. CAD models for tables
and chairs are readily available. Texture from the real
camera image was mapped to the created 3D model.

o Calibrated camera: The real camera in the physical
scene is calibrated for intrinsic/ extrinsic parameters,
which are used to set a virtual camera in the 3D model.

e Scene Tiling and Associated Classifiers: The ground
plane of the 3D scene model is divided into overlap-
ping tiles (see Section 4.1), which are marked accord-
ing to their associated human activity - upright, sitting,
upright/sitting, or inaccessible. The label will deter-
mine the training images for the classifier at that tile.

o Virtual Humans and Training Images: A large selec-
tion of customizable virtual humans is freely available.
Using Maya scripts, a wide range of training images
for each tile are obtained by positioning the virtual hu-
man on the tile. We experimented with various human

heights, weights, genders, and motions (e.g. walking,
arm waving etc.). Similarly for the seated case, a se-
ries of virtual humans are automatically seated in a 3D
chair model and perform a variety of arm motions to
provide the training images.

e Handling Occlusion and Image Edge Effects: Occlu-
sion by scene infrastructure is correctly handled in the
synthetic training images by using the 3D model (e.g.
Fig. 1 (red)). Handling occlusion between multiple hu-
mans is outside our scope. Similarly some scene tiles
will be associated with partial views of humans (Fig. 1
(green)). For such cases, training images are gener-
ated for the partial views, thereby enabling detection
of partially-truncated humans at image edges. This ex-
tends the detection coverage in the live system.

e Handling Scene Modification: Minor changes of ta-
ble and chair position are handled as per Section 4.6.
Large-scale changes to the physical layout of the scene
would require retraining of the system.

The requirement for a 3D model of the scene is a sig-
nificant prerequisite for the viewpoint specific approach.
But 3D capture continues to demonstrate impressive ad-
vances, recent examples including KinectFusion, the Pana-
sonic D-Imager outdoor-operation depth camera, the Occip-
ital Structure Sensor, Zebedee, and Project Tangoz. State-
of-the-art algorithms for 3D reconstruction include [9]
and [12]. We believe it is feasible to envisage 3D scans of
target scenes as a practical component technology in real-
world applications.

4. Method

This section describes the system - firstly the 3D scene
model and virtual humans; then the training of classifiers,
the run-time people detection for upright humans, and the
extension to seated humans; finally the handling of changes
in the scene model. Fig. 2 is a schematic overview of the
system operation; a summary is shown in Algorithm 1.

4.1. Scene Tiling

Fig. 3a shows a CAD model of a restaurant from the
same viewpoint as the real camera in the real scene and
Fig. 3b the respective top view, with the ground plane di-
vided into a grid of overlapping square tiles. Tile size was
selected to correspond to occupancy by a single average hu-
man, while the amount of tile overlap determines the bal-
ance between the density of the classifier coverage and com-
putational expense. We used an overlap of 50 percent.

2research.microsoft.com/en-us/projects/surfacerecon,

www?2.panasonic.biz/es/densetsu/device/3DImageSensor/en, structure.io,
wiki.csiro.au/display/ASL/Zebedee, www.google.com/atap/projecttango
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Figure 2. System operation. The starting point is a 3D model of the real scene. The method is (a) divide the ground plane into overlapping
tiles, (b) for each tile, position a series of virtual humans on the tile to generate positive training images, and use non-human targets to
generate negative training images, (c) train a classifier, (d) at run-time, run all classifiers to perform people detection at the tiles.

Note that tiling also happens outside the camera’s field-
of-view. A tile that is immediately below the camera and
outside of its field-of-view, for example, can still be asso-
ciated with a visible head and torso for a human located on
that tile. Such truncated views of humans will occur for
all four sides of the image given an elevated camera that is
looking down into a scene. Training of classifiers for tiles
that are associated with partial views allows us to signifi-
cantly extend the coverage of detection and tracking.

Algorithm 1: System operation.

1 Divide the ground plane into a rectilinear grid of
overlapping square tiles 77;;

for each T; do

3 Compute a corresponding area ¢; on the camera
image plane, suitable to bound a typical human
located at T;;

[ 5]

4 Place a virtual human on T;, render the image area
t;, and store it as a positive training example;
5 Repeat for virtual humans of different gender,

shape, and pose to generate a set of positive
training examples;

6 Repeat the above using non-human virtual objects
to create a set of negative training examples;
7 Train a classifier C; for tile T5;

8 At run-time, run each classifier C; on its
corresponding t;;

4.2. Generating Training Images using Virtual Hu-
mans

Virtual humans are readily available in the graphics com-
munity. We used ten male and female models® of various
sizes and textures, with examples shown in Fig. 4. Each
model was registered to Maya’s human skeleton to enable

3from http://www.mixamo.com/
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Figure 3. CAD model for a restaurant scene from (a) the same
viewpoint as the real camera in the physical scene and (b) a top
view. Also shown are the division of the ground plane into over-
lapping tiles and the capped cylinder surrounding the human figure
- the bounding box of the cylinder (shown in green) specifies the
image window corresponding to the classifier for that tile.

L

Figure 4. Virtual Humans. A wide range of models are available,
including models parameterized on height, weight, etc.

animation such as walking or sitting.

Training data is generated by iterating through each of
the overlapping tiles 7; in the scene. The process carried
out at each tile is as follows -

e Position a capped cylinder on the tile as shown in
Fig. 3a. The capped cylinder is projected onto the cam-
era image plane, and the bounding box of the projec-
tion defines the image rectangle ¢; which will be used
for all training examples associated with tile T;*.

e Position a virtual human on the tile, and render as
shown in Fig. 5a. Some tiles may generate partial
views, for example due to truncation by the left side

41t might seem that a rectangular parallelepiped is a simpler choice than
a capped cylinder. However, our experience was that, for tiles closest to
the camera viewpoint, the rectangular parallelepiped is an overestimate for
a suitable t;.



Figure 5. (a) Virtual human, (b) A tile close to the image boundary
will generate truncated views, but such tiles are still valuable for
human detection and are utilized, (c)-(d) Standing training exam-
ples, (e)-(f) Sitting training examples.

(a) (b) (e)

Figure 6. Examples of negative training images.

of the image as shown in Fig. 5b. All tiles, whether
associated with full or partial views, are treated in the
same way.

e Superimpose the rendered virtual human on the real
background image as shown in Fig. 5c-d. Store the
image as a positive training example.

e Repeat the previous two steps for a variety of virtual
humans and poses of interest for that tile location. We
render for each tile a total of 792 different images - 9
human models x 8 orientations at 45° intervals x 11 ar-
ticulations. The 11 articulations include walking, wav-
ing and clapping poses.

Occlusion at some tiles due to objects in the 3D scene is
correctly handled in the rendering as shown for the seated
virtual humans in Fig. Se-f.

For each tile, we also generate 7000 negative training ex-
amples of the same window size as the positive set. The
negative examples are created using 3D models of non-
human objects, using the empty background, and using in-
dividual body parts of virtual humans. The latter helps to
prevent false positives triggered by body parts. Fig. 6 shows
examples of negative training data.

4.3. Training a Classifier per Tile

The training process for an individual tile involves ex-
tracting HOG features from the generated training data, and
training with a linear SVM. While Dalal et al. [4] train a
general human classifier over a 64 x 128 window, we train
specific human classifiers for every tile in the scene. Be-
cause the tile specific bounding box comes in different sizes
for different tiles, sometimes exceeding the aforementioned
window size, we rescale the windows when needed such
that the amount of features extracted does not exceed 3780.
The latter is the number of features extracted from a win-
dow of 64 x 128 pixels, setting the HOG cell size to 8 x 8
pixels, the block size to 2 x 2 cells, the block stride to 8
pixels and the number of gradient bins per cell to 9. We

Rescaled  Hog Features

N
L)

Figure 7. Detection scheme.

use the same HOG settings and we observe no loss in accu-
racy from rescaling. An improvement in speed both during
training and detection is noticed as compared to the non-
rescaled bounding boxes. Some bounding boxes need to be
padded with extra pixels from the background before rescal-
ing, in order to preserve the width and height constraints
of multiplicity with the cell size. The extracted features
from the positive and negative rescaled window patches are
fed, along with their respective classes, to a linear SVM for
training as in [4]. We only perform one round of training
without mining the hard negatives. We also probed the ef-
fect of training while varying the number of virtual human
models used to generate the positive training data, and we
noted that increasing the number of models beyond ten did
not improve the results.

4.4. People Detection

Having pre-computed the classifiers, we utilize a per tile
single-scale approach to detect humans in images from a
video stream. For a specific image, we extract from ev-
ery tile the respective window patch delineated by the pre-
computed bounding box, and we rescale it applying the
same method explained in Sec. 4.3. The classifiers are ap-
plied then to the features extracted from every patch, and
a decision whether the patch contains a human or not is
obtained, along with the confidence/score of that decision.
The firing patches are further filtered based on the scores
using a non-maximum suppression scheme, as shown in
Fig. 7.

Background Subtraction. Instead of running the clas-
sifiers directly on the image, we leverage from our static
camera setup and apply a background subtraction scheme
for pre-processing. (Note: background subtraction is not
used in the experimental evaluation, only in our final sys-
tem). The scheme is based on learning adaptive mixture
models of the background scene while incorporating a de-
tector for moving shadows [29, 30]. For each 2D bounding
box, the percentage of enclosed foreground pixels over the
box size is calculated, and if it is bigger than a threshold,
the tile specific classifier is run on top of it. By varying the
threshold one can trade off precision with recall, however,
at this stage we focus mainly on recall by setting the thresh-
old very low (20%) and letting the classifiers themselves
decide whether a human is present or not. The purpose of
background subtraction is to act as an unstrict pre-filter to
prevent processing in areas with no activity, but without the



need for critical tuning.

Per Tile Confidence Computation. As a raw tile score
represents the distance from the hyperplane for that tile, it
cannot be used as a comparison over all tiles in the non-
maximum suppression scheme below (since every hyper-
plane differs). Hence the score for a tile is standardized as
in Algorithm 2. In this way the scores become comparable.

Algorithm 2: Tile score computation.

1 Let S, be the current score;

2 Let S, be the median of all scores computed from
applying the tile specific classifier to all the positive
training images;

3 Standardized tile score Sy

Se

S = 5

)]

Non Maximum Suppression. After running the classi-
fiers on the remaining boxes from the background subtrac-
tion step, some false detections in the vicinity of the human
subjects might remain. In order to suppress those, we use a
standard non maximum suppression scheme which consists
of the rejection of lower confidence bounding boxes that
have an intersection over the union (IOU) with the others
greater than 0.5.

4.5. Standing vs Sitting

The preceding sections present stages from generation of
training data to detection of upright humans. This section
reviews the modifications made to detect sitting humans.
Detection of sitting is a key goal in our application, and
we train specifically for it (use of virtual humans makes it
readily possible to train for varied types of human pose).
Whereas training for standing people happens at every ac-
cessible tile, training for sitting people is done only where
there are seats, as defined by manual labeling of scene tiles
at setup time (see Section 3). An appropriate automatically
generated animation of the virtual humans is used to gen-
erate sitting pose. This is followed by generation of train-
ing imagery, and training of classifiers as already described.
The positive training data consists of 720 image patches
around the sitting objects (9 virtual models x 40 articu-
lations (sampled from a sitting, bending and waving ani-
mation) X 2 elevations above the chair), as can be seen in
Fig. Se-f. The negative data are extracted in the same way
as described earlier in preceding sections. Only the body
orientation corresponding to the specific orientation of the
chair or couch where the subject would be sitting is used.
The training of the classifiers, confidence computation and
detection is performed exactly as for standing people, ex-
cept that IOU non-maximum suppression is not performed

Details Number
Video frames evaluated 1430
Annotations of standing adults 2415
Annotations of sitting people 5880
Annotations of standing children 50

Table 1. Key figures of our dataset.

because close proximity of seated humans does not occur
in our scenario. In the cases where a standing and sitting
detection coincide in the same 3D scene location, the de-
tection with the lowest confidence is deleted. Similarly, it
can also happen that standing detections are triggered from
sitting people, because of similar gradients around the head
and shoulders. We detect such cases by looking for overlap
of standing detections and sitting detections in the image
space, and avoid false positives by deleting the least confi-
dent of the two overlapping boxes from either configuration.

4.6. Changes in Scene Model

Minor changes in table and seat location can be treated
as a translation i.e. by iterating the classifier across a small
search window on the image plane centered on the associ-
ated tile. For a significant reconfiguration of the environ-
ment, we would retrain.

5. Results

This section describes the experimental results. The sys-
tem was tested using five hours of imagery from a restau-
rant>. The imagery shows people entering or leaving the
scene alone and in groups, and seated diners. For evalua-
tion, we subsampled 1430 images from a total of 8000 im-
ages such that no correlation over time occurs, and manu-
ally annotated the humans for ground truth, separating them
into three categories as presented in Table 1. The bound-
ing boxes were annotated following the same annotation ap-
proach used for HOG training with the INRIA dataset [4].

Comparative Analysis. We compare our approach with
three methods and use the following terminology -

e Tile Specific HOG: refers to our method.

e Default HOG: refers to the generic HOG human de-
tector trained on the INRIA dataset [4]. The INRIA
dataset consists of generic humans in generic settings,
so we make a second comparison with a HOG classi-
fier trained using the annotated dataset from our scene.
(Note: for this training, we ensured that no training
examples were taken from truncated humans at image
boundaries). Using two-fold cross validation on three

SFor confidentiality reasons, full images of the restaurant are not shown
and images in the paper are cropped to individual humans or small groups.
The camera captured an area of about 10m-by-10m with four tables plus
side booths, seating about 40 people, as shown in Fig. 3.



different set splits, we follow the exact same steps as
for the Default HOG, utilizing the same number of
positive to negative, window patches of 64 x 128 pixels
and one round of hard negatives mining.

e Latent SVM: refers to the state-of-the-art method based
on discriminatively trained part based models in [6].

Because Default HOG is trained on whole human bod-
ies, the comparison is performed only for standing/upright
detections. For our own method only, we additionally eval-
uate the gain in accuracy by incorporating sitting detection.

Quantitative Results. As an evaluation metric we use
the P-R curves. A true positive is considered any detected
box that has an IOU with any of the ground truth boxes
greater than 0.5, allowing only one-to-one assignments. For
all the methods that we compare to, we find the best scal-
ing factor of the detected boxes that maximizes their perfor-
mance. As a reminder, the Default HOG uses a sliding win-
dow multi-scale scheme over the entire image, as compared
to our tile specific single scale scheme. For this reason, we
further prune detections that occur in image boundaries as
well as at physically impossible positions (here detections
on the image top). Similarly, no background subtraction is
used for the evaluation step. In Fig. 9(a) , we compare the
evaluation results of our method to the Default HOG and
Latent SVM. In Fig. 9(b) , the comparison is made to the
HOG trained on three dataset splits. Our method shows
best performance in this test. This is most probably be-
cause a separate classifier is being trained at each tile as
compared to the general classifier from the other methods,
hence we can handle perspective distortion. Additionally,
occlusions are specifically taken care of from the incorpo-
ration of the 3D model of the scene, unlike the other meth-
ods. In Fig. 9(c) , we show the effect of incorporating sitting
people detections on the standing people curve, noticing an
improvement in precision. This is due to the elimination of
false positives resulting from sitting people.

Runtime Comparison. We analyze the time taken by
the sliding window multi-scale approaches to find all the
detections in an image with resolution of 640 x 480 pixels,
as compared to our per tile single scale approach. The algo-
rithms do not use GPU implementations and run on a Unix
OS with 2.55 GHz 2 Quad processor. Using a scale factor

e HOG
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Figure 9. Quantitative Results in the form of P-R curves. (a): Com-
parison between our method (red), Default HOG (green), and La-
tent SVM (blue). (b): Comparison between our method (red) and
the standard HOG detector trained on our own dataset using three
splits. (c): Change in performance when using only our standing
people detector (red) versus including also sitting people (green).

of 1.05 for the Default HOG and a single threaded detec-
tion for Latent SVM we notice that our method is faster,
as can be seen in Table 2. If we compare the number of
HOG windows computed per image, our method computes
a maximum of 800 windows assuming that nothing is fil-
tered from the background subtraction step. On the other
hand, the Default HOG does 24320 computations over 27
scales. This huge performance gap however is narrowed
utilizing the properties of the Fourier transforms on sliding
window approaches. An increase in performance for all the
methods would occur if GPU or multi-threaded implemen-
tations are used.

6. Conclusion

This paper describes viewpoint specific classifiers.
Training data is obtained by creating a 3D model of the tar-
get scene and inserting virtual humans of varied shape, ani-
mated with physically correct behavior, to generate training
imagery. The resulting classifiers are applied successfully




Algorithm | Time [s] |
Tile Specific HOG 0.35
Default HOG 0.67
Latent SVM 5

Table 2. Runtime comparison of the different algorithms. Our
method is Tile Specific HOG.

to real imagery of the scene. The approach was demon-
strated on a restaurant scene as an exemplary scenario, how-
ever it could equally well handle other types of scene of the
same complexity. The contributions of the paper are the
following. Firstly, the description of a complete system for
people detection based on the viewpoint specific concept,
intended to be practical for real-world deployment. Sec-
ondly, demonstration of people detection for standing and
sitting humans in a complex scene with occluders. Thirdly,
a comparative analysis of the system with state-of-the-art
algorithms, to demonstrate benefits of the approach.
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