
Evaluation of Grasp Force Efficiency Considering Hand Configuration
and Using Novel Generalized Penetration Distance Algorithm

Yu Zheng and Katsu Yamane

Abstract— This paper proposes a new grasp force efficiency
(GFE) measure that considers not only contact point locations
but also the hand configuration and mechanism. GFE evaluates
the largest wrench applied to the object that the grasp can resist
with unit contact forces. Traditional GFE measures depend
solely on the contact point locations without considering how
the unit contact forces are generated. Intuitively, however, the
actuators’ effort required to generate unit contact forces de-
pends on the hand configuration and mechanism and therefore
should affect the grasp efficiency. For example, generating a
unit contact force with an under-actuated finger would be
more difficult than with a fully actuated finger. Our new GFE
measure addresses this issue and is potentially useful for hand
mechanism design as well as grasp planning.

We also present a novel geometry-based iterative algorithm
for computing the generalized penetration distance of a point
in an arbitrary convex set. The algorithm allows unified
and accurate computation of the new and traditional GFE
measures with various criteria without linear approximation.
Other applications of the algorithm include penetration depth
computation of two convex objects for physics simulation.

I. INTRODUCTION

Fair and quick evaluation of grasp quality is a critical
element in grasp planning algorithms. Readers are referred
to [1] for a summary of existing grasp quality measures.
A grasp quality measure that is often used in grasp plan-
ning [2]–[6] evaluates the minimum of the largest wrench
applied to the object that the grasp can resist with unit contact
forces, and it gives the “efficiency” of a grasp [7], [8]. To
distinguish it from other grasp quality measures mentioned
in [1], we call it the grasp force efficiency (GFE) measure.
Geometrically, GFE is equivalent to the radius of the largest
origin-centered ball contained, or the penetration distance of
the origin, in the grasp wrench set (GWS). GWS is defined
as the convex hull of either the union or the Minkowski sum
of primitive contact wrenches [8].

This measure has two issues. First, traditional GFE mea-
sures depend solely on the contact point locations on the
object without considering how the unit contact forces are
generated. Intuitively, however, the actuators’ effort required
to generate unit contact forces depend on the hand configu-
ration and mechanism, and therefore should affect the grasp
efficiency. For example, generating a unit contact force with
an under-actuated finger would generally be more difficult
than with a fully actuated finger. Recently some researchers
considered the hand configurations in grasp planning [3], [5]
but they used a GFE measure that does not consider the hand
configuration. Ceccarelli [9] used another GFE defined as the

The authors are with Disney Research Pittsburgh, PA 15213, USA
{yu.zheng, kyamane}@disneyresearch.com

ratio of the squeezing force on fingertips to the force exerted
by the actuator and applied it to two-finger, one-actuator
gripper design. However, it is not clear how to extend this
measure to general robot hands.

Second, accurate and efficient computation of the GFE is
always difficult because the penetration distance usually has
many local minima. A workaround is to approximate the
friction cone by a polygonal pyramid such that the GWS
becomes a polytope and the minimum distance from the ori-
gin to its facets approximates the penetration distance [10].
Borst et al. [11] incrementally refined the polygonal pyramid
that approximates the friction cone to mitigate the inaccuracy
due to linearization. Zhu and Wang [2] replaced the ball
by a polytope and only computed the largest wrenches in
the directions of polytope’s vertices, so that the computation
can be reduced to a set of linear programs. However, these
methods still suffer from efficiency and/or accuracy issues.

In this paper, we first propose a novel GFE measure that
considers the hand properties that affect the grasp efficiency,
such as the finger poses and actuator placements. The new
GFE measure is derived by computing the GWS that includes
only the wrenches generated by joint torques, where we take
into account the hand configuration and actuator placements.
It is therefore useful not only for grasp planning but also for
hand mechanism design.

We then present a novel geometry-based algorithm for
computing the generalized penetration distance of a point
in an arbitrary convex set, which allows unified and accurate
computation of both new and existing GFE measures with
various criteria without linear approximation. While this
paper uses this algorithm specifically for GFE measure
computation, it is also applicable to other applications of
penetration distance including contact force optimization
for grasping [12]–[14] and penetration depth computation
between two convex objects for physics simulation.

II. GRASP FORCE EFFICIENCY (GFE) MEASURE

Consider a robot hand grasping an object at m contact
points as shown in Fig. 2a. Let pi, ni, oi and ti be the
position, the unit inward normal, and two unit tangent vectors
of a contact respectively, where ni = oi×ti, i = 1, 2, . . . , m.
Assume that each contact is a soft finger contact that can
exert a pure force with three components fi1, fi2, fi3 along
ni, oi, ti and a spin moment fi4 about ni to the object. Then,
a contact force can be expressed in the local coordinate frame
formed by ni, oi, ti as fi = [fi1 fi2 fi3 fi4]

T . A grasp
is said to be feasible if fi is in the friction cone Fi, which

is given by [15]

Fi ,
{

fi ∈ R4 | fi1 ≥ 0,

√
f2

i2 + f2
i3

µ2
i

+
f2

i4

µ2
si

≤ fi1

}
(1)

where µi and µsi are the tangential and torsional friction
coefficients.

The grasp can resist an external wrench w applied to the
object if there exist contact forces fi ∈ Fi that satisfy

m∑

i=1

Gifi = Gf = −w (2)

where Gi =
[

ni oi ti 0
pi×ni pi×oi pi×ti ni

] ∈ R6×4 is the contact
mapping, G = [G1 G2 · · · Gm] ∈ R6×4m is the grasp
matrix, and f =

[
fT

1 fT
2 · · · fT

m

]T ∈ R4m is the
total contact force. A grasp usually needs to have the force
closure property, which implies that the grasp can resist any
external wrench applied to the object in the 6-D wrench space
R6 [15]. Hereinafter, we only consider force-closure grasps.

Force closure is a basic requirement for a grasp, but does
not tell how efficient the grasp is because it may require
large contact forces to resist a small external wrench. A more
reasonable grasp force efficiency (GFE) measure would be
the minimum of the largest wrenches that the grasp can resist
with unit total contact force over certain wrench directions
of interest [2], [7], [8].

To mathematically formulate the GFE measure, we first
define the grasp wrench set (GWS) W , which represents the
set of wrenches that a grasp can resist with unit total contact
force [8]:

W , {w = Gf | ‖f‖ = 1, fi ∈ Fi for ∀ i} (3)

where the magnitude ‖f‖ of f is often defined as the sum
or maximum of normal contact forces, i.e.,

‖f‖L1 ,
m∑

i=1

fi1 or ‖f‖L∞ , max
i=1,2,...,m

fi1. (4)

Corresponding to different definitions of ‖f‖ in (4), the
GWS W defined by (3) can be rewritten as the convex hull of
the union or the Minkowski sum of primitive contact wrench
sets Wi, i = 1, 2, . . . ,m,

WL1 = CH

(
m⋃

i=1

Wi

)
or WL∞ = CH

(
m⊕

i=1

Wi

)
(5)

where CH(·) denotes the convex hull of a set and a primitive
contact wrench set Wi is the image of a primitive contact
force set Ui through the contact mapping Gi, i.e.,

Wi , Gi (Ui) (6)

where Ui consists of feasible contact forces with unit normal
force component, i.e.,

Ui , {fi ∈ Fi | fi1 = 1} . (7)

For a force-closure grasp, W contains the origin of R6

in its interior. The GFE measure can be expressed as the
radius of the largest ball contained in W [7] or the minimum

distance from the origin to the boundary of W [8]. More
generally, the GFE measure can be written as the penetration
distance dQ(W) between the origin of R6 and W with
respect to a set Q [2], which is defined as

dQ(W) , max
λQ⊂W,λ≥0

λ. (8)

In other words, dQ(W) is the maximum scale factor of Q
such that the scaled Q is still contained in W . The set
Q consists of the wrench directions of interest. In most
previous work on GFE evaluation, Q is taken as the unit
origin-centered ball [3], [6], [7], [10], [11], i.e., every wrench
direction has equal weight. One can also take Q as an
ellipsoid to weigh particular wrench directions [8] or a
convex polytope to define a task-specific wrench set [2], [4].

In previous work, the contact force magnitude is usually
defined by the first equation of (4) so that W can be easily
obtained by taking the union of Wi as in the first equation
of (5). The other definition of ‖f‖ is less popular because W
is the Minkowski sum of Wi and much more complex, and
therefore computing dQ(W) is much more difficult. By using
our algorithm presented in Section IV, in contrast, dQ(W)
can be computed efficiently even for complex W . In addition,
the contact force optimization problem [12], [13] is just a
special case where Q is a line segment with one endpoint at
the origin and the other at the wrench to be resisted.

III. ACTIVE FORCE EFFICIENCY OF A GRASP

The conventional GFE measure dQ(W) used to evaluate
and plan grasps [2]–[6], [16] only considers contact positions
on the object. Intuitively, however, the grasp quality should
change depending on whether each finger has enough active
joints or what configuration the robot hand has. Now we take
into account the hand structure and configuration in the GFE
evaluation. Note that we only consider robot hands consisting
of rigid links in this paper, although the compliance of a robot
hand may also affect the GFE.

We assume that each finger makes only one contact with
the object at the fingertip. The joint torque τi and the contact
force fi at the i-th finger have the relationship

τi = JT
i fi (9)

where Ji ∈ R4×qi is the Jacobian matrix, τi ∈ Rqi is the
vector of joint torques, and qi is the number of degrees of
freedom of a finger. Then the pseudo-inverse of JT

i , J+T
i ∈

R4×qi , spans the active contact force space. If we define
Ua

i as the intersection of the primitive contact force set Ui

and the range of J+T
i , we can represent a contact force that

can be actively generated by joint torques and satisfies the
friction constraint (1) as a nonnegative linear combination of
points in Ua

i .
Let ri be the rank of J+T

i . If ri = 4, then the 4-D contact
force fi can be fully generated by joint torques and Ua

i = Ui.
If ri < 4, then not all contact forces can be actively generated
and we calculate Ua

i as follows. Let Ai ∈ R4×ri be a matrix
whose columns constitute a basis for the range of J+T

i . Then,
an active contact force fa

i can be written as

fa
i = Aici (10)

where ci ∈ Rri . We partition Ai in rows as
[

Ai1
Ai2

]
such that

fa
i1 = Ai1ci and [fa

i2 fa
i3 fa

i4]
T = Ai2ci, where Ai1 ∈

R1×ri and Ai2 ∈ R3×ri . From (1), (7), and (10), fa
i ∈ Ui

if and only if the following conditions are satisfied

Ai1ci = 1 (11a)

cT
i AT

i2DiAi2ci ≤ 1 (11b)

where Di = diag
{
1/µ2

i , 1/µ2
i , 1/µ2

si

}
. From (11) we derive

a more explicit formulation of Ua
i as below.

1) ri = 1: Equation (11a) gives ci = 1/Ai1. If ci does not
satisfy (11b), then there is no active force within the friction
cone (1) and Ua

i = ∅; otherwise we obtain fi0 = Ai/Ai1

and Ua
i = {fi0} by substituting ci into (10).

2) 1 < ri < 4: Equation (11a) gives

ci = A+
i1 + Niλ (12)

where A+
i1 ∈ Rri is the pseudo-inverse of Ai1, Ni ∈

Rri×(ri−1) spans the null space of Ai1, and λ ∈ Rri−1.
Substituting (12) into (11b) yields

λT Qλ + 2bT λ + c ≤ 0 (13)

where Q = NT
i AT

i2DiAi2Ni, b = NT
i AT

i2DiAi2A
+
i1, and

c = A+T
i1 AT

i2DiAi2A
+
i1 − 1. Matrix Q is positive definite

and can be decomposed as Q = UT U , where U is an upper
triangular matrix with positive diagonal entries. By a few
matrix manipulations, we can further reduce (13) to

xT x ≤ ∆ (14)

where x = Uλ+U−T b and ∆ = bT Q−1b−c. Substituting
λ = U−1x−Q−1b into (12) and substituting the resulting
ci into (10), we obtain

fa
i = fi0 + Pix (15)

where fi0 = Ai(A+
i1 − NiQ

−1b) and Pi = AiNiU
−1.

Depending on the sign of ∆, we have
∆ < 0 : No active contact force satisfies the friction con-

straint (1) and Ua
i = ∅.

∆ = 0 : Ua
i consists only of fi0 in (15), i.e., Ua

i = {fi0},
and spans a 1-D subspace of the 4-D contact force
space at contact i.

∆ > 0 : Ua
i is expressed by (14) and (15) and it spans an

ri-D subspace of the 4-D contact force space.
Taking linearly independent elements of Ua

i , we construct
a matrix Bi that gives a basis for the minimal space contain-
ing all active feasible contact forces at contact i. Then, the
minimal wrench space containing the wrenches that can be
generated by active feasible contact forces from all contacts
is spanned by W = [G1B1 G2B2 · · · GmBm], and we
can compute its orthonormal basis R by the singular value
decomposition of W .

Similarly to (6), we define W a
i , Gi (Ua

i) as an active
primitive contact wrench set, which consists of primitive
contact wrenches that can be generated by joint torques
through contact i. Then, the active GWS, denoted by W a,
can be written as (5) with W a

i replacing Wi, and it comprises

all wrenches that can be generated by unit active feasible
contact forces on the object. The range of R is the minimal
subspace of R6 that contains W a.

In summary, we first determine the dimension of the
minimal space containing W a, which is equal to the rank
of R. Then, we check if the origin of the minimal space
is contained in the interior of W a, which implies that all
wrenches in the minimal space can be generated only by
joint torques. Furthermore, we can evaluate the active GFE
by dQ(W a), which can also be formulated as (8) with W a

replacing W and computed by our algorithm proposed in
Section IV, where Q is a compact convex set containing the
origin in the minimal space.

IV. GENERALIZED PENETRATION DISTANCE
ALGORITHM

A. Definition of Generalized Penetration Distance

From the above arguments, both the original GFE mea-
sure [2], [8] and the active GFE measure can be expressed as
the penetration distance dQ(A) between the origin of space
Rn and a compact convex set A with respect to another
compact convex set Q:

dQ(A) , max
λQ⊂A,λ≥0

λ (16)

where A has a nonempty interior that contains the origin,
while Q contains the origin and can be of any dimension.
As illustrated in Fig. 1a, dQ(A) is the maximum scale factor
λ such that λQ is contained in A. For the GFE measures
here, A corresponds to W or W a defined in the previous two
sections while set Q determines the distance metric. If Q is
the unit origin-centered ball, dQ(A) is simply the traditional
penetration distance in the 2-norm sense [17]. The definition
also includes 1-norm or infinity-norm distances as special
cases of Q being corresponding polytopes.

We can also relax the original definition of dQ(A) in [2]
by allowing Q of a dimension smaller than that of the space
or with the origin on its boundary rather than in its interior. In
the extreme case where Q is a line segment starting from the
origin, the problem degenerates to the ray-shooting problem
to compute the farthest intersection point of A with the ray
along the line segment [12]–[14]. Therefore, dQ(A) defined
by (16) gives a generalized penetration distance and unifies
many quantities related to grasp force.

So far, however, there is no algorithm to compute dQ(A)
for compact convex sets A and Q with exact parametric
representation. Zhu et al. [2], [16] computed dQ(A) by
solving linear programs when both A and Q are polytope
approximations. In this section, we present an algorithm for
the general case, so that the GFE measures can be calculated
without linear approximation.

B. Other Definitions and Notations

In the following discussion, we will often use the support
function hA and the support mapping sA of a set A [18]:

hA(u) , max
a∈A

uT a, sA(u) , arg max
a∈A

uT a (17)

(a)

Hk,1

Hk,3

(b) (c)

()n
A k+1

a

(d)

s ()n
A k+2

n
k+2

(e)

Fig. 1. Illustration of the generalized penetration distance and its computation in 2-D space. (a) The generalized penetration distance dQ(A) defined as
the maximal scale factor λ of a compact convex set Q such that λQ is contained in a compact convex set A. (b) Polytope V ch

k as the intersection of a
set of half-spaces H−

k,j , i.e., V ch
k =

T
j=1,2,...,Nk

H−
k,j , where H−

k,j is the shadowed side of the hyperplane Hk,j that contains a facet of V ch
k . (c)–(e)

Polytope V ch
k growing through the iteration process Vk+1 = Vk ∪ {sA(nk)} such that dk = dQ(V ch

k) increases and eventually converges to dQ(A).
The dashed line outlines the set dkQ, which is contained in V ch

k . sA(nk) is the farthest point in A from the origin along the normal nk of the facet of
V ch

k that strictly bounds dkQ. In (d), two of the facets of V ch
k+1 separate sA(nk+1) from dk+1Q and therefore will be the eliminated facets (Proposition

3). Then, as shown in (e), the facet formed by sA(nk+1) and the point a2 shared by the eliminated facets is contained in the interior of V ch
k+2, while

the facets formed by sA(nk+1) and other points a1 and a3 are facets of V ch
k+2.

where u is an arbitrary vector in Rn. The support function
hA is a scalar-valued function, while the support mapping
sA returns a point in A such that hA(u) = uT sA(u). Using
the support function and mapping of A and Q, we can first
derive the following result. Due to the page limit, we omit
the proof of all propositions herein and will include it in a
complete version of this paper.

Proposition 1: dQ(A) = minuT u=1
hA(u)
hQ(u) .

Let Vk be a finite subset of A such that its convex hull V ch
k

is an n-dimensional polytope in A and contains the origin of
Rn, as depicted in Fig. 1b. The members of Vk do not have
to be on the boundary of A. Assume that V ch

k has Nk facets
and each facet has affinely-independent n vertices. Let Vk,j

(j = 1, 2, . . . , Nk) be the set of vertices of facet j, Hk,j the
hyperplane containing facet j, and nk,j the common normal
of Hk,j and facet j. We choose the length of nk,j such that
Hk,j is expressed as

Hk,j ,
{
a ∈ Rn | nT

k,ja = δk,j

}
(18)

where δk,j = 1 if Hk,j does not pass through the origin (i.e.,
Vk,j is linearly independent) and δk,j = 0 otherwise (i.e.,
Vk,j is linearly dependent). Each hyperplane Hk,j divides
the whole space Rn into two closed half-spaces

H−
k,j ,

{
a ∈ Rn | nT

k,ja ≤ δk,j

}
(19a)

H+
k,j ,

{
a ∈ Rn | nT

k,ja ≥ δk,j

}
. (19b)

We set nk,j so that it points the opposite side of Hk,j to
V ch

k and therefore V ch
k lies in H−

k,j (see Fig. 1b). Then, the
origin of Rn, which is contained in V ch

k , also lies in H−
k,j .

Noting that Q contains the origin, we define dk,j as

dk,j , max
λQ⊂H−

k,j ,λ≥0
λ. (20)

The value dk,j can be regarded as the distance of Hk,j from
the origin with respect to Q. Let dk be the minimum of dk,j

for j = 1, 2, . . . , Nk, i.e.,

dk , min
j=1,2,...,Nk

dk,j = min
j=1,2,...,Nk

max
λQ⊂H−

k,j ,λ≥0
λ. (21)

Also, let jk , arg minj=1,2,...,Nk
dk,j and nk , nk,jk

.
The normal nk,j of Hk,j can be calculated as follows. If

Vk,j is linearly independent, then nk,j is the solution to the
linear equation

V T
k,jnk,j = 1 (22)

where Vk,j ∈ Rn×n is the matrix whose columns are
the points in Vk,j and 1 = [1 1 · · · 1]T ∈ Rn.
Furthermore, we can derive

dk,j =
hVk,j

(nk,j)
hQ(nk,j)

=
1

hQ(nk,j)
. (23)

If Vk,j is linearly dependent, then nk,j is a nonzero vector
in the null space of V T

k,j , having negative inner product
with any point in Vk \ Vk,j , such that V ch

k ⊂ H−
k,j . If

hQ(nk,j) 6= 0, then dk,j = 0; otherwise, dk,j = +∞. From
these arguments, we can write dk,j as

dk,j =
{

δk,j/hQ(nk,j) if hQ(nk,j) 6= 0
+∞ if hQ(nk,j) = 0.

(24)

From the above definitions, the convexity of V ch
k , and the

fact that V ch
k =

⋂
j=1,2,...,Nk

H−
k,j [18] as depicted in Fig. 1b,

we can deduce the following results.
Proposition 2: The following statements are true:

1) Hyperplane Hk,j supports dk,jQ at dk,jsQ(nk,j) and
dk,jQ is in H−

k,j ;
2) dkQ is contained in V ch

k ;
3) dk = maxλQ⊂V ch

k ,λ≥0 λ = dQ(V ch
k).

Fig. 1c gives an illustration of Proposition 2 3), where the
dashed line represents dkQ.

C. Iteration Process

The algorithm for computing the generalized penetration
distance iteratively expands polytope V ch

k in A such that
dk = dQ(V ch

k) converges to dQ(A). This subsection de-
scribes the iteration process.

Figure 1c implies that dkQ, contained in V ch
k , is strictly

bounded by facet jk of V ch
k . Along the normal nk of facet

jk, we obtain the support mapping sA(nk) of A, which is
located in the half-space H+

k,jk
if hA(nk) > δk,jk

. Then,
taking Vk+1 = Vk ∪ {sA(nk)}, we can obtain V ch

k+1 that
contains facet jk of V ch

k in its interior and provides a bigger
polytope in A than V ch

k , as depicted in Fig. 1d. If there
is only one facet that strictly bounds dkQ, then we have
dk+1 = dQ(V ch

k+1) > dk. Even if there are multiple facets
strictly bounding dkQ, with a finite number of iterations we
can still obtain a polytope that contains all those facets in
its interior and get dk increased, since the number of such
facets is finite. By this iteration, therefore, dk = dQ(V ch

k)
increases as the polytope V ch

k grows. On the other hand, since
V ch

k is always contained in A, dk has the upper bound of
dQ(A). Thus, by the monotone-convergence principle [19],
it is guaranteed that dk converges. As the iteration proceeds,
condition hA(nk) − δk,jk

≤ εhQ(nk), where ε ≥ 0 is
the termination tolerance, will eventually be satisfied, and it
implies that facet jk of V ch

k that strictly bounds dkQ is close
to the boundary of A. Furthermore, since dk = δk,jk

/hQ(nk)
from (24) and dQ(A) ≤ hA(nk)/hQ(nk) from Proposition
1, we can derive 0 ≤ dQ(A)− dk ≤ ε if hA(nk)− δk,jk

≤
εhQ(nk). Hence, the accuracy of the result from the iteration
can be easily specified by setting an appropriate ε.

As shown in Figs. 1c–1e, V ch
k+1 shares many common

facets with V ch
k . With the help of this property, we can

quickly compute V ch
k+1 from V ch

k as below. First, the follow-
ing proposition gives a necessary and sufficient condition for
a facet of V ch

k to be a facet of V ch
k+1:

Proposition 3: If nT
k,jsA(nk) > δk,j , then sA(nk) ∈

H+
k,j , and facet j of V ch

k is contained in the interior of V ch
k+1

and not a facet of V ch
k+1; otherwise it is a facet of V ch

k+1.
We call a facet of V ch

k for which nT
k,jsA(nk) > δk,j an

eliminated facet. There could be multiple eliminated facets
as shown in Figs. 1d and 1e. Note that each facet of V ch

k is an
(n − 1)-dimensional simplex having n facets of dimension
n − 2. Let Vk,j,l (l = 1, 2, . . . , n) be a subset of n − 1
elements of Vk,j . Then, V ch

k,j,l is a facet of facet j of V ch
k .

The following proposition indicates how to find new facets
of V ch

k+1 other than those inherited from V ch
k :

Proposition 4: Assume that facet j of V ch
k , namely V ch

k,j ,
is an eliminated facet and V ch

k,j,l is a facet of facet j. If V ch
k,j,l

is not a facet of an eliminated facet of V ch
k other than facet

j, then the convex hull of Vk,j,l ∪ {sA(nk)} is a new facet
of V ch

k+1; otherwise, it is contained in the interior of V ch
k+1

and therefore not a facet of V ch
k+1.

Clearly the convex hull of sA(nk) with a common facet
of two eliminated facets is in the interior of the convex
hull of sA(nk) with the two facets and is in the interior
of V ch

k+1, as illustrated in Fig. 1d. If V ch
k,j,l is a facet of

only one eliminated facet, then the hyperplane containing
the convex hull of Vk,j,l ∪ {sA(nk)} bounds Vk+1 to one
side, which implies the convex hull of Vk,j,l ∪ {sA(nk)} is
a facet of V ch

k+1. By verifying Proposition 4 for the facets of
every eliminated facet of V ch

k , we can find all new facets of
V ch

k+1, for which nk+1,j and dk+1,j can be easily calculated
as discussed in Section IV-B.

Algorithm 1 Algorithm for the Generalized Penetration Distance
Input: compact convex sets A and Q
Output: the generalized penetration distance dQ(A)
1: compute an initial set V0

2: compute V0,j , n0,j , and d0,j for j = 1, 2, . . . , N0

3: j0 ← arg minj=1,2,...,N0
d0,j , d0 ← d0,j0 , n0 ← n0,j0

4: k ← 0
5: while hA(nk)− δk,jk

> εhQ(nk) do
6: Vk+1 ← Vk ∪ {sA(nk)}, k ← k + 1
7: update Vk,j , nk,j , and dk,j for j = 1, 2, . . . , Nk

8: jk ← arg minj=1,2,...,Nk
dk,j , dk ← dk,jk

, nk ← nk,jk
9: end while

10: return dk

It turns out that the increase in the number of facets of V ch
k

by every iteration is bounded above by the space dimension,
which is a constant. Thus, the number of facets of V ch

k is
linear in the number of conducted iterations. Moreover, the
computation cost for every iteration is proportional to the
number of facets of V ch

k , as we need to seek the eliminated
facets of V ch

k , whereas the rest of computation is of constant
complexity. Therefore, the total complexity of our algorithm
is quadratic to the number of iterations until stop.

D. Initialization of the Algorithm

Now the only problem is how to find a finite subset V0 of
A such that its convex hull V ch

0 contains the origin and gives
an initial n-dimensional polytope for the iteration. To do this,
we employ the GJK algorithm [20] to compute the minimum
Euclidean distance between the origin and the set A. Since
A contains the origin, the GJK algorithm yields p affinely
independent points in A, denoted by a1, a2, . . . , ap, whose
convex hull contains the origin, where p ≤ n+1. If p = n+1,
then we simply set V0 = {a1,a2, . . . , ap}. If p < n+1, we
can add another point ap+1 = sA(u) that can be proved to
be affinely independent with a0, a1, . . . , ap, where u is any
nonzero vector in Rn orthogonal to a1, a2, . . . , ap. We can
repeat this process until we obtain n+1 affinely independent
points to form V0. The polytope V ch

0 constructed in this way
is an n-dimensional simplex, so it is easy to determine its
facets and the values n0,j and d0,j for each facet.

V. NUMERICAL EXAMPLES

We verify the usefulness and performance of our algorithm
using a four-finger robot hand grasping a block as shown in
Fig. 2. Each finger has four joints, of which joints 1–3 are
active and joint 4 is coupled to joint 3 at a ratio of 1:1.
The proposed algorithm is implemented in MATLAB on a
laptop with an Intel Core i7 2.67GHz CPU and 3GB RAM.
Our implementation is applicable to any W and Q but is not
particularly optimized. The termination tolerance ε for the
algorithm is set to 10−4 and the set W (or W a) is taken to be
the Minkowski sum of Wi (or W a

i), as defined by the second
equation in (6), which is more complex. Unless otherwise
indicated, Q is taken to be the unit origin-centered ball in
R6 or the space spanned by R. The friction coefficients are
µi = 0.2 and µsi = 0.2. The algorithm to compute dQ(W)
or dQ(W a) (Section IV) requires the computation of the

1

2

3

4
f

f

f

1

3

2 f
4

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. A block grasped by (a) two fingers, (b)–(d) three fingers, and (e)–(h) four fingers. (a) Joint 1 (drawn in red) is locked. (b) Joint 1 may be locked
or activated. The joint axes are parallel to the face. (c),(d) The robot hand has a different position or orientation from (b) but the contact positions are the
same and the joint axes are no longer parallel to the face. (e) Joint 1 may be locked or activated and the joint axes are parallel to the face. (f),(g) The
robot hand has a different position or orientation from (e) while maintaining the same contact positions and the joint axes are no longer parallel to the
face. (h) The joint axes are parallel to the face but two contact positions on the block are different from (e).

support function and mapping of Wi (or W a
i), for which we

employ the closed-form expressions derived in [21], [22].
We test our algorithm in the following situations:

(a1) The thumb and middle fingers grasp the block at the
centroids of two opposite faces as shown in Fig. 2a.
Joint 1 (drawn in red) of each finger is locked to
constrain the motion in a plane.

(a2) Same as (a1) but Q is an origin-centered ellipsoid with
the semi-major axis of length 2 and semi-minor axes of
length 1, instead of the unit ball.

(a3) Same as (a1) but Q is an origin-centered polytope such
that dQ(W) is the 1-norm distance.

(a4) Same as (a1) but Q is an origin-centered hypercube such
that dQ(W) is the infinity-norm distance.

(a5) Same as (a1) but Q is the line segment on the x axis
with x = [−1, 1].

(b1) The thumb, index, and ring fingers grasp the object at
the centroids of corresponding faces (Fig. 2b). Joint 1
of each finger is locked. The axes of other joints are
parallel to the face which the finger is in contact with.

(b2) Same as (b1) but joint 1 is not locked.
(c) Same as (b2) but the hand has been shifted along the

x axis while keeping the same contact positions on the
block (Fig. 2c). The joint axes of the index and ring
fingers are no longer parallel to the faces.

(d) Same as (b2) but the hand has been rotated about the x-
axis while keeping the same contact positions (Fig. 2d).
The joint axes of all three fingers are no longer parallel
to the faces.

(e1) All four finger grasp the object at the centroid of each
face (Fig. 2e). Joint 1 is locked. The joint axes of other
joints are parallel to the face.

(e2) Same as (e1) but joint 1 is not locked.
(f) Same as (e2) but the hand has been shifted along the x

axis while keeping the same contact positions (Fig. 2f).
The joint axes of the index and ring fingers are no longer
parallel to the faces.

(g) Same as (e2) but the hand has been rotated about the x
axis while keeping the same contact positions (Fig. 2g).
The joint axes of all four joints are not parallel to the
faces.

(h) Same as (e2) but the hand has been shifted along the
x axis and the contact positions of the index and ring
fingers also change to keep the joint axes parallel to the
faces (Fig. 2h).

Table I summarizes the results. Without considering the
structure of the robot hand, W spans the whole 6-D wrench
space in all the situations. When joint 1 is locked, however, it
is clear that not all contact forces can be actively generated
by joint torques, which leads to the result that the space
spanned by W a is 3-D or 5-D. In (b)–(d) and (e)–(g),
dQ(W) has the same value for the same contact positions,
while dQ(W a) changes due to the difference in the hand
configuration. Furthermore, since the joint axes of fingers
in (b2) and (e2) are parallel to the faces, a wider range
of contact forces in the friction cone can be generated by
joint torques. As a result, dQ(W a) in (b2) and (e2) is
larger than that in the other situations. In (h), due to the

TABLE I. RESULTS OF EXAMPLES
Ex dQ(W) K tCPU Dim dQ(W a) K tCPU

(a1) 0.2425 437 155.18 3 0.2425 3 0.0028
(a2) 0.2235 359 108.93 3 0.2236 4 0.0040
(a3) 0.3154 96 11.330 3 0.3155 3 0.0039
(a4) 0.1119 82 6.1654 3 0.1513 4 0.0032
(a5) 1.0000 18 0.2989 3 1.0000 2 0.0026
(b1)

0.3399 169 19.997

5 0.1238 4 0.0144
(b2) 6 0.2131 104 9.4171
(c) 6 0.0720 38 1.0430
(d) 6 0.1087 25 0.3657
(e1)

0.5624 186 21.907

5 0.3586 23 0.0966
(e2) 6 0.3693 90 5.8219
(f) 6 0.0395 16 0.2188
(g) 6 0.1536 27 0.5031
(h) 0.4916 243 35.923 6 0.2882 79 3.9711
Dim — Dimension of the space spanned by W a.
K — Number of iterations of our algorithm.
tCPU — CPU running time of an algorithm (unit: second).

change of contact positions, dQ(W a) drops in comparison
to (e2). Table I demonstrates that dQ(W a) provides a more
reasonable measure for rating grasps. Finally, Fig. 3 shows
the actual shape of W a for (a1)–(a5) where W a is 3-D and
can be visualized.

The number of iterations and CPU running time of our
algorithm are also shown in Table I, which demonstrates
that our algorithm is generally fast enough for practical use.
In some cases, however, it takes many iterations to reach the
termination tolerance ε = 10−4. This is because the origin is
deep inside W or W a and the distances from the origin to
its boundary are similar in many different directions due to
the symmetric layout of contact positions and/or fingers on
the object, particularly in (a), (b2), and (e2). The value of
dk and the square root of the CPU running time versus the
iteration of our algorithm in (b2), (e2), and (h) are plotted
in Fig. 4, which clearly shows that the time complexity of
our algorithm is quadratic to the number of iterations.

VI. CONCLUSIONS AND FUTURE WORK

This paper first presented a new GFE measure that consid-
ers the hand structure and configuration. The new measure
gives a more reasonable evaluation of grasp quality when
the fingers cannot produce contact forces uniformly in all
directions due to, for example, the finger pose and joint
couplings. It would be a useful tool not only for grasp
planning but also for hand mechanism design.

We then developed a new algorithm for computing the
generalized penetration distance and applied it to the GFE
measure. The algorithm provides a unified way to compute
the penetration distance with different metrics, including
the standard 2-norm. It also allows the computation of
generalized GFE measure where the GWS and its inscribed
set can have various definitions and choices.

Future work includes verifying the new GFE measure by
more experiments with different robot hands and complex
objects, and applying the measure to integrated grasp plan-
ning of both contact points and hand configurations. It has
been noticed in given numerical examples that the CPU time
of our algorithm can be long sometimes, especially for grasps

of good quality. Hence, we may need other ways to speed up
the algorithm for it to be applicable to online computation.
In addition, we would like to explore other applications
of the generalized distance computation algorithm such as
locomotion and haptics.

REFERENCES

[1] K. B. Shimoga, “Robot grasp synthesis algorithms: a survey,” Inter-
national Journal of Robotics Research, vol. 15, no. 3, pp. 230–266,
1996.

[2] X.-Y. Zhu and J. Wang, “Synthesis of force-closure grasps on 3-D
objects based on the Q distance,” IEEE Transactions on Robotics and
Automation, vol. 19, no. 4, pp. 669–679, 2003.

[3] A. T. Miller and P. K. Allen, “GraspIt! a versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110–122, 2004.

[4] T. Watanabe and T. Yoshikawa, “Grasping optimization using a
required external force set,” IEEE Transactions on Automation Science
and Engineering, vol. 4, no. 1, pp. 52–66, 2007.

[5] Z. X. Xue, J. M. Zoellner, and R. Dillmann, “Automatic optimal
grasp planning based on found contact points,” in Proceedings of
the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Xi’an, China, July 2008, pp. 1053–1058.

[6] M. A. Roa and R. Suárez, “Computation of independent contact
regions for grasping 3-D objects,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 839–850, 2009.

[7] D. Kirkpatrick, B. Mishra, and C. Yap, “Quantitative steinitzs theorem
with applications to multi-fingered grasping,” in Proceedings of the
22th ACM Symposium on Theory of Computing, New York, NY, 1990,
pp. 341–351.

[8] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proceedings of
the IEEE International Conference on Mechatronics and Automation,
Nice, France, 1992, pp. 2290–2295.

[9] M. Ceccarelli, Fundamentals of Mechanics of Robotic Manipulation.
Norwell, MA, USA: Springer, 2004.

[10] A. T. Miller and P. K. Allen, “Examples of 3D grasp quality com-
putation,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Detroit, MI, 1999, pp. 1240–1246.

[11] C. Borst, M. Fischer, and G. Hirzinger, “A fast and robust grasp plan-
ner for arbitrary 3D objects,” in Proceedings of the IEEE International
Conference on Mechatronics and Automation, Detroit, Michigan, May
1999, pp. 1890–1896.

[12] Y.-H. Liu, “Qualitative test and force optimization of 3-D frictional
form-closure grasps using linear programming,” IEEE Transactions on
Robotics and Automation, vol. 15, no. 1, pp. 163–173, 1999.

[13] Y. Zheng, M. C. Lin, and D. Manocha, “A fast n-dimensional ray-
shooting algorithm for grasping force optimization,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, May 2010, pp. 1300–1305.

[14] Y. Zheng and K. Yamane, “Ray-shooting algorithms for robotics,”
in Proceedings of the International Workshop on the Algorithmic
Foundations of Robotics, Cambridge, MA, June 2012, in press.

[15] R. M. Murray, Z. X. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. Boca Raton, FL, USA: CRC Press, 1994.

[16] X.-Y. Zhu, H. Ding, and S. K. Tso, “A pseudodistance function and its
applications,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 2, pp. 344–352, 2004.

[17] C. J. Ong and E. G. Gilbert, “Growth distance: New measures for
object separation and penetration,” IEEE Transactions on Robotics
and Automation, vol. 12, no. 6, pp. 888–903, 1996.

[18] S. R. Lay, Convex Sets and their Applications. New York, NY, USA:
John Wiley & Sons, 1982.

[19] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York,
NY, USA: McGraw-Hill, 1976.

[20] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Transactions on Robotics and Automation, vol. 4, no. 2,
pp. 193–203, 1988.

[21] Y. Zheng and C.-M. Chew, “Distance between a point and a convex
cone in n-dimensional space: computation and applications,” IEEE
Transactions on Robotics, vol. 25, no. 6, pp. 1397–1412, 2009.

[22] Y. Zheng and W.-H. Qian, “Improving grasp quality evaluation,”
Robotics and Autonomous Systems, vol. 57, no. 6-7, pp. 665–673,
2009.

(a)

(b)

(c)

(d)

(e)

Fig. 3. Active grasp wrench set W a (in blue color) and its largest inscribed
set dQ(W a)Q (in red color) shown in the minimal space containing W a

in the case of (a1)–(a5).

0 20 40 60 80 100 120 140 160 180
0

0.07

0.14

0.21

0.28

0.35

d
k

Iteration number

0 20 40 60 80 100 120 140 160 180
0

0.9

1.8

2.7

3.6

4.5

sq
rt

(t
)

 (
s1/

2)

d
k

sqrt(t)

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.12

0.24

0.36

0.48

0.6

d
k

Iteration number

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

sq
rt

(t
)

 (
s1/

2)

d
k

sqrt(t)

(b)

0 25 50 75 100 125 150 175 200 225 250
0

0.1

0.2

0.3

0.4

0.5

d
k

Iteration number

0 25 50 75 100 125 150 175 200 225 250
0

1.2

2.4

3.6

4.8

6

sq
rt

(t
)

 (
s1/

2)

d
k

sqrt(t)

(c)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.05

0.1

0.15

0.2

0.25

d
k

Iteration number

0 10 20 30 40 50 60 70 80 90 100 110
0

0.7

1.4

2.1

2.8

3.5

sq
rt

(t
)

 (
s1/

2)

d
k

sqrt(t)

(d)

0 10 20 30 40 50 60 70 80 90
0

0.08

0.16

0.24

0.32

0.4

d
k

Iteration number

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

sq
rt

(t
)

 (
s1/

2)

d
k

sqrt(t)

(e)

0 10 20 30 40 50 60 70 80
0

0.06

0.12

0.18

0.24

0.3

d
k

Iteration number

0 10 20 30 40 50 60 70 80
0

0.4

0.8

1.2

1.6

2

sq
rt

(t
)

 (
s1/

2)

d
k

sqrt(t)

(f)

Fig. 4. The value dk and the CPU running time t versus the number of
iterations of our algorithm to compute (a)–(c) dQ(W) or (d)–(f) dQ(W a)
in the case of (b2), (e2), and (h).

