
Evaluating Accessible Graphical Interfaces for
Building Story Worlds

Steven Poulakos1, Mubbasir Kapadia2, Guido M. Maiga3,
Fabio Zünd3, Markus Gross1,3, and Robert W. Sumner1,3

1 Disney Research, Zurich, Switzerland
2 Rutgers University, New Jersey, USA

3 ETH Zurich, Switzerland

Abstract. In order to use computational intelligence to assist in narra-
tive generation, domain knowledge of the story world must be defined,
a task which is currently confined to experts. In an effort to democra-
tize story world creation, we present an accessible graphical platform
for content creators and end users to create a story world, populate it
with smart characters and objects, and define narrative events that can
be used to author digital stories. The system supports reuse to reduce
the cost of content production and enables specification of semantics to
enable computer assisted authoring. Additionally, we introduce an itera-
tive, bi-directional workflow, which bridges the gap between story world
building and story authoring. Users seamlessly transition between au-
thoring stories and refining the story world definition to accommodate
their current narrative. A user study demonstrates the efficacy of our
system to support narrative generation.

Keywords: story world, domain specification, narrative generation

1 Introduction

A prerequisite to using computational intelligence for authoring digital stories [1]
is to specify the underlying logical formalisms that describe the problem domain,
also referred to as the story world. While a lot of work exists in making story
authoring accessible to everyone [1], all these contributions assume a story world
definition already exists. The story includes annotated semantics that character-
ize the attributes and relationships of objects and characters in a scene (state),
different ways in which they interact (affordances), and how these affordances
manipulate their state. The domain knowledge definition entails both the state
and action space within a story world. Current languages and interfaces for spec-
ifying domain knowledge are confined to experts and the overhead of domain
specification is high, often comparable to authoring the story from scratch [2].
This work aims to provide an accessible interface for building story worlds to
democratize the use of computational narrative intelligence.

Event-centric authoring [3] encapsulates interactions that have narrative sig-
nificance as logical constructs and provides an appropriate level of abstraction

2 S. Poulakos et al.

for authoring and reasoning about stories. This imposes an additional authoring
overhead, as these events need to be specified, but mitigates the complexity of au-
tomation as it is now independent in number of actors and actor capabilities [2].
Recent research [4] has demonstrated the promise of event-centric representa-
tions for defining story worlds, in comparison to agent-centric approaches, and
is the choice of domain representation used in this work.

We first describe an end-to-end graphical platform for systematically defining
the building blocks of the story world using an intuitive, visual graphical inter-
face. Story world building constitutes creating smart objects, defining their state
and actions (or affordances), as well as defining a lexicon of events (multi-actor
behaviors of narrative significance) that may take place in this story world. We
then demonstrate the efficacy of our system through a user study, which involves
the the creation of a Haunted Castle story world and authoring of stories within
that world. The evaluation results reveal the potential of our graphical platform
as well as the following benefits: bi-directional, iterative story world and story
authoring process, reuse to reduce the cost of content creation and specification
of event-level conditions to enable computational reasoning and assistance in
authoring process, which reduces authoring complexity.

2 Related Work

The research community has addressed the problem of authoring digital narra-
tives in two main ways. Manual approaches provide domain specialists with com-
plete control over creating rich narrative content, while automated approaches
rely on computational techniques to generate emergent interactive experiences.
We refer the readers to comprehensive surveys on narrative authoring [1, 5].

Manual Authoring. Scripted approaches [6] describe behaviors as pre-
defined sequences of actions. While providing fine-grained control, small changes
often require far-reaching modifications of monolithic scripts. Improv [7] and
LIVE [8] describe actor behaviors as rules based on certain conditions. These
systems produce pre-defined behaviors appropriate for specific situations. How-
ever, they are not designed to generate complicated agent interactions with nar-
rative significance. Facade [9] utilizes authored beats to manage the intensity
of the story in addition to a generalized scripting language [10, 11] to manually
authoring character interactions based on preconditions for successful execution.

Story Graphs can represent branching story lines [12] enabling user interac-
tion as discrete choices at key points in the authored narrative. Behavior Trees
(BT’s) are applied in the computer gaming industry to design the artificial intel-
ligence logic for non-player characters [13]. BT’s enable the authoring of modular
and extensible behaviors, which can be extended to control multiple interacting
characters [14] and to provide a formalism for specifying narrative events.

Automated Narrative Generation. Domain-independent planners [15]
provide a promising direction for automated narrative generation [16], however,
at the cost of requiring the specification of domain knowledge. The complex-
ity of authoring is transferred from story specification to domain specification.

Evaluating Accessible Graphical Interfaces for Building Story Worlds 3

For example, domain specification has been demonstrated to enable multi-actor
interactions that conform to narrative constraints [17, 18]. However, they can-
not be dynamically changed to accommodate user input. Narrative mediation
systems [19] automatically generate sub stories that consider the ramifications
of possible user interaction. However, these systems produce story graphs with
significant branching that are difficult to edit by humans. Virtual directors or
drama managers [20] may also accommodate user input while steering agents
towards pre-determined narrative goals [21]. Thespian [22] uses social aware-
ness to guide decision-theoretic agents. PaSSAGE [23] estimates a player’s ideal
experience to guide the player through predefined encounters.

Agent-Centric Domain Specification. Agent-centric approaches [24] build up
each character as an individual and explore the space of all possible combina-
torial character actions to generate stories. Authoring the characteristics and
capabilities of individual characters is decoupled from specifying the story itself,
and the complexity of automated narrative generation is combinatorial in the
number of characters and the different capabilities of each character.

Event-Centric Domain Specification. Events are a layer of abstraction on top
of agent-centric authoring which encapsulate multi-actor interactions that have
narrative significance. Event-centric approaches [3, 25, 2] plan in the space of pre-
authored narratively significant interactions, thus mitigating the combinatorial
explosion of planning in the action space of individual character actions.

Story World Building. Regardless of the mode of story authoring, an un-
derlying representation of the domain in which the story is authored, referred to
as the story world, needs to be first specified. This task is traditionally tedious
and confined to experts. Wide Ruled [26] offers intuitive graphical interfaces for
specifying the problem domain which can be used by narrative generation en-
gines. However, these systems are not compatible with animated stories. Recent
work [4] demonstrates the potential of event-centric representations for building
story worlds that can be used to author animated stories. However, the task of
story world building and story authoring are isolated from each other.

Comparison to Prior Work. Our work complements ongoing research
in computational narrative intelligence and advocates for providing accessible
metaphors for building story worlds. We build on top of prior work [4] to en-
hance the features of the system to include affordance and behavior creation. We
propose a bi-directional workflow, leveraging reuse and supporting automation,
that allows authors to seamlessly transition between story world building and
story authoring.

3 Domain Specification for Automated Narrative
Generation

In order to use computational intelligence for narrative generation, content cre-
ators and story writers need to specify the domain knowledge of the story world,
which can be used by an intelligent system for reasoning, inference, and ulti-
mately story generation. This includes annotating semantics that characterize

4 S. Poulakos et al.

the attributes and relationships of objects and characters in the scene (state),
different ways in which they interact (affordances), and how these affordances
manipulate their state. Many intelligent systems for automated generation are
similar in this regard [1]. However there exists a tradeoff between the complexity
of authoring and the computational complexity of generating stories depending
on type of domain representation used. Our previous work [4] introduces pre-
liminary concepts for story world building, and we include these concepts here
for completeness. Using these building blocks, we describe an event-centric rep-
resentation of domain knowledge for narrative generation [2].

Preliminaries. We introduce smart objects and affordances as the building
blocks for creating story worlds.

Smart Objects. The virtual world W consists of smart objects [27] with em-
bedded information about how an actor can use the object. We define a smart ob-
ject w = 〈F, s〉 with a set of advertised affordances f ∈ F and a state s = 〈θ,R〉,
which comprises a set of attribute mappings θ, and a collection of pairwise rela-
tionships R with all other smart objects in W. An attribute θ(i, j) is a bit that
denotes the value of the jth attribute for wi. Attributes are used to identify im-
mutable properties of a smart object such as its role (e.g., a button or a person)
which never changes, or dynamic properties (e.g., IsPressed or IsStanding)
which may change during the story. A specific relationship Ra is a sparse matrix
of |W| × |W|, where Ra(i, j) is a bit that denotes the current value of the ath

relationship between wi and wj . For example, an IsFriendOf relationship indi-
cates that wi is a friend of wj . Note that relationships may not be symmetric,
Ra(i, j) 6= Ra(j, i) ∀ (i, j) ∈ |W| × |W|. The state of each smart object is stored
as a bit vector encoding both attributes and relationships.

Affordances. An affordance f = 〈wo,wu,Φ, Ω〉 is an advertised capability
offered by a smart object that takes the owner of that affordance wo and one or
more smart object users wu, and manipulates their states. For example, a smart
object such as a ball can advertise a Throw affordance, allowing another smart
object to throw it. A precondition Φ : sw ← {TRUE, FALSE} is an expression in
conjunctive normal form on the compound state sw of w : {wo,wu} that checks
if f can be executed based on their current states. A precondition is fulfilled by
w if Φf(w) = TRUE. The postcondition Ω : s → s′ transforms the current state
of all participants, s to s′ by executing the effects of the affordance. When an
affordance fails, s′ = s .

Narrative Generation. The aim is to generate a narrative Π(ss, sg), which
satisfies an initial state ss and through a series of state transitions results in the
desired goal state sg.

Event-centric Domain Knowledge. Event-centric domains introduce events
as an additional layer of abstraction. Events are pre-defined context-specific in-
teractions between any number of participating smart objects whose outcome
is dictated by the current state of its participants. Events serve as the build-
ing blocks for authoring complex narratives. An event is formally defined as
e = 〈t, r,Φ, Ω〉 where t is a logical representation of a coordinated interaction
between multiple actors. t takes any number of participating smart objects as

Evaluating Accessible Graphical Interfaces for Building Story Worlds 5

parameters where r = {ri} define the desired roles for each participant. ri is a
logical formula specifying the desired value of the immutable attributes θ(·, j)
for wj to be considered as a valid candidate for that particular role in the event.
A precondition Φ : sw ← {TRUE, FALSE} is a logical expression on the compound
state sw of a particular set of smart objects w : {w1, w2, . . . w|r|} that checks the
validity of the states of each smart object. Φ is represented as a conjunction of
clauses φ ∈ Φ where each clause φ is a literal that specifies the desired attributes
of smart objects, and relationships between pairs of participants. A precondition
is fulfilled by w ⊆ W if Φe(w) = TRUE. The event postcondition Ω : s → s′

transforms the current state of all event participants s to s′ by executing the
effects of the event. When an event fails, s′ = s . An event instance I = 〈e,w〉 is
an event e populated with an ordered list of smart object participants w.

State Space. The overall state of the world W is defined as the compound
state s = {s1, s2 · · · s|W|} of all smart objects w ∈ W, which is encoded as a
matrix of bit vectors. sw denotes the compound state of a set of of smart objects
w ⊆W. The state space Se represents the set of all possible world states s.

Action Space. The event-centric action space Ae = {e1, e2 · · · em} is defined
as the set of all m events that may occur between any permutation of smart
objects in the world W.

Narrative Generation. A narrative Π(ss, sg) = 〈e1, e2 . . . en〉 is defined as a
sequence of events that transform the state of the world from its initial state
ss to the desired goal state sg that represents the desired outcome of the nar-
rative. An event-centric representation of domain knowledge helps mitigate the
combinatorial complexity of authoring individual characters in complex multi-
character interactions and its variants have recently gained prominence in the
games industry [2]. While this does impose the additional overhead of authoring
events, it offers greater control of narrative progression.

4 A Graphical Platform for Building Story Worlds

Our Story World Builder (SWB) is designed to build up components of a full
story world with required semantics to enable computer-assisted narrative gen-
eration. The graphical platform is built within the Unity3D game engine. Our
demonstration system conforms to the event-centric representations of Shoulson
et al. [3] and integrates with the CANVAS story authoring system of Kapadia
et al. [2]. CANVAS provides a storyboard-based metaphor for visual story au-
thoring of event and event participants, and it utilizes partial-order planning to
enable computer-assisted generation of narratives. The underlying representa-
tion of the story world is general and can be easily used within other computer
assisted narrative generation systems, such as PDDL.

Story world building begins with the creation of a new story world project
and the specification of a scene. The scene specification can involve inclusion of
static scene elements, environment lighting and navigation paths in the environ-
ment. Building a story world continues with three system components, which
are described below: (1) Smart Object Editor: defining a set of smart objects

6 S. Poulakos et al.

Fig. 1: Overview for building a story world and authoring stories. A scientist
enters the haunted castle, investigates a painting and is then spooked by a ghost.

and characters, and instantiating them in the scene. (2) State Editor: defining
states, roles and relationships. (3) Affordance and Event Editors: defining ca-
pabilities for smart objects and the events which use them. Figure 1 illustrates
bi-directional relationship between these components and illustrates an example
story that was generated within the Haunted Castle scenario.

Smart Object Editor. Smart objects represent all of the characters and
props that influence the story world. In the context of our overall formalism,
smart objects have state and offer capabilities to interact with other smart ob-
jects and influence the state of the story world. Smart object characters are
identified as “smart characters”. We differentiate smart characters because they
require additional components to, for example, support inverse kinematics to do
complex physical actions, such as pressing a button and grasping objects. All
humanoid smart characters can have the same base set of capabilities.

Figure 2 (a) shows the interface for creating a smart character called “Ghost”,
which is embodied by a ghost model. Once the smart character is created, the
user may then edit properties of the smart object, accessed via the Edit tab.
The Instantiate tab, visualized in Figure 2 (b), is then used to create one or
more instances of the Ghost smart object within the scene. Each instance has
a unique name, for example “MyGhost”. Instantiated smart objects are listed
at the bottom of the tab. Additional components are provided to specify other
properties, including a representative icon for use in the authoring system.

State, Role and Relation Editor. The State Editor enables the creation
of state attributes, roles and relationships available for use with smart objects
in the world. States include high level descriptions of objects. For example, the

Evaluating Accessible Graphical Interfaces for Building Story Worlds 7

(a) (b)

Fig. 2: Smart Objects Editor. (a) Create and (b) Instantiate smart objects.

state IsInhabiting is true when a ghost is inhabiting another object. Roles
may be created to specify that all ghost smart objects have the role IsGhost.
Relationships existing in the world may also be defined. For example, ghosts may
have an IsAlliedWith or IsInhabitedBy relation. Each smart object provides
a component for editing its states, roles and relations.

Affordance and Event Editors. Following the event-centric representa-
tion [3], events are defined as Parameterized Behavior Trees (PBT) [28], which
provide a graphical, hierarchical representation for specifying complex multi-
actor interactions in a modular, extensible fashion. Event creation involves spec-
ification of Affordance PBT, Event PBT, and event-based planning.

Affordance PBT. Affordances specify the capabilities of smart objects. An
affordance owner offers a capability to the affordance user. Figure 3 (a) demon-
strates an example “InhabitAffordance”, which is owned by a smart object and
used by a smart character. Figure 3 (b) represents an example behavior tree to
achieve the affordance. A sequence control node is used to specify that a smart
character user (a ghost) will jump into a smart object (the painting) and become
invisible. The material property of the smart object will change to reflect that
it is now inhabited. Affordances can be much more complex. An advantage of
specifying affordances is that they may be reused in many events.

Event PBT. Events utilize the affordances and conditional logic to compose
more complex forms of interaction. Figure 3 (c) and (d) present the creation of
the InhabitEvent. This simple example uses a sequential control node to specify
that a smart character (a ghost) will first approach a smart object (the paint-
ing) before inhabiting it. Events may have multiple smart object and character
participants, however they must be consistently specified throughout the event
behavior tree nodes. We use names of characters from an example scenarios to
maintain consistency. Additional components are provided to specify a represen-

8 S. Poulakos et al.

Fig. 3: Affordance and Event Editors. (a) The Inhabit affordance is created,
which is owned by a smart object and used by a smart character to inhabit the
smart object. (b) The affordance behavior tree represents the series of actions.
(c) An Inhabit event is created. (d) An event behavior tree specifies a sequence
of affordances and condition nodes.

tative icon for use in the authoring system. Both events and affordance PBTs
may be cloned and modified to support reuse.

Event-based planning. Additional semantics are specified at the event-level
to enable reasoning about the logical connectivity of events. Preconditions and
postconditions are defined as conjunctive normal form (CNF) expressions on the
state and relations of the PBT participants. The event behavior tree in Figure 3
(d) includes a Set Node, which specifies a postcondition associated with the
event. In our example, the IsInhabiting state of the ghost is set to true. In
the context of our example, we may required that the smart object has role
IsInhabitable or we may set an IsInhabitedBy relation between the smart
object and character. The author may specify pre- and post-conditions within
both Affordance and Event PBTs. The SWB will determine which conditions to
use to support event-based planning and is compatible with the requirements of
our example story authoring system [2].

Coupled Story World Building and Story Authoring. Traditional sys-
tems decouple the act of building story worlds and defining narratives, which are
often executed by different users (story world builders and story writers). In this
paper, we present a system that takes steps towards making story world build-

Evaluating Accessible Graphical Interfaces for Building Story Worlds 9

ing accessible to non-experts. However, in a traditional uni-directional workflow,
a story world, once finalized, cannot be modified while authoring stories. This
introduces certain limitations where users need to forecast all the foundational
blocks (smart objects and events) that need to exist in a story world.

To mitigate this, we introduce a bi-directional workflow that couples story
world building and story authoring. Our system naturally extends to facilitate
seamlessly transitioning between these two acts. This workflow affords several
benefits allowing traditional story authors to easily edit and modify existing
story world definitions to accommodate new features, and introduce new smart
objects or events, that may be necessary to realize their narrative.

5 Evaluation

Method. We conducted a user study to evaluate the usability and observed
benefit offered by the Story World Builder (SWB). Eight computer science stu-
dents participated in the evaluation. All participants had no prior experience
with SWB, 63% had prior experience authoring stories with CANVAS and 38%
reported prior experience using the Unity3D game engine. The task involved the
iterative and bi-directional process of building a Haunted Castle story world with
SWB and authoring stories with CANVAS. Text-based instructions provided an
overview of the system and specified a list of story world elements to produce.
This ensured that all experiment participants created similar set of affordance
and events, although some variation was possible in the implementation.

The user study was conducted in four parts. Part 1 involved an introduction
video, which demonstrated how to build a painting smart object, a scientist
smart character and an experiment event. Test subjects were then provided with
a story world containing elements described in the video. Part 1 concluded by
guiding the participant to author a story from the story world produced during
the video demonstration. Part 2 involved extending that story world. Experiment
participants were asked to create an investigate event, which involved reusing a
ReachObjectAffordance in addition to creating new affordances. After playing a
story involving the new event, participants then created a ghost smart character
and a spook event, in which a ghost spooks the scientist. A longer story was then
authored. Part 3 involved updating events in the story world to enable planning-
based computer-assisted authoring. An IsInhabiting state and IsInhabitable role
were created and integrated into the existing current events. The pre- and post-
conditions made it possible to author a subset of the events in the previously
authored story. The authoring system automatically completed the story using
the semantic event-level specification. Part 4 concluded the user study with a
questionnaire.
Results. All experiment participants successfully created the intended Haunted
Castle story world and authored stories before proceeding to the questionnaire.
The questionnaire began with the ten question System Usability Scale (SUS)
[29]. The SUS was selected because it is easy to administer and can provide
reliable results for small sample sizes. We applied the ten standard questions to

10 S. Poulakos et al.

1

2

3

4

5

SWB System State Editor Smart Object Editor Affordance / Event
Editors

CANVAS System

Q1

Q2

Fig. 4: Subject responses to the following statements: (Q1) ”I thought the [fill-in
with column label] system was easy to use.” (Q2) ”I think that I would need
the support of a technical person to be able to use this [fill-in with column
label].” Likert Scale: Strongly Agree (5) to Strongly Disagree (1). Error bar is
95% confidence interval.

evaluate the SWB system. The resulting SUS score of 66.88 demonstrates that
we have a usable system.

Two SUS questions were reused to evaluate subcomponents of the system
to edit states, smart objects and events, as well as the story authoring system
(CANVAS). One-sample t-Tests were computed on the Likert scale responses to
determine if agreement significantly differed from a neutral response. The ques-
tions and results are provide in Figure 4. For all systems and subcomponents,
participants disagreed that they would require support of a technical person. We
interpret this to mean novice users can independently use the system. Partic-
ipants agreed that the CANVAS System was easy to use and tended to agree
that the State Editor and Smart Object Editor were easy to use. The SWB and
Affordance/Event Editors had more neutral responses, likely due to the process
of specifying affordance and event PBTs, which may be less intuitive and more
challenging for users. Further improvements in our system should focus on this
aspect of domain specification.

We concluded the questionnaire with the following three questions about
the benefits of specific aspects of our system (average Likert response score in
parentheses): “I benefited from the ability go back and change the story world
(changing state, smart objects, affordances, and/or events) as I was authoring
the story.”-(score: 4.38) “I benefited from reusing existing contents from the story
world.”-(score: 4.75) “I benefited from automatically completing stories based
on the event conditions provided in the story world.”-(score 4.38) Participants
observed the greatest benefit in the ability to reuse content, and also agreed that
bi-directionality and automation were beneficial.

6 Conclusions

This paper motivates the importance of accessible metaphors for domain speci-
fication, as a precursor to computational narrative generation. We describe the
representation of domain knowledge, which utilizes an event-centric layer of ab-
straction. We demonstrate a graphical platform for event-centric authoring of

Evaluating Accessible Graphical Interfaces for Building Story Worlds 11

story worlds, which includes specification of smart objects, states, affordances
and events. Our system enables a bi-directional, iterative story world and story
authoring design process. The principle of reuse is integrated to reduce the cost
of content creation. The system streamlines the process of condition specification
to enable computational reasoning and assistance in the story authoring process,
which importantly reduces authoring complexity. Our user study demonstrates
the efficacy of our system, accessible to novice users, to build story worlds.

Limitations and Future Work. The user study has motivated several
future improvements. Affordance and Event PBT specification is the most chal-
lenging aspect of the system. Users have requested that the system provide more
assistance with PBT specification. The formalism for affordance specification is
unintuitive in some situations. Users also requested that the story world domain
specification be directly edited within the 3D story world. We intend to extend
the platform to give more creative freedom to the author and also to assist in
the development of interactive narratives [30, 31]. The far-reaching goal of our
research is to democratize story world building and digital story generation, by
providing accessible metaphors for narrative content creation.

References

1. Mark O. Riedl and Vadim Bulitko. Interactive narrative: An intelligent systems
approach. AI Magazine, 34(1):67–77, 2013.

2. Mubbasir Kapadia, Seth Frey, Alexander Shoulson, Robert W. Sumner, and
Markus Gross. Canvas: Computer-assisted narrative animation synthesis. In Proc.
of SCA ’16, pages 199–209, Aire-la-Ville, Switzerland, 2016. Eurographics Assoc.

3. Alexander Shoulson, Max L. Gilbert, Mubbasir Kapadia, and Norman I. Badler.
An event-centric planning approach for dynamic real-time narrative. In MIG, 2013.

4. Steven Poulakos, Mubbasir Kapadia, Andrea Schupfer, Fabio Zund, Robert Sum-
ner, and Markus Gross. Towards an accessible interface for story world building.
In Interactive Narrative Technologies 8, AIIDE Technical Report, 2015.

5. Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and NormanI. Badler.
Authoring Multi-actor Behaviors in Crowds with Diverse Personalities. In Model-
ing, Simulation and Visual Analysis of Crowds, volume 11, pages 147–180. 2013.

6. Aaron Bryan Loyall. Believable agents: building interactive personalities. PhD
thesis, Pittsburgh, PA, USA, 1997.

7. Ken Perlin and Athomas Goldberg. Improv: a system for scripting interactive
actors in virtual worlds. In Proceedings of ACM SIGGRAPH, pages 205–216, New
York, NY, USA, 1996. ACM.

8. Eric Menou. Real-time character animation using multi-layered scripts and space-
time optimization. In ICVS, pages 135–144, London, UK, 2001. Springer-Verlag.

9. Michael Mateas and Andrew Stern. Integrating plot , character and natural lan-
guage processing in the interactive drama facade. In TIDSE, volume 2. 2003.

10. Michael Mateas and Andrew Stern. A behavior language for story-based believable
agents. IEEE Intelligent Systems, 17(4):39–47, 2002.

11. Michael Mateas and Andrew Stern. A behavior language: Joint action and behav-
ioral idioms. In Life-Like Characters, pages 135–161. Springer, 2004.

12. Andrew Gordon, Michael van Lent, Martin V. Velsen, Paul Carpenter, and Ar-
nav Jhala. Branching Storylines in Virtual Reality Environments for Leadership
Development. In AAAI, pages 844–851, 2004.

12 S. Poulakos et al.

13. Damian Isla. Handling Complexity in the Halo 2 AI. In Game Developers Confer-
ence, March 2005.

14. A. Shoulson, N. Marshak, M. Kapadia, and N.I. Badler. ADAPT: The Agent
Development and Prototyping Testbed. IEEE TVCG, 20(7):1035–1047, July 2014.

15. Daniel S. Weld. An Introduction to Least Commitment Planning. AI Magazine,
15(4), 1994.

16. R. M. Young. Notes on the use of plan structures in the creation of interactive
plot. Technical report, AAAI Press, Cape Cod, MA, 1999.

17. M. Kapadia, S. Singh, G. Reinman, and P. Faloutsos. Multi-actor planning
for directable simulations. In Digital Media and Digital Content Management
(DMDCM), pages 111–116, May 2011.

18. M. Kapadia, S. Singh, G. Reinman, and P. Faloutsos. A Behavior-Authoring
Framework for Multiactor Simulations. IEEE CGA, 31(6):45–55, Nov 2011.

19. Mark O Riedl and R Michael Young. From linear story generation to branching
story graphs. IEEE CGA, 26(3):23–31, 2006.

20. Brian Magerko, John E Laird, Mazin Assanie, Alex Kerfoot, and Devvan Stokes. AI
Characters and Directors for Interactive Computer Games. Artificial Intelligence,
1001:877–883, 2004.

21. Peter William Weyhrauch. Guiding interactive drama. PhD thesis, Pittsburgh,
PA, USA, 1997. AAI9802566.

22. Mei Si, Stacy C. Marsella, and David V. Pynadath. Thespian: An architecture for
interactive pedagogical drama. In Proceeding of the 2005 Conference on Artificial
Intelligence in Education, pages 595–602. 2005.

23. David Thue, Vadim Bulitko, Marcia Spetch, and Eric Wasylishen. Interactive
storytelling: A player modelling approach. In AIIDE, 2007.

24. Robert Mosher and Brian Magerko. Personality Templates and Social Hierarchies
Using Stereotypes. In Stefan Göbel, Rainer Malkewitz, and Ido Iurgel, editors,
Technologies for Interactive Digital Storytelling and Entertainment, TIDSE 2006,
pages 207–218. Springer, Berlin, Heidelberg, 2006.

25. Alexander Shoulson, Mubbasir Kapadia, and Norman Badler. PAStE: A Platform
for Adaptive Storytelling with Events. In INT VI, AIIDE Workshop, 2013.

26. James Skorupski, Lakshmi Jayapalan, Sheena Marquez, and Michael Mateas. Wide
ruled: A friendly interface to author-goal based story generation. In Marc Cavazza
and Stéphane Donikian, editors, Proceedings of IVCS’07, pages 26–37, Berlin, Hei-
delberg, 2007. Springer-Verlag.

27. Marcelo Kallmann and Daniel Thalmann. Direct 3d interaction with smart objects.
In Proceedings of the ACM Symposium on Virtual Reality Software and Technology,
VRST ’99, pages 124–130, New York, NY, USA, 1999. ACM.

28. Alexander Shoulson, Francisco M. Garcia, Matthew Jones, Robert Mead, and Nor-
man I. Badler. Parameterizing behavior trees. In MIG, pages 144–155. Springer-
Verlag, 2011.

29. J. Brooke. SUS: A quick and dirty usability scale. In Usability evaluation in
industry. Taylor and Francis, London, 1996.

30. Mubbasir Kapadia, Jessica Falk, Fabio Zünd, Marcel Marti, Robert W. Sumner,
and Markus Gross. Computer-assisted authoring of interactive narratives. In
Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, i3D
’15, pages 85–92, New York, NY, USA, 2015. ACM.

31. Mubbasir Kapadia, Fabio Zünd, Jessica Falk, Marcel Marti, Robert W. Sumner,
and Markus Gross. Evaluating the authoring complexity of interactive narratives
with interactive behaviour trees. In Foundations of Digital Games, FDG’15, 2015.

