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Figure 1: The “optimal” sampling strategy varies as a function of the sample count as well as spatially over pixels. A formal
study of the variance of combinations of strategies is necessary to understand such behaviour. We compare combinations of
four different sampling strategies with multiple importance sampling to render the image (left). The rates at which numerical
integration errors decrease with increasing sample counts (per pixel; spp) are shown at 7 pixels (a-g). Our theoretical analysis
provides insight into such behaviour, and motivates a new, jittered antithetic importance sampling, estimator (black) for rendering.

Abstract

We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis.

Importance sampling and multiple importance sampling are popular variance-reduction strategies. Unfortunately,

neither strategy improves the rate of convergence of Monte Carlo integration. Jittered sampling (a type of stratified

sampling), on the other hand is known to improve the convergence rate. Most rendering software optimistically

combine importance sampling with jittered sampling, hoping to achieve both. We derive the exact error of the

combination of multiple importance sampling with jittered sampling. In addition, we demonstrate a further benefit

of introducing negative correlations (antithetic sampling) between estimates to the convergence rate. As with

importance sampling, antithetic sampling is known to reduce error for certain classes of integrands without

affecting the convergence rate. In this paper, our analysis and experiments reveal that importance and antithetic

sampling, if used judiciously and in conjunction with jittered sampling, may improve convergence rates. We show

the impact of such combinations of strategies on the convergence rate of estimators for direct illumination.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation

1. Introduction

The estimation of light energy recorded by each pixel on
the sensor of a virtual camera involves numerical integration
over an infinite set of light paths that arrive at the pixel. An
estimator for this integral is typically obtained by averaging
the radiance along representative samples of light paths. Error
in this estimation manifests as variance (image noise) and bias
(usually structured artifacts). Two sampling considerations
crucially impact the extent of error — the number of samples
and the strategy used to select the representative samples.

The convergence rate of an estimator describes how rapidly

its error decreases as the number of samples is increased, and
is an important consideration for assessing estimators. This
has been extensively studied in statistics [Owe13] and for
some estimators in computer graphics [Mit96, KPR12]. Con-
vergence rate is typically estimated as the slope of the plot of
error vs number of samples in log-log scale. Fig. 1 visualises
the convergence plots at 8 different pixels (a-g), for four dif-
ferent estimators. The observed error and convergence rate
depend on the particular sampling strategy used. There is a
large body of literature [Vea97,KPR12] devoted to mitigating
error. Some methods achieve this by tailoring the distribution
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of samples. For example, importance sampling (IS) is benefi-
cial when the integrand is highly varying and such behavior is
known a priori. Unfortunately, the benefit of IS is constant and
diminishes as more samples are drawn, i.e. IS does not affect
the convergence rate. A second strategy imposes positional
constraints, e.g. partitioning constraints of stratified sampling
and the minimum separation constraints (Poisson-disk, hal-
ton sampling, etc.). These methods are popular because they
exhibit improved convergence rates.

The obvious solution, of combining some of the above
strategies, is a standard feature in most rendering soft-
ware [PH10, Jak10]. While such a combination is observed
to improve the quality of rendered images in many cases, we
are not aware of a formal analysis of the variance of these
combined estimators. One of our contributions is that we de-
rive the exact error (cf. Fig. 2) – the convergence rate as well
as constant term. Our equations for variance of jittered im-
portance sampling and jittered multiple importance sampling
(MIS) reveal counter-intuitive results such as the possibility
of increasing estimator variance by stratifying MIS.

A third strategy, antithetic sampling [HM56b] (AS) is a
classical strategy in the statistics literature that reduces error
by generating samples that are inversely correlated with each
other. Although it boasts the ability to produce zero-error
estimates for special cases (linear and skew-symmetric in-
tegrands), this method is no longer heavily applied [SP09]
for two reasons: first, it can increase error for complex in-
tegrands, and it is not as easy to manipulate as importance
sampling in these cases. As with IS, antithetic sampling also
does not impact convergence rate. However, recent work has
derived improved convergence rates for combinations of this
approach with low-discrepancy sequences [Owe08].

Combining jittered, importance and antithetic sampling
provides many benefits. Jittered sampling improves conver-
gence for smooth integrands but suffers in strata that contain
discontinuities [Mit96]. On the other hand, while IS does not
improve convergence, it is useful for dealing with discontinu-
ities that are known a priori. Combining JS with a judicious
choice of importance function reduces error in strata with
discontinuities. For maximum benefit from this combination,
however, the integrand divided by the importance function
needs to be constant. The advantage of including AS in the
mix is that it is sufficient that the ratio is linear (rather than
constant). Integrals within such strata will be estimated with
zero-error due to AS. Thus, jittered antithetic importance
sampling (JAIS) is an effective combination for improving
convergence, and introduces a fresh perception of what con-
stitutes a “good” importance function. Motivated by these
observations, and from recent resurgence of AS, we derive
exact errors for the combination of JS with IS and MIS and
further qualitatively analyse their combination with AS. We
demonstrate the validity of our analysis with estimators for
direct illumination.

2. Related work and motivation

We broadly classify stochastic sampling strategies into
distribution- and arrangement-based methods. The former,
such as importance sampling, reduce error by tailoring the
parent distributions of the samples. The latter set imposes
constraints on sample placement e.g. by subdividing the sam-
pling domain into sub-domains [Mit96], ensuring a minimum
sample spacing [Coo86], or guaranteeing that a certain frac-
tion of samples lie in specific subdomains [Shi91].

Distribution: Monte Carlo (MC) estimators using non-
uniformly distributed samples normalise (divide) each eval-
uation by the probability density evaluated at that sampling
location. IS tailors this distribution to have the normalized
integrand evaluations remain as constant as possible across
samples, and the reduction in error depends on this degree
of constancy. Ideally, the normalized integrand evaluations
are constant; for this, the distribution must be proportional
to the integrand. On the other hand, for the distribution to be
a valid probability density function (pdf) the proportionality
constant is precisely the value of the integral being estimated.
As such, the ideal importance function is of little practical
value since it assumes knowledge of the quantity being es-
timated. In image synthesis, IS is a popular choice and has
been applied to integrate distant illumination [ARBJ03], ma-
terial BRDFs [LRR04], sums of distributions via multiple
importance sampling (MIS) [Vea97], products of distribu-
tions [CJAMJ05] and participating media [GKH∗13]. Pharr
and Humphreys [PH10] provide a more comprehensive sur-
vey. The benefit of these approaches are typically verified
by visual inspection, where the variance manifests as noise,
and each of these algorithms exploits specific knowledge of
the integrand from which heuristic importance functions are
proposed. For a more general overview readers are referred
to primers [Owe13, OZ00, Bis06, Hes03].

Arrangement for antithetic variates: Antithetic variates
reduce variance using negatively correlated random vari-
ables [HM56b, HM56a]. For every sampling location, a cor-
responding “antithetic” location is generated. The hope is
that the values of the integrand at these locations are nega-
tively correlated. The estimator is unbiased so long as the
distribution of the samples remains unchanged (see Sec. 6).
It is possible that perfectly inversely correlated samples lead
to positively correlated estimates at those locations. In such
cases, the estimator’s variance would increase. In image syn-
thesis, these sampling decisions are performed dynamically
and so we derive a simple mechanism, inspired by copula
theory [SS83], to control the degree and sign of correlation
between random samples of arbitrary dimensionality (Sec. 4).
We also present equations that test for this pre-emptively
(Sec. 6). Recent sampling techniques were thought to have
superseded antithetic sampling, even to the point that it was
believed to be redundant [SP09]. Our analysis and experi-
ments with direct illumination show that it is beneficial to
combine antithetic variables (in a complementary manner)
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with more recent techniques. We analyze the combination of
stratified sampling and IS with antithetic variates (Sec. 4.5)
and demonstrate a marked improvement with this scheme.

Arrangement for stratified sampling: Stratified sampling
is a powerful divide-and-conquer variance reduction scheme
designed to cope with integrands that exhibit piecewise ho-
mogeneous behavior. The domain is partitioned into sub-
domains and estimates of the integral within each of sub-
domain are computed and carefully combined to estimate
the integral over the entire domain. Naïve MC algorithms
exhibit O(N−0.5) convergence; yet, with cubically strati-
fied sampling, Haber [Hab70] confirmed that an improved
O(N−1−p/d) convergence is attainable for d-dimensional in-
tegrals when the integrand is p-differentiable. The practical
application of stratified sampling in statistics fundamentally
differs from jittered sampling used in graphics. Statisticians
actively strive to seek a meaningful partitioning of the do-
main [Ney34]. Further, they might choose to tailor the im-
portance function within each stratum [Owe13]. While their
analyses are not directly applicable to image synthesis, we
draw inspiration from such work to analyse a potentially use-
ful combination for image synthesis. Jittered sampling is a
special form of stratified sampling in which the subdomains
all have equal area (usually a regular grid of cells) and sample
allocation is equal across strata. It has been observed empiri-
cally [Mit96] (for anti-aliasing) and analytically [RAMN12]
(for visibility integration) that jittered sampling leads to an es-
timator that converges at O(N−1.5), as opposed to O(N−0.5)
(naïve MC). We start with a derivation for this in 1D, which
provides insight into the benefit of combining antithetic vari-
ables and IS with stratification (see Sec. 4.5), and explain
why it typically improves convergence in our experiments.

Arrangement for quasi-Monte Carlo: While random sam-
pling guarantees that, on average, the proportion of points
generated within any subset of the domain is proportional
to the measure of the subset, no such guarantee holds for
particular instances (say a subset) of samples. A quan-
titative measure of this desirable property is called dis-

crepancy and was introduced to the graphics community
by Shirley [Shi91]. We again point interested readers to
several comprehensive references on low-discrepancy sam-
pling [DP10, Lem10, KHN06, Nie92], including some spe-
cialized to rendering [Kel96, KPR12]. Intuitively, the goal of
low-discrepancy sampling is to arrange samples uniformly in
the domain so that the number of points in any chosen stratum
is kept constant over instances of sampling patterns. This, in
combination with deterministic sampling, allows QMC to
exhibit improved convergence rates of O(N−1+ε). Random-
ized QMC can be even lower, at O(N−3/2+ε), however with
moderate smoothness constraints on the integrand, for any
ε > 0.

We exclusively analyse Monte Carlo estimators. It is pos-
sible that our insights into combining stratification with other
variance reduction schemes extend to QMC methods; how-

ever, theoretical derivations of similar results for QMC are
beyond the scope of our work since it is unclear how to ex-
tend our probabilistic analysis to the number theoretic proofs
usually required for QMC methods. We perform empirical
comparisons against popular QMC methods in image synthe-
sis.

Copulas: Copulas capture complex inter-relationships be-
tween random variables. A copula parameterizes such inter-
dependencies separately from the parameters of the random
numbers’ marginal distributions. We use Gaussian copulas
as a tool to generate random variables that are uniformly
distributed in [0,1] with specified mutual correlations. Al-
though the Gaussian copula has been criticised for its inabil-
ity to cope with non-linear relationships between variables,
it suffices for our purpose of variance analysis. In Sec. 4,
we explain how the copulas may be useful for graphics ap-
plications. Interested readers are referred to standard text-
books [SS83, Nel06] for formal definitions.

Combining variance reduction schemes: In image synthe-
sis, the combination of regular sampling with IS [KC08]
and that of IS using multiple functions [VG95] have been
explored. In statistics, low-discrepancy sampling has been
combined with locally antithetic samples [Owe08] to achieve
a convergence of O(N−3/2−1/d+ε). More recently, in concur-
rent unpublished work in statistics [Owe13], the combination
of jittered sampling with antithetic variables is explored.

In this paper, we derive exact errors for the combination
of jittered sampling with importance sampling and MIS and
further qualitatively analyse their combination with antithetic
sampling.

Contributions: We make the following contributions:

• derivations of exact error for popular estimators such as IS,
MIS, jittered IS and jittered MIS (Fig. 2);

• introduce jittered antithetic importance sampling (JAIS)
and assess conditions that improve its convergence rate;

• introduce a mechanism to generate multidimensional sam-
ples with specified mutual correlations; and,

• verify the validity of JAIS for estimating direct illumina-
tion.

Insight: Our analysis confirms previously observed behavior
and also reveals interesting properties:

• for certain N, jittering increases the error of IS;
• using MIS to sample from two distributions, such as light-

ing and BRDF, produces lower error than importance sam-
pling with their averaged pdfs;

• the average pdf is no longer a better choice (compared to
MIS) when combined with jittered sampling;

• for IS with AS, it is sufficient that the ratio of the integrand
to the importance function is linear (rather than constant);

• and a judicious choice of importance functions can im-
prove the convergence rate of jittered antithetic importance
sampling.
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IḡiIḡ j −Ng(Ng −1)I2

ψ =

i< N
Ng

∑
i=1

j< N
Ng

∑
j 6=i
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Figure 2: A tabulation of our derivations of the exact expressions for variance for a number of estimators that are commonly used
in graphics. µ̃N, µ̃sN, µ̃isN, µ̃jisN, µ̃misN and µ̃jmisN are N-sample MC estimators obtained by rewriting the integral of f (x) over D
as shown in the “form” column of the table. The variance, V

(

µ̃avg.isN
)

, of the N-sample average importance sampled estimator is
simply V(µ̃isN) with g(x) set as the average of the individual pdfs. See supplemental material A for their derivations.

3. Exact error analysis

We derived the errors of popular estimators (summarised in
Figure 2) for direct illumination: IS, MIS, jittered IS, and
jittered MIS. Deriving these error rates, while involved, is
a standard exercise in statistics. The full derivations can be
found in supplemental material A. In the remainder of this
section, we interpret the results and explain their significance.

Notation: We analyse Monte Carlo estimators for the mul-
tidimensional integral I =

∫
D

f (x)dx, x ∈ D where f (x) is a
real-valued function defined over the domain. We use µ̃ to
denote an estimator for I along with a suffix to identify the
sampling strategy and sample count. We capitalize random
variables (X, Yi, etc.). For example, the primary importance
sampling estimator is µ̃is,1 = f (X)/g(X), X ∼ g(x) and the
secondary estimator is µ̃is,N = 1

N ∑ f (Xi)/g(Xi), Xi ∼ g(x).
Table 1 lists our notation for expectation and variance.

Jittered importance sampling: From the variance of the
JIS estimator (Fig. 2), an upper bound is obtained as

V
(

µ̃jis,N
)

≤
V
(

µ̃is,N
)

N
+

N −1
N3 I

2, (1)

since I = ∑ Ii. This upper bound is achieved when the in-
tegral over each of the strata is equal: Ii = I j,∀i, j. Eq. 1
shows that the combination of jittered sampling with impor-
tance sampling leads to improved convergence with error
O(N−1) instead of O(N−1/2) achieved by importance sam-
pling. There is a constant additive error which also decays as
O(N−1). Interestingly, if the number of samples is chosen so

that N ≤ I/
√

V
(

µ̃is,N
)

, then V
(

µ̃jis,N
)

> V
(

µ̃is,N
)

, i.e. it is

possible that jittering increases the error of IS.

Table 1: Notation used in this paper.

Symbol Definition

f (x) integrand
g(x) sampling distribution

µ̃N estimate of I using N samples
µ̃is,N N-sample importance sampling estimator
µ̃is,1 primary (1-sample) imp. samp. estimator

X, Y, Xi, Yi random variates

〈φ(X)〉g Exp. with X ∼ g(x):
∫
D

φ(x) g(x) dx

V(φ(X))g Var.:
∫
D

φ2(x)g(x) dx−
∫
D

φ(x)g(x) dx

〈φ(X)〉 〈φ(X)〉g with g(x) = 1/|D|

V(φ(X)) V(φ(X))g with g(x) = 1/|D|

MIS vs IS with average pdf: Consider the two-distribution
MIS estimator. Since 2I = Iḡ1 + Iḡ2 (by definition), we can
show that κ ≥ 0 (κ is defined in Fig. 2) otherwise (Iḡ1 −

Iḡ2)
2 < 0. Thus we can prove by contradiction that V(µ̃mis)≤

V
(

µ̃avg,is
)

. A similar argument may be constructed for the
case involving more than two sampling distributions. We
have shown that, even when it is possible to average two
importance functions such as rotated environment lighting
and BRDF, it is preferable (lower variance) to use MIS with

the balance heuristic. Note that the expected value of the
variance of the one-sampled MIS estimator is identical to the
N-sampled MIS estimator with the balance heuristic since, on
average, allocation is equal across the different distributions.
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Jittered MIS vs JIS with average pdf: When jittered sam-
pling is combined with MIS, the error term ψ (see Fig. 2) is
dominated by the two positive terms. Thus, the variance of
the jittered MIS estimator is worse than the jittered estimator
with the averaged pdfs. So, where possible, it is preferable to

use the averaged importance functions with jittered samples

in the canonical domain than using MIS with the jittered

samples.

4. Combining strategies with antithetic sampling

The variance of a MC estimator is obtained as the sum of
the variances of uncorrelated estimates. If the estimates are
correlated with each other, then the overall variances consists
of an additional covariance term. If this additional term is
negative (when correlations are negative), then there is an
overall reduction in variance. Negative correlations are simple
to introduce for simple (eg. linear) integrands. If the sampling
strategy is not designed carefully, for general integrands, the
covariance amongst estimates could very well be positive
despite the samples being negatively correlated. To avoid
this, here we propose the use of a mechanism to control the
correlation between samples. The actual parameters provided
to this mechanism will depend on the particular application.

4.1. Perfectly antithetic variables

When uniformly distributed random variates X and Y are
correlated, their corresponding naïve estimators are also po-
tentially correlated. The variance of the estimator µ̃av,2 =
( f (X) + f (Y))/2 can easily be shown to be (1+ ρ)V(µ̃2)
where ρ is the correlation between f (X) and f (Y) and µ̃2 is
the 2-sample naïve estimator. If f (X) and f (Y) are perfectly
negatively correlated, then X and Y are said to be antithetic

samples in the classical sense, and the estimator has zero vari-
ance. This is trivially achieved when the integrand is linear
and Y = c−X,∀c > 0.

AS yields a zero variance estimator when the samples are
perfectly inversely correlated and the integrand is either linear
or skew symmetric (about the center of the domain). Such
cases are rare in image synthesis, where the integrand is often
a discontinuous (due to visibility, texture, etc.) superposi-
tion of all-frequency functions (lighting, reflectance, texture,
visibility, etc.). Under such conditions, it is possible that an-
tithetic sampling would lead to an increase in variance. It is
therefore necessary to be able to detect (Sec. 6) the benefit of
AS as well as to control the extent to which the variables are
antithetic for multidimensional domains.

4.2. Generating correlated variables in 1D: review

Consider a single sample (X,Y) ∈ ℜ×ℜ, or ∈ ℜ2 drawn
according to a zero-centered 2D Normal distribution with

covariance matrix M =
(

1 σXY

σXY 1

)

. Note that X and Y are

each (1D) normally distributed with zero mean and unit vari-
ance. Let (Ux,Uy)≡ (Φ(X),Φ(Y)) ∈ [0,1]× [0,1], where Φ

is the cdf of the standard unit normal. By passing the random
variates through the cdf, Ux and Uy are each uniformly dis-
tributed in [0,1] but are still correlated by σXY . If σXY =−1
then the method is analogus to generating antithetic pairs
using the popular transformation (Z,1−Z) where Z is uni-
formly distributed in [0,1].

4.3. Correlated multidimensional sampling

We propose the use of Gaussian copulas to adaptively con-
trol the degree to which the samples are antithetic. Con-
sider the goal of generating two d-dimensional random
variables X1 and X2 that form an antithetic pair where
Xi = (xi,1,xi,2, ...,xi,d), 1 < i ≤ 2. The linear dependencies
(correlations) between all components can be fully described
using a 2d × 2d correlation matrix Σ, which is symmetric
and positive semi-definite by definition. Then, to obtain a
pair (X1,X2) of generalized antithetic variables, we draw
[X1 X2]

T as a single sample from the 2d dimensional zero-
mean Normal distribution with Σ as its covariance matrix.
Depending on the structure of this correlation matrix, we
define three special classes of antithetic pairs.

Conservative multidimensional antithetic pairs: If the
correlation matrix Σ = I2d×2d + c where c= −1

(4d2−2d)
, all

inter-dimensional correlations are equally and minimally neg-
ative while Σ remains positive semi-definite. If (X1,X2) is
generated using such a structure, we call it a conservative
multidimensional antithetic pair.

Uniform multidimensional antithetic pairs: One problem
with conservative multidimensional antithetic pairs is that
the random variables X1 and X2 are not each uniformly
distributed in [0,1]d . Thus they lead to biased integrators.
To ensure that each variable in the pair is uniformly dis-
tributed in [0,1]d , it suffices that the two d ×d blocks along
the leading diagonal of Σ are identity matrices. That is,
Σ = [Id×d C;CT Id×d ] where C is any matrix so long as
Σ remains positive semi-definite.

Simple multidimensional antithetic pairs: A special case
of uniform antithetic pairs is when C is a diagonal matrix. In
this case, Σi,d+ j = Corr(x1,i,x2, j) and Σi,i = 1, i, j ≤ 2d. If
Corr(x1,i,x2, j) = 1, this is equivalent to generating the ani-
thetic pair (X1,1−X1). We call such pairs simple antithetic

pairs since there are no mutual correlations across dimen-
sions.

Since uniform antithetic pairs (and hence simple pairs)
do not alter the distribution of the individual multidimen-
sional samples, they lead to unbiased estimators. However,
the complex correlations between them affect the variances
of the estimators. If the correlations are negative, and are pre-
served by evaluation of the integrand, then there is a variance
reduction.
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4.4. Antithetic importance sampling

Two possibilities: Consider a 1D canonical domain [0,1]. To
generate X ∈ [0,1],X ∼ g(x), a typical approach in rendering
is to use the transformation X = G−1(U), where U ∈ [0,1]
is uniformly distributed in the canonical domain, and G−1 is
the inverse of the cdf of g(x). There are two obvious ways to
generate Y for an antithetic pair (X,Y). Either Yx = 1−X,
which is a reflection of X about the center or Yu = G−1(1−
U), which corresponds to reflecting U first. These two options
result in generally different results, as explained below.

The estimators: From symmetry, Yx ∼ g(1−x) and the two-
sample antithetic importance sampling estimator resulting
from (X,Yx) is µ̃ais,2 = ( fg(X)+ fg(1−X)) where we use
the shorthand notation fg(x) = f (x)/g(x). Since both sam-
ples are divided by their respective probability densities, this
estimator is unbiased. However, Yu ∼ h(x) where the pdf h(x)
obeys the cdf H−1(x) = G−1(1− x). Thus, determining the
correct weight for the antithetic sample to be combined with-
out introducing a bias is tricky, except when g(x) is constant
(and hence G−1 is linear). Henceforth, in this paper, we use
(X,1−X) as the antithetic pair for importance sampling.

Convergence is unaffected: The antithetic sampling pri-
mary estimator uses two samples, and its variance is reduced
due to negative correlation between the two samples. The
corresponding secondary estimator’s variance is lowered by
a proportional factor regardless of the number of primary
estimates used. Antithetic sampling potentially reduces the
overall RMSE, but cannot improve convergence [Owe08]. It
might be misleading to imagine that if a negative correlation
was induced between every pair of N secondary estimates,
that the convergence could be improved. However, this is not
possible since the covariance matrix (between the variables)
needs to remain positive definite.

4.5. Qualitative analysis of AS with jittered sampling:

In theory, under certain smoothness assumptions, the variance
of the stratified sampling estimator (in 1D) is

V(µ̃sN) =
|D|4

N4

N

∑
i=1

( f
′(Xi))

2 ≈
|D|3

N3

∫

D

( f
′(x))2 dx

which means that RMSE convergence for stratified sampling
is O(N−3/2) in 1D domains, provided the integrand is some-
what linear within each stratum and square integrable without
sharp variation. Although Owen et al. [Owe13] derive di-
minishing returns for higher dimensions, this convergence
rate has been observed to hold in image synthesis applica-
tions for 2D antialiasing [Mit96] and 3D visibility integra-
tion [RAMN12]. This motivates us to explore its use for
estimating direct illumination.

Jittered antithetic sampling: Antithetic sampling provides
a zero-variance estimator for linear integrands. Combining
stratification with antithetic sampling yields an estimator

Figure 4: An inset from Veach’s scene is shown rendered
with four different strategies: antithetic, jittered antithetic,
latin hypercube and jittered antithetic sampling. Combining
stratification and antithetic sampling reduces error (visible
noise) and improves convergence (see Fig. 3).

whose only source of variance is in regions where the in-
tegrand varies sharply (high gradient). However, as noted
previously, it is possible that antithetic sampling increases
variance. It is here that the condition derived in Appendix
A proves useful. If the condition is not satisfied, then the
antithetic sample should be drawn as an uncorrelated sample.
This strategy ensures that, in the worst case, stratified anti-
thetic sampling degenerates to standard stratified sampling.

Jittered antithetic importance sampling: Stratified anti-
thetic sampling provides a benefit when the integrand f (x) is
piece-wise (within the strata) linear or skew-symmetric. The
inclusion of an importance function to generate the samples
requires instead that fg(x) = f (x)/g(x) is piece-wise linear or
skew-symmetric. Since importance functions are typically de-
signed to warp the integrand to a constant, it can be expected
that stratified antithetic importance sampling will have low
error, in general. Again, if the condition (derived in Appendix
B) is not satisfied, the correlation between the antithetic
samples must be removed so that it degenerates to stratified
sampling.

Variance reduction and convergence: The M samples in
the jittered sampling estimator are subtly correlated. As M

increases, the sizes of each of the strata reduce, thereby re-
ducing the variance within each stratum. In addition, the
integrand becomes increasingly close to linear or even con-
stant within each stratum. These three combined effects result
in improved convergence. When importance sampling or MIS
is combined with stratification, the error is reduced in strata
that are piece-wise linear or skew-symmetric. We observe
empirically and in examples of image synthesis that the frac-
tion of strata that this occurs is significant enough that there
is an improvement in convergence. This is an exciting new

observation, that standard techniques which only improve

error can be combined with stratification to further improve

the convergence rate of stratified sampling.
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MIS: multiple-importance sampling of the BSDF as well as solid angles of emitters

c
o

n
v
g

.
v
a

r.

−2−1.5−1−0.5
0

2

4

6

8

−2−1.5−1−0.5
0

2

4

6

8

−2−1.5−1−0.5
0

2

4

6

8

−2−1.5−1−0.5
0

2

4

6

8 Hist. of convergences

fr
e

q
. 

%

IS: importance sampling of the solid angles subtended by the emitters
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Figure 3: Antithetic sampling consistently improves convergence rates in the presence of any form of importance sampling, all
at negligible cost. Measured convergence rates and errors for direct illumination in Veach’s scene with MIS (top set of three
rows), IS of the emitters (middle set) and without importance sampling (bottom set) are shown. The convergence rates are best
with MIS, and approach naïve Monte Carlo when no importance sampling is used (bottom set).
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5. Results

We verified our theoretical results and qualitative analyses
in estimators for direct illumination, including visibility. For
each estimator, we obtained the per-pixel variance by render-
ing hundreds of images. We computed the convergence rates,
again per-pixel, by measuring the slopes of the log-log plots
of variances against sample counts (spp).

Experiments: Fig. 1 visualises the convergence plots at
8 different pixels (a-g), for four different estimators. The
ranking of estimators, based on their errors, depends on the
number of samples used. e.g. Although the black line in 1c
has a lower error when fewer than 37 samples (per pixel)
are used, the red and blue lines have lower errors for larger
sampling counts. At pixel c, JAIS is a better choice interactive
or real-time rendering (where the sample budget is low) while
jittered sampling or low-discrepancy sequences are better for
high-quality rendering (with higher sampling budgets).

Fig. 3 visualises these convergence rates as well as the
variances for Veach’s reflectors scene, as a heat map. Four
estimators are compared. Two of them are state-of-the-art
(low-discrepancy and jittered sampling) while the other two —
antithetic and jittered antithetic — are new to rendering. Blue
indicates a low (rapid convergence or low error) value and red
indicates a high value (slow convergence or high error). We
repeated the experiment for three scenarios: With MIS, with
IS of the emitters, and without importance sampling. Since
each method performs best for a characteristically chosen
number of samples (e.g. perfect square for jittered sampling),
we measured the convergence rates using carefully chosen
numbers of samples per pixel and random samples for the
remainder to make sample counts match. Fig. 4 visualises
the manifestation of error as unpleasant noise. Finally, Fig. 5
compares per-pixel convergence rates (slope of the conver-
gence plot) and errors (Y-intercepts) of JAIS with jittered
sampling. The renders show a Copper object with a Beck-
mann’s distribution (alpha=0.1) and lit by an environment ,
using one-sample MIS with path tracing.

Interpretation of results: Fig. 3 clearly illustrates that JAIS
is a winning strategy. When combined with standard im-
portance sampling (whether of the subtended solid angle of
emitters or an MIS of emitters with surface BRDF sampling),
jittered antithetic sampling consistently improves the con-
vergence rate. In fact, the results shows that over half the
pixels have a convergence rate of better than O(N−1.2), with
some pixels reaching a convergence rate of O(N−2) — sig-
nificantly better than that achieved by low-discrepency sam-
pling, jittered sampling, or antithetic sampling in isolation.
Moreover, even without any importance sampling, including
antithetic sampling does not decrease convergence rates. As
such, we advocate the use of antithetic sampling in all such
circumstances. In Fig. 5, we see that JAIS enjoys a better
convergence (black pixels in second column) than jittered
sampling in many pixels but does show slightly higher error
in many pixels (white pixels in third column). That is, jittered

rendered image convergence (slope) error (Y-intercept)

di
re

ct
on

e-
bo

un
ce

black- JAIS better, gray-similar, white-JAIS worse)

Figure 5: A comparison of JAIS with jittered sampling. For
the same scene (first column), convergence (second column)
and error (third column) are shown. The top row considers
only direct illumination, while the bottom row includes one-
bounce indirect illumination.

sampling is a better choice for low-sample counts, but when
it is affordable to invest in more samples, the benefit of the
improved convergence makes JAIS a better choice.

6. Discussion

Jittered antithetic IS: Our experiments (fig. 3) indicate
that good importance functions are crucial for the improved
convergence of jittered antithetic sampling. With judiciously
chosen importance functions, our jittered antithetic impor-
tance sampling estimator converges more rapidly than exist-
ing strategies. In fig. 3 (top row) the histogram over pixels
shows that our estimator improves the convergence of more
than half the pixels, when compared to low-discrepancy sam-
pling. Our analysis provides the fresh insight, that when used
with antithetic sampling, it is sufficient that the importance
function warp the integrand to a linear function, instead of
the traditional goal of warping to a constant function.

Bias in antithetic IS, with arbitrary correlations: Perfect
antithetic samples may be viewed as drawn from g2(x) =
g(1− x). If the samples are generated with a different corre-
lation (see supplemental material B for visualization), then
the distribution of the antithetic sample is no longer g2(x). If
the estimator does not account for this modified sampling dis-
tribution it will be biased. The correlation parameter allows
control of this bias. At zero, the estimator is unbiased, but
has additional variance, because it amounts to averaging the
estimates due to importance sampling and naïve MC.

Sampling domain and distortion: We derive all our re-
sults for the d-dimensional canonical domain [0,1]d . Render-
ing algorithms make different interpretations of the integra-
tion, e.g. for direct illumination, the sampling domains of
interest are emitter surface area, local hemisphere, emitter’s
projected solid angle and the material’s reflectance distri-
bution. All of these are 2D domains, and apply different
transformations to [0,1]2. The distortions introduced by these
transformations further influence the actual error and the con-
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vergence rates of the jittered antithetic importance sampling
estimator. However such analysis needs to be targeted spe-
cially at each case. In this paper, we sample the canonical
[0,1]2 domain without including such parametrizations.

Comparing stochastic integrators for rendering: Even for
a single pixel, the determination of the best choice of sam-
pling strategy depends on the available budget for samples.
For real-time and interactive ray-tracing purposes, this bud-
get is potentially small, and lower error is more important
than steeper convergence. For high-quality offline rendering,
convergence is potentially more important to consider.

Product importance sampling: In rendering, the impor-
tance function is often a product [BGH05] of two functions,
such as environment lighting and reflectance distributions.
Our derivation for the variance of importance sampling en-
compasses this case. The arrangement of samples, from such
product distributions, depends on the specific algorithm used.
This makes it impossible to derive a general theoretical result
for the variance of jittered sampling from product functions.

7. Conclusion and future avenues

We have derived the variance of combinations of unbiased es-
timators popularly used in rendering, in closed form. We also
motivated the use of negatively correlated estimates for vari-
ance reduction. We found that certain arrangement strategies,
such as jittered sampling, when combined with antithetic sam-
pling can lead to improved convergence rates. We reported
that antithetic sampling possibly leads to increased variance
for certain integrands. To avoid this, we proposed a sampling
strategy to control the degree of correlation between samples.
We found that our new jittered antithetic importance sampling
strategy leads to an improved convergence rate at many pixels
while estimating direct illumination.

Further research is required to adapt our observations for
high-dimensional integrals. JAIS provides little benefit for
estimating global illumination in the modified (glossy) Cor-
nell box scene in fig. 6 (top row). We compared convergence
rates of the aforementioned four estimators while estimating
a high-dimensional integration for global illumination (fig. 6).
We plotted histograms of convergence rates over pixels using
path tracing as well as photon-mapping with final gather. Path
tracing with infinite bounces, for global illumination, corre-
sponds to an integral of a highly non-linear function over
an infinite-dimensional domain. In this case, the stratifica-
tion for jittered sampling results in large strata with distorted
footprints in path space. Performing antithetic or importance
sampling in this domain is hopeless.

One possibility is to express the high-dimensional integral
alternatively as a low-dimensional integration of a smooth
function by using photon mapping with final gather. Doing
so, improves the convergence rate of the JAIS estimator in
fig. 6 (top row) to be comparable with jittered sampling and
low-discrepancy sampling. This is one of the drawbacks of

the naïve combination of stratification with antithetic sam-
pling and importance sampling. We believe that this analysis
will inspire sophisticated combinations of antithetic and im-
portance sampling for estimation of global illumination.
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Figure 6: Limitation: Estimating global illumination in a modified (glossy) Cornell Box. Top Row: Path traced; simple antithetic
assumptions are not satisfied in high-dimensional domains so the mean convergence is slightly lower than low-discrepancy
sampling. Bottom Row Photon mapping with final gather; if the high-dimensional integral is interpreted as a nested integral then
the global illumination component is viewed as a smooth low-dimensional function. In this case JAIS is comparable to state of
the art but not obviously better. Further research is needed for reaping benefit with higher-dimensional integrals.
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Appendix A: Test for antithetic sampling

If Cov(X,Y) = σXY , then using the Delta method, we can de-

rive up to first order that Cov( f (X), f (Y))≈1
(

f ′(µ)
)2

σXY ,
where 〈X〉 = 〈Y〉 = µ. When the function is linear, the neg-
ative correlation is preserved and its magnitude depends
on the variance of the function. This is not very useful for
non-linear functions, so we derive the second order approx-
imation Cov( f (X), f (Y)) ≈2 f (µ) f ′′(µ)(σXX + σYY )/2 +
(

f ′(µ)
)2

σXY from which we derive

σXY <−
f (µ) f ′′(µ)

( f ′(µ))2 (2)

for the negative correlation between X and Y to remain nega-
tive after the function is evaluated at these locations. Such an
analysis is possibly inaccurate for non-linear functions over
large domains since the integrand cannot be approximated
well using a low-order polynomial.

Appendix B: Antithetic importance sampling

Treating fg as the integrand, the variance of the antithetic im-
portance sampled estimator is easily derived as V

(

µ̃ais,2
)

=
V
(

µ̃is,2
)

+Cov( fg(X), fg(1−X))/2. Since this is similar to
the case without importance sampling, we now substitute
fg(x) in place of f (x) in Eq. 2 to obtain

σXY <−
f (µ)

g(µ)

f ′′(µ)g(µ)− f (µ)g′′(µ)

f ′(µ)g(µ)− f (µ)g′(µ)
+2g(µ)g′(µ) (3)

as the condition for antithetic importance sampling to result
in a variance reduction. The above rules of thumb (Eq. 2 and
Eq. 3) may be used to control the correlation between the
random variables to obtain a variance reduction while using
antithetic variates. If the tests report an increase in variance,
then the correlation between the samples may be set to zero,
to default to the naïve MC estimator.
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