
Electric Field Coupling to Short Dipole Receivers
for Cavity Mode Enabled Wireless Power Transfer

Matthew J. Chabalko
Disney Research, Pittsburgh

Pittsburgh, PA USA

Alanson P. Sample
Disney Research, Pittsburgh

Pittsburgh, PA USA

Abstract—This work provides a method of wireless power
transfer that uses the resonant modes of a metallic cavity to
deliver power to a small dipole nearly anywhere within the
structure. We derive an expression for the coupling coefficient
between the ~E-fields of the cavity mode and the dipole, and
then validate the analytic model via finite element simulations.
Lastly, we use the results for the coupling coefficient to predict
the wireless power transfer efficiency as the dipole is moved
throughout the chamber.

I. INTRODUCTION

Typical wireless power transfer (WPT) configurations use
coupled coil resonators to transfer power via magnetic
fields [1]. One limitation is that source and receiver need to
be close together to achieve efficient WPT (< 1 coil diameter
apart). An alternative WPT system [2] uses resonant modes
of an enclosed metallic cavity to uniformly illuminate large
portions of the structure with electromagnetic energy, which
can be received nearly anywhere within the cavity. Thus,
the volumes of space where WPT is efficient can be ex-
tended beyond conventional coupled-coil WPT systems. In [2],
however, the cavity-to-receiver coupling via the electric field
was neglected. Here, analytic calculation and Finite Element
Method (FEM) simulation are used to investigate WPT via
coupling of the electric field to a small dipole receiver. First,
we derive an expression for the coupling coefficient, then use
it to compute an upper bound on the expected WPT efficiency.
These results provide a tool for rapid exploration of what
efficiencies can be expected for a dipole receiver in a given
orientation, interacting with a particular cavity mode.

II. DERIVATION OF THE COUPLING COEFFICIENT

We start with coupled mode theory (CMT) definitions, and
while generic for now, these definitions will later be used
to determine the coupling between a cavity resonator and
a subwavelength dipole. Each resonator is defined to have
resonant frequency and amplitude, ω1, a1 and ω2, a2 (with
ω1,2 = 2πf1,2), respectively, and that they have the time
dependence exp(jω1,2t). The two resonators are coupled via
a coupling coefficient: κ12 = κ∗21 ≡ κe (here, ∗ indicates
the complex conjugate). Lastly, using CMT, a1,2 are defined
such that their stored energy is: Energy = |a1,2|2. Using these
definitions, it can be shown [3] that power fed from resonator
one into resonator two (P21) must be equal to the time rate of
change of energy in resonator two [4]:
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Fig. 1. (a) Setup of the cavity to dipole system analyzed in this work.
(b) Simple circuit illustrating electric (capacitive) coupling between cavity
resonator and resonant dipole. (c) Norm of electric field, | ~E|, of modes
analyzed in this work. Color: red, large; blue, small.

P21 =
d

dt
|a2|2 = jκea1a

∗
2 − jκ∗

ea
∗
1a2 (1)

The next step is to derive P21 for the cavity-to-antenna
coupled mode system presented here. First, the power, P21,
flowing from resonator one (the cavity mode) into resonator
two (the dipole with additional inductor such that an LC
resonator is formed) is derived. The physical setup is shown
in Fig. 1(a) for a cavity with dimensions a × b × d and a
dipole contained within that has length S and axis ~r. Here
coupling via the magnetic field will be neglected. First, note
that the general capacitive coupling between cavity and dipole
resonators can be captured via the simple circuit model in
Fig. 1(b), where Cm is an abstract element present to capture
capacitive coupling process via electric fields. Thus the power
flowing from the chamber to the dipole can be written in terms
of the charges of each of the capacitors:

P21 = v2Cm
d(v1 − v2)

dt
=
σ2

C2

d(σ1 − σ2)

dt
(2)

where σ1,2, is the total charge on each of the resonators’
effective capacitors, C1,2. In the rightmost expression in (2) we
have used σ2 = C2v2, where C2 is the effective capacitance
looking into the feed-point of the dipole (the dipole reactance
looks capacitive if it is small compared to a wavelength, as in
this work).

Next, σ1,2 is reformulated in terms of q1,2 – the time
dependent complex envelope functions of the charges:

σ1,2(t) =
q1,2e

jω1,2t + q∗1,2e
−jω1,2t

2
(3)

Then, substituting (3), into (2), and then making the as-



sumption that d
dtq1,2 << jωq1,2, the result is:
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∗
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Note that the form of (4) is similar to that of (1). Thus,
κe can be obtained by inspection if we write our generic
resonator amplitudes, a1,2 from above, in terms of q1,2. It
is via algebraic manipulation that (4) can be made to match
the form of (1), thus revealing κe. To make this substitution,
we first require that the total energy stored in resonator one
and two to be |a1,2|2, as was mentioned. We can accomplish
this by introducing three parameters: αe, the total electric
energy stored in the chamber, βe the total charge induced on
the dipole due to the chamber’s electric fields, ~E, and ζe, a
constant relating to the energy stored by the dipole when it is
in isolation (i.e. charge stored on C2). These parameters are:

αe =

∫∫∫
V

εo| ~E|2 dV, βe = C2

∫ l= de
2

l=−de
2

~E · ~rdl, ζe =
1√
2C2

(5–7)
Here, V is the volume of the chamber, l is the line running

from top to bottom of the dipole, and de is the effective
dipole length, de = S/2 [5] (note this approximation means
the dipole should be much smaller than a wavelength), and
εo is the permittivity of air. Using these parameters, we can
normalize a1,2 such that |a1,2|2 gives the total energy stored
in the cavity and resonant dipole-with-inductor, respectively.
The explicit expressions for a1,2 are:

a1 = q1
α
1/2
e

βe
ejω1t, a2 = q2ζee

jω2t (8)

After the above, (8) can be substituted into (4):
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Now that (9) is in the same form as (1), the coupling
coefficient between the cavity mode and a loop receiver (κe)
can be determined by inspection:
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Lastly, in [1] and [2], it was shown how maximum possible
WPT efficiency, ηmax, can be determined by knowing only
κe and the Quality factors (Q-factors) of the two resonators
(chamber and receiver), Q1,2 (given a perfectly lossless bi-
conjugate impedance matched system):

ηmax =
χ
√
1 + χ

(1 +
√
1 + χ)(1 + χ+

√
1 + χ)

χ =
4Q1Q2|κe|2

ω1ω2
(11)

Thus, κe from above, along with knowledge of the Q-factors
of the chamber and receiver allow for full prediction of the
WPT efficiency.

III. RESULTS

To verify our analytic model, we performed eigenvalue FEM
simulations using COMSOL Multiphysics to determine the
coupling coefficient numerically as a small dipole was moved
throughout a chamber of dimensions a = 1.52 m, b = 1.42 m,
and d = 1.83 m. Two modes were chosen to be investigated:
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Fig. 2. Comparison of analytically computed and FEM simulated κe for (a)
TE102 and, (b) TM110 modes and for varied dipole lengths, S1−3. (c) and
(d) are maximum possible WPT efficiency, ηmax for TE102 and TM110,
respectively.

TE102, and TM110. Plots of the ~E-fields for these modes are
shown in Fig. 1(c). Three dipole lengths were chosen: S1 =
3.81 cm, S2 =5.08 cm, and S3 =7.62 cm. For the TE102, and
TM110 modes, respectively, the dipole had ~r = ~ay , ~az . The
dipole, with center position denoted as (xo, yo, zo) was moved
along the red dashed line of Fig. 1(a) for the TE102 mode, and
along the green dotted line for the TM110 mode.

The results comparing the FEM simulations to the analytic
calculation are shown in Fig. 2(a) and (b). They show good
agreement between analytically and numerically computed κe,
with typically <8% error. Finally, Fig. 2(c) and (d) show the
maximum possible WPT efficiency that can be obtained by us-
ing κe from Fig. 2(a) and (b) along with the realistic values [2]
of cavity mode and receiver Q-factors of Q1=1000, Q2=300
in (11). Note that the maximum possible values exceed 60%
for the longer dipoles studied; however, the dipoles are still
quite small and so offer a method for compact receiver design
in cavity mode enabled WPT without sacrificing efficiency.

IV. CONCLUSION

We derived an expression for the coupling coefficient be-
tween the ~E-field of a resonant mode of a cavity resonator
and a subwavelength resonant dipole receiver and showed
good agreement between the analytic expression and FEM
simulation. We then demonstrated how to predict the efficiency
of WPT for a dipole interior to the chamber.
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