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Precise object segmentation in image data is a fundamental problem with
various applications, including 3D object reconstruction. We present an
efficient algorithm to automatically segment a static foreground object from
highly cluttered background in light fields. A key insight and contribution
of our article is that a significant increase of the available input data can
enable the design of novel, highly efficient approaches. In particular, the
central idea of our method is to exploit high spatio-angular sampling on the
order of thousands of input frames, for example, captured as a hand-held
video, such that new structures are revealed due to the increased coherence
in the data. We first show how purely local gradient information contained
in slices of such a dense light field can be combined with information
about the camera trajectory to make efficient estimates of the foreground
and background. These estimates are then propagated to textureless regions
using edge-aware filtering in the epipolar volume. Finally, we enforce global
consistency in a gathering step to derive a precise object segmentation in
both 2D and 3D space, which captures fine geometric details even in very
cluttered scenes. The design of each of these steps is motivated by efficiency
and scalability, allowing us to handle large, real-world video datasets on a
standard desktop computer. We demonstrate how the results of our method
can be used for considerably improving the speed and quality of image-based
3D reconstruction algorithms, and we compare our results to state-of-the-art
segmentation and multiview stereo methods.
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1. INTRODUCTION

Automatically segmenting a foreground object from the back-
ground in image data is a long-standing and important problem
in computer graphics and vision. One common application is the
use of segmentation in the context of image-based modeling, for
example, computing geometry proxies, such as visual hulls, for
image-based rendering, or limiting the search space and increasing
reconstruction quality in multiview stereo techniques. However,
producing such segmentations can be cumbersome and time-
consuming; typically, green-screens or other known backgrounds
are used to facilitate the process, and manual correction is often
required. In the case of cluttered scenes with no a priori knowledge
about the background or the camera motion, segmenting images
into fore- and background layers becomes very challenging. In this
article, we show how densely captured video sequences of static
objects can be efficiently segmented via a joint 2D-3D procedure
that requires only a simple yet effective assumption about the depth
distribution of the scene as input, and is otherwise fully automatic.

Segmentation of a video sequence can be formulated as separat-
ing the pixels that belong to the foreground object from the pixels
that belong to the background. Given a static foreground object, the
2D segmentation problem can be lifted into 3D, where it can be
interpreted as the estimation of a 3D occupancy volume. Recently,
a number of methods for computing a joint 2D-3D segmentation
have been proposed (discussed in Section 2), which borrow ideas
from correspondence-based 3D scene reconstruction techniques and
combine them with color-based segmentation methods. However,
when the input images are taken from rather sparsely sampled view-
points, which is the case for most existing joint segmentation and
3D reconstruction techniques, the lack of coherence between the
images due to (self-) occlusions and abrupt changes in parallax
makes it difficult to reason about complex, detailed object shapes.
To compensate for ambiguities in the required estimation of im-
age correspondences and color models, these methods generally
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Fig. 1. Example results of our method captured with a rotating (left) and a hand-held (right) camera. Slices of densely sampled light fields reveal continuous
structures that arise as a result of motion parallax (blue and red rectangles). Our method leverages the coherency in this data to accurately segment the
foreground object in both 2D (blue image mask) and 3D (mesh), which can be used to aid 3D reconstruction algorithms (colored point clouds).

have to resort to complex global optimization procedures, which
are difficult to scale to higher image and 3D resolution.

In contrast, smooth parallax changes between successive images
make distinguishing between the foreground and background sim-
pler, in particular for complex and detailed objects, since the differ-
ences in motion parallax at different depths become apparent (just
like moving one’s head side to side yields a clear depth ordering).
Video capture devices are now commonplace, and acquiring appro-
priate, dense data has become trivial with standard consumer tools.
However, most joint segmentation and reconstruction techniques
are not designed to handle these large volumes of data (on the order
of thousands of frames), and as a result cannot take advantage of the
extra information available. Another fundamental issue with dense
light field data arises when using triangulation-based methods for
computing correspondences. Small baselines between image pairs
lead to low-quality occupancy and shape estimates in 2D as well
as 3D. As a result, most existing approaches apply some form of
view selection to remove images with small baselines in order to
improve accuracy (e.g., Furukawa et al. [2010]). However, this leads
to loss of valuable information about the scene and reintroduces the
same correspondence ambiguities mentioned earlier. In contrast, we
propose a computationally efficient and scalable method where all
steps in our pipeline are designed in such a way that they can take
advantage of the inherent coherency in dense datasets. As a result,
our method can segment thin and complex foreground geometry
even with uncontrolled, cluttered backgrounds.

As input, we take densely sampled continuous image sequences
(e.g., video) that observe an object from different angles. Our algo-
rithm is composed of the following efficient building blocks: first,
we create a light field volume by stacking the input images on top of
each other. This representation clearly reveals the motion parallax
of even single pixels in 2D slices of the volume (see Figure 1),
similar to epipolar-plane images produced by certain linear camera
motions [Criminisi et al. 2005]. We compute gradients in the light
field volume and estimate the likelihood of image edges belonging
to the foreground using local gradient filters. Since this step creates
reliable estimates only on strong image edges, we use the coher-
ence in the light field and propagate this information to the rest
of the image volume using edge-aware filtering. In a final step, the
per-image segmentation estimates are aggregated into a single, con-
sistent 3D volume using a Bayesian framework. The result of our
complete algorithm is a 3D object probability volume, which can be
thresholded to obtain the object segmentation in 3D space. At this
point, consistent per-image segmentations can then be extracted by
projecting this volume back onto the images.

We show that our approach efficiently and automatically produces
precise segmentation results for complex, detailed object shapes in
cluttered environments, and these segmentations can be used to
improve the quality of existing 3D reconstruction methods. Our
method works robustly with different capture scenarios: we demon-
strate results on data captured with an uncalibrated circular camera
motion, a linear stage, and various hand-held video sequences.

2. RELATED WORK

In the following, we discuss previous works from different areas
that are most related to our proposed approach.

Image and video segmentation. Object segmentation from images
and videos usually works by learning color models from user input
or motion cues. Techniques based on graph-cuts [Boykov and Jolly
2001; Rother et al. 2004] compute single-image segmentations us-
ing discrete graph-based optimization; they require input constraints
(e.g., scribbles or bounding boxes) that indicate some amount of
foreground or background pixels. Learning-based methods exploit
similarities between images for cosegmentation [Joulin et al. 2010]
or multiclass image segmentation [Krähenbühl and Koltun 2012],
but they require training and are not designed to efficiently handle
densely sampled input.

For more densely sampled input data, such as video, recent in-
teractive methods use graph-based algorithms on the entire video
domain to find the foreground/background boundary [Li et al. 2005;
Wang et al. 2005; Grundmann et al. 2010]. While these methods
work well in general video-editing applications, they are less suited
for creating a consistent segmentation in the presence of complex
occlusions and disocclusions. Other methods compute a dense opti-
cal flow field to propagate user constraints between different frames
in order to segment videos in a temporally coherent manner [Chuang
et al. 2002; Lang et al. 2012]. Our method also works on images
taken from densely sampled trajectories around the object, but it is
able to compute segmentations without the user input required by
those methods. Recent unsupervised approaches for video segmen-
tation make use of the motion cues in the video volume [Apostoloff
and Fitzgibbon 2006; Lezama et al. 2011], but they cannot work
with static scenes. These approaches are also prone to cutting away
pieces of objects, rendering them impractical for our scenario.

Visual hulls. The intersection of multiple 2D segmentations of
different views of an object in 3D space is known as the visual hull
of the object [Martin and Aggarwal 1983; Szeliski 1993; Laurentini
1994]. Many techniques have been proposed to robustly compute
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such hulls, ranging from methods working in 2D image space
[Matusik et al. 2000] to 3D voxel-based representations [Snow et al.
2000], with applications to, for example, image-based rendering
using the visual hull as a geometry proxy. More recent work has
focused on increasing robustness, for example, using probabilistic
approaches to decrease the influence of errors in silhouette
extraction and image calibration [Grauman et al. 2003; Franco and
Boyer 2005; Tabb 2013]. All these methods assume an existing,
often manually generated, precise segmentation of the object in the
input images, or that it can be robustly extracted using background
subtraction or other color priors. In contrast, we automatically
compute a precise object segmentation in cluttered scenes, without
prior knowledge about the background or scene structure.

Joint 2D-3D segmentation. Our method is most closely related
to 2D-3D cosegmentation methods, which make use of camera cal-
ibrations in conjunction with color information for segmenting an
object in 3D space. Such techniques usually employ color models,
depth hypotheses, and probabilistic measures in order to segment
the 3D object and its projection in the 2D images. Yezzi and Soatto
[2001], for example, use a variational framework to compute seg-
mentations, which works mostly for objects without texture. Several
methods use graph-cuts in voxel space [Campbell et al. 2010] and
image space [Campbell et al. 2011] to segment an object in multi-
ple views by assuming that all principal camera axes intersect the
foreground object, from which a color model can be learned. As
the number of images grows, the computation time of graph-cuts
becomes intractable. Computing depth maps beforehand to help
with the segmentation has also been studied [Kowdle et al. 2012],
but computing depth maps for thousands of images is inefficient.
The most similar works to ours are by Kolev et al. [2006], who
compute a 3D surface probabilistically in a voxel grid using color
models, and by Lee et al. [2011], who make similar computations
in image space by leveraging epipolar geometry. However, these
methods also have a very high computational complexity due to
their iterative nature, and report several minutes for eight images
of 640 × 480 pixels [Lee et al. 2011], or 20 to 30 minutes on 20
images of the same size using a 1283 voxel grid [Kolev et al. 2006].
Our method works by extracting simple depth relationships instead
of explicit depth computations, and efficiently leverages datasets
consisting of thousands of images.

Other methods try to solve the segmentation and 3D reconstruc-
tion problems in a joint framework. Goldlücke and Magnor [2003]
compute segmentation and depth labeling together in a single opti-
mization, solved by graph-cuts. Another method that makes use of
graph-cuts [Guillemaut and Hilton 2011] minimizes an energy func-
tional that includes color models for foreground and background
layers, the 3D shape of the foreground object and some smooth-
ness priors on the object shape. However, these methods assume
knowledge about the background, such as an image of the static
background or a keyframe for each camera, where each background
layer is labeled by a user. Hane et al. [2013] use appearance-based
cues together with 3D surface orientation priors to segment objects
belonging to different classes while reconstructing their shape, but
they require rigorous training to learn such priors for different object
classes. In our work, we do not assume any knowledge about the
appearance of the background and do not require training phases,
yet we can still effectively process the given data.

Sparse data interpolation. One component of our algorithm is
based on the propagation of local object estimates in high-gradient
areas to less textured regions, which can be formulated as a sparse
data interpolation or regularization problem. Optimization-based
approaches can make globally optimal decisions [An and Pellacini

2008], but they are computationally expensive for large datasets.
When image structure is known, joint-filtering methods have been
used for propagating sparse information in many applications
[Eisemann and Durand 2004; Petschnigg et al. 2004; Kopf et al.
2007] thanks to their computational efficiency and quality of
results. Still, efficient bilateral filtering implementations do not
scale well with increased dimensionality. Instead, we use a
separable joint-geodesic filter [Gastal and Oliveira 2011], which
scales linearly with dimensionality. A complete review of this topic
is out of the scope of this article; we refer the reader to Paris et al.
[2007] for a detailed overview.

Light fields. Fundamental concepts of dense light field capture
and rendering have been introduced in the seminal works of Levoy
and Hanrahan [1996] and Gortler et al. [1996], and have since then
been extended to unstructured setups [Buehler et al. 2001; Davis
et al. 2012]. A number of works have investigated approaches to
exploit light field data, such as recovering shape from silhouettes
[Kutulakos 1997], view interpolation [Berent and Dragotti 2007],
and, in particular, the analysis of 2D light field slices for 3D object
reconstruction [Bolles et al. 1987; Criminisi et al. 2005; Wanner
and Goldluecke 2012; Kim et al. 2013; Wanner et al. 2013; Yu et al.
2013]. These works show that the increased coherence in image data
with high spatio-angular sampling enables robust depth estimates
from local information. Chen et al. [2014] recently showed that the
use of image statistics can improve depth estimation near occlusion
boundaries. Our work is inspired by these methods and shows how
the coherence in light field data can be further exploited to provide
a novel solution to automatic joint 2D-3D object segmentation.
Moreover, Feldmann et al. [2003a, 2003b] proposed techniques for
circular light fields that make use of cylindrical plane sweeping.
However, these methods require specific capture scenarios (i.e.,
perfect circular motion) and cannot be generalized to hand-held
video data.

Applications. Three-dimensional object segmentation has appli-
cations in various areas of computer graphics. A straightforward
application is to use the resulting 3D shape as a geometry proxy
for image-based rendering and image understanding [Szeliski 1993;
Laurentini 1994; Buehler et al. 2001; Eisemann et al. 2008]. In par-
ticular, for rendering applications, a faithful representation of fine
silhouette detail is essential. Similarly, numerous image-based 3D
reconstruction algorithms benefit from or even require object seg-
mentation as a preprocess. Some methods use image segmentations
as a starting solution for iterative surface refinement, where a visual
hull is first computed by intersecting given image segmentations,
and is then carved and optimized using photoconsistency measures
and silhouette or contour constraints [Isidoro and Sclaroff 2003;
Sinha and Pollefeys 2005; Vogiatzis et al. 2005; Starck et al. 2006;
Furukawa and Ponce 2009]. Works that do not explicitly require
segmentations [Furukawa and Ponce 2010] also argue that visual
hulls increase the quality of results when used as a starting solution.
Such segmentations are also useful in estimating and constraining
surface patches to lie inside a 3D bounding volume to increase their
reliability [Bowen et al. 2007]. Constraining stereo matching to seg-
mented image parts and/or to the interior of visual hulls [Bradley
et al. 2008; Oswald and Cremers 2013] has been shown to im-
prove the accuracy of the reconstructed objects and speed up the
techniques. Methods for reconstructing meshes from oriented point
clouds [Shan et al. 2014] can also benefit from segmentations in
3D, where the empty space is used to constrain the final mesh.

With our algorithm, precise, detailed segmentations can be gen-
erated automatically for challenging object shapes, which can then
be effectively used to increase the accuracy or performance of such
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Fig. 2. Components of our local-to-global strategy, showing images in the top row and x-i slices in the bottom row. From left to right: Input data, local
gradient estimates Si (p) weighted by confidence measures Ci (p) (foreground (Si ) as blue, background (1 − Si ) as red, and confidences (Ci ) determine the
transparency; see Section 3.1), edge-aware light field filtering (Section 3.2), global gathering (Section 3.3), and the estimated object segmentation in 3D from a
slightly different viewpoint. The images were desaturated for improved segmentation visualization. Note how consistency increases at each step of the pipeline.

methods, for example, when merging individual depth maps or pro-
viding an initial geometry and visibility proxy. We show how the
results of two state-of-the-art stereo techniques [Hirschmüller 2006;
Kim et al. 2013] can be improved using our 2D-3D segmentations,
and we compare to additional state-of-the-art 3D reconstruction
approaches.

3. METHOD

Our goal is to segment the foreground object in 2D and 3D from a
light field that is represented by a set of images (I1, . . . , In) (where n
is in the order of thousands) with known calibration for each image Ii

in the form of a projection matrix �Pi . We assume that the images
were taken by a camera on a continuous but otherwise arbitrary
trajectory with respect to the captured scene. From the input images,
we construct a 3D light field volume L, where L(x, y, i) refers to
the pixel p = (x, y) in image Ii .

Key to our method is the dense spatio-angular sampling of video,
which results in smoothly varying parallax between successive
frames. The continuous changes intuitively encode the motion paral-
lax (i.e., relative depth) of scene points as differently shaped curves
or “traces” in the light field L. These curves live on a 2D mani-
fold in L, which is described by the epipolar geometry between the
images. Our input data is composed of thousands of input images;
therefore, computational efficiency and tractability are among the
key driving factors behind the following algorithm steps.

Our method follows a local-to-global strategy. We first compute
a sparse segmentation estimate based on local gradient informa-
tion (Section 3.1). This segmentation is propagated to the light field
volume using edge-aware filtering on L, yielding Si : Ii → [0, 1]
for each image Ii (Section 3.2). The function Si describes, for each
pixel of Ii , the likelihood of observing the foreground object.

We then gather the individual segmentations using a Bayesian
formulation into an object likelihood function H defined over a
discretization V of the 3D volume containing the object. Each voxel
v ∈ V is assigned an accumulated likelihood value for being part of
the foreground object, aggregated from all the values {Si(p) : p =
�Pi v} (Section 3.3). This final global gathering step further enhances
the per-image segmentations by removing noisy estimates that do
not have the support of multiple views, and by enforcing geometric
constraints, such that when the values of H are projected back onto
the images, the resulting segmentations Si are globally consistent
throughout the light field. This process is illustrated in Figure 2.

Fig. 3. Top: Two frames from the PLANT dataset with close-ups around the
blue scanline. Bottom: The corresponding x-i slice; the parts corresponding
to the images are highlighted in matching colors. Note how the direction in
the slice varies according to the position of the object in 3D space relative
to the camera.

3.1 Gradient-Based Analysis of Motion Parallax

The fundamental observation to our technique is that scene points
follow smooth trajectories inside a light field L with high spatio-
angular sampling, which differ substantially for points at different
depth values. Even though these trajectories can take any shape de-
pending on the actual camera path, they remain easily distinguish-
able in their shapes, even in case of hand-held capture scenarios.
For illustration purposes, consider the example of a nearly circular
camera path: an object located in the center leaves spiral trails in the
light field L, whereas background objects’ trails move from one end
to the other along an almost linear curve (see a 2D x-i slice of a light
field L in Figure 3). These clearly visible structures contained in the
light fields essentially correspond to 3D trajectories that arise from
motion parallax. Pixels that correspond to the background have a
specific distribution of trajectory directions that is detectably differ-
ent from pixels in the foreground. We leverage this fact to compute
the foreground object likelihood for each pixel separately.
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For each pixel p = (x, y) ∈ Ii , we consider the direction γ p

corresponding to its trajectory inside L. We model the distribution of
the foreground trajectory directions by a Gaussian N

p
f = N (γ p

f ,σ
p
f ),

and background directions by N
p
b = N (γ p

b , σ
p
b ) around each pixel

p ∈ Ii . We note that the expected trajectory direction is a function
of 2D pixel position, depth, and camera motion (see close-ups in
Figure 3). For instance, pixel trajectories follow helical motions as a
function of their depths for circular camera motions [Feldmann et al.
2003a], whereas they form lines of different slopes for linear light
fields, and more irregular paths for shaky hand-captured video. Our
approach does not require the specific set of trajectories be known
a priori, but computes them on demand from camera calibrations.

To compute directions γ
p
b and γ

p
f , we need the expected trajecto-

ries for p inside L. As computing them exactly is a chicken-and-egg
problem (the depth determines the trajectory), we instead roughly
estimate the directions using two simple proxy geometries, placed at
approximate locations of the foreground object and the background.
In our experiments, we found that planar proxies were sufficient to
robustly model the trajectory directions. We place two planes into
the scene representing the foreground and the background objects.
The distance R from the camera to the foreground object is set
approximately by the user by marking the center of the 3D object.
The background distance is then chosen to be 3R. We can then
project p onto these planes and back onto image Ii+1. The expected
coordinates in Ii+1 are denoted by pf = (xf , yf ) if p belongs to
foreground and pb = (xb, yb) if p belongs to the background. Note
that any other geometric proxy can be used for this estimation; we
chose planes due to their simplicity and applicability in various
capture scenarios. We found in our experiments that our method is
robust to the placement of these geometric proxies: for example,
changing the distance of the background proxy between 2R and 4R
did not affect the result quality.

Now that the expected coordinates for the foreground and back-
ground proxies are determined, we can estimate the trajectory di-
rections between frames using epipolar geometry. We know that pf

and pb lie on the epipolar line e in Ii+1, which maps p to Ii+1. We
also know that the actual scene point at p will appear on e in Ii+1

as well. Hence, we can sample the color values in Ii+1 along e to
generate the light field cut s

p
i+1, which is guaranteed to contain the

actual mapping of p. Given that the camera motion is small enough,
the scene points on s

p
i+1 will appear on a line with the same direction

around p in Ii , so we generate a cut on Ii along the direction of e
through p, resulting in s

p
i . Stacking s

p
i and s

p
i+1 horizontally, denoted

as sp, reveals the trajectory of p as a motion trail. Specifically, the
trajectory direction γ p is orthogonal to the color gradient direction
in sp. The expected foreground direction γ

p
f can be computed as the

direction of the line connecting the coordinates of p and pf on sp.
The same method is used for γ

p
b . Since we only need local informa-

tion to compute the directions, we only generate the cuts s
p
i and s

p
i+1

where necessary; that is, sp
i is generated around p using a seven-pixel

window, and s
p
i+1 around p′, which is a point between pf and pb,

with the same size window (see Figure 4). In practice, we compute
the position of p′ using a separating proxy between the foreground
object and the background, such as a cylinder or a plane. We project
p to this proxy and back to Ii+1, resulting in p′. Note that this com-
putation is a generalization of checking slopes in linear light fields.

In our experiments, we set the background variance to be fairly
narrow and the foreground variance relatively large:

σ
p
b = (

γ
p
f − γ

p
b

)
/10, σ

p
f = 3 σ

p
b , (1)

because the foreground trajectories have stronger variations in par-
allax and therefore in the trajectory direction. The likelihood Si(p)

Fig. 4. Top: Two frames from the AFRICA dataset. The orange dots are p
and p′, the green line is the epipolar line e corresponding to p, and the cyan
line is a line through p with the same direction as e. Bottom: Light field cuts
s

p
i and s

p
i+1 sampled around p and p′. The expected foreground direction γ

p
f

is shown in blue, and the background direction γ
p
b in red. The actual gradient

direction γ p (magenta) is closer to the foreground direction, resulting in a
foreground estimate.

of the pixel p to belong to the foreground can then be estimated
using Bayes’s theorem:

Si(p) = N
p
f (γ p)

N
p
f (γ p) + N

p
b (γ p)

. (2)

Due to the absence of prior knowledge about the scene geometry,
we set the corresponding priors to 0.5.

In order to get robust estimates of motion parallax, we used a
window of five frames for doing the gradient analysis. Since the
gradient computations are done independently for each pixel, this
step can be easily parallelized on the CPU or the GPU.

In the special case of regular camera motion, when the relative
motion between two consecutive frames remains the same (i.e.,
linear or circular light fields), γ

p
f and γ

p
b do not depend on i but

only on x and y. In such cases, we precompute and reuse these
values, resulting in noticeable speedups.

Confidence measures. The described foreground/background es-
timation method is only reliable in high-gradient regions and gives
noisy estimates in smooth, homogeneous parts of the light field.
Additionally, lines that exist in the input images can produce am-
biguities when computing trajectory directions if they are oriented
parallel to the motion of the camera, since the resulting trajectory
directions in the slices are similar regardless of depth (such as hor-
izontal image edges in horizontal linear light fields). Also, when
the trajectories of two separate scene points cross at the same pixel,
a reliable gradient direction cannot be estimated. We propose the
following measures to detect such cases and attach a confidence
value Ci(p) to every Si(p) value based on these ambiguities:

(1) The first term is based on image gradient magnitude and gives
higher confidence values to high-gradient regions:

C
g

i (p) = ‖∇Ii(p)‖. (3)

(2) The second term detects image lines oriented with the camera
motion that can create “false trajectories.” We define a noncon-
fident area for such image edges, that is, image gradient direc-
tions perpendicular to the camera motion γm, using a Gaussian
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weighting Nm = N (γm, σm). The gradient direction in image
Ii is denoted by γ

p
i :

Cm
i (p) = 1 − Nm

(
γ

p
i

)
. (4)

For our experiments, we use σm = 5 degrees.
(3) The final term detects when two edges moving at different

speeds w.r.t. the camera cross each other, which may happen
at corner features in the input images. To compensate for this
ambiguity, we reduce the confidence of all corner regions:

Cr
i (p) =

{
1/Ri(p), Ri(p) > 1
1, Ri(p) ≤ 1,

(5)

where Ri(p) is the measure of corner response, as defined by a
Harris corner detector.

The final confidence measure is computed by multiplying the indi-
vidual components:

Ci = C
g

i · Cm
i · Cr

i . (6)

These measures can be combined using other techniques such as
Gaussian models, but we chose the multiplication operation, since it
is more conservative and decreases false positives and negatives sub-
stantially. See the gradient analysis in Figure 2 for local gradient es-
timates weighted by confidence values. Note that only high-gradient
regions have high confidences and are visible due to Equation (3).

3.2 Confidence-Weighted Image-Based Propagation

We have now an estimate of foreground probability and associated
confidences computed with purely local information. As reliable
estimates can be made only for pixels with high-gradient magnitude
and clear foreground or background motion characteristics, low-
confidence estimates greatly outnumber reliable ones, leaving only
a sparse set of pixels with dependable information (see Figure 2)
that must be propagated to the rest of the light field volume.

To efficiently solve this problem, we again exploit the inherent
coherency of the light field and assume that nearby pixels with
similar colors should have similar foreground estimates. To that
end, we use a confidence-weighted joint-edge-aware filtering, using
the light field volume as the joint domain. Specifically, we use
an approximation of a joint-geodesic filter [Gastal and Oliveira
2011], which is efficient over large kernel sizes, scales linearly with
increased dimensionality, and performs well when colors are similar
in nearby foreground and background regions. This filter works as
follows: rather than doing the filtering in the image domain by
changing the filter weights according to color values, the 2D image
is first transformed into a domain where it can be filtered by fixed-
width Gaussians, and then it is transformed back to the original
domain. After the transformation, nearby pixels with similar colors
have similar coordinates, whereas pixels on opposite sides of an
edge are far away, such that the results exhibit edge awareness.

For the filtering operation, we extend the geodesic filter by a
third dimension. In the original work [Gastal and Oliveira 2011], N
1D filtering operations are performed, thereby alternating between
the x and y dimensions. Since our domain is a 3D light field, we
iterate between x, y, and i dimensions, such that information can
be propagated inside and between images.

We first consider Si and Ci as slices of the volumes S and C,
where S(x, y, i) = Si(x, y) and C(x, y, i) = Ci(x, y), such that
each value in S and C has a corresponding pixel in L, around which
the foreground probability and its confidence are computed. Since
there is a one-to-one mapping between the three 3D volumes, we
can filter S using the image edges from L and confidences from

C. To incorporate the confidences C into the filtering process, we
adopt the approach from Lang et al. [2012]: We first multiply C with
S element-wise (denoted as 	) and then filter the result using the
geodesic filter and the edges from L, producing (C 	S)′. This gives
higher weight to more confident regions during the filtering process.
The results are then normalized using C ′, which is generated by
filtering C. The final result is calculated as

S ′′ = (C 	 S)′

C ′ . (7)

For the filtering operations, we used the geodesic filter with the
following spatial and range standard deviations (sigmas): 10 and
0.1 for the x and y dimensions, and 5 and 0.1 for the i dimension.
For a more detailed discussion on how this step is carried out, we
refer the reader to the original papers. Now, S ′′ contains estimates
that are propagated over the whole light field domain and are locally
consistent inside the light field among a subset of images (see
Figure 2). For simplicity of notation, from now on we refer to
S ′′ as S.

3.3 Global Gathering of the Image-Based Estimates

The edge-preserving filtering step results in the segmentations Si

that vary smoothly inside S and are locally consistent. However,
as seen in Figure 2, they can still be noisy due to missing image
edges in L and incorrect initial estimates. Moreover, the filtering
step works solely in image space and does not include geometric
information, making the different Si geometrically inconsistent. In
this global gathering step, we combine the per-image segmenta-
tion estimates in 3D space using the camera calibrations, such that
locally consistent segmentations are aggregated to obtain a glob-
ally consistent probabilistic 3D object segmentation H. Then, these
results can be reprojected back into the input image to obtain ac-
curate 2D object segmentations. The gathering step constitutes the
last stage of our local-to-global framework and ensures that the Sis
become globally consistent.

We discretize the 3D space using a fine voxel grid V . For each
v ∈ V , we compute H(v), the probability of belonging to the set
of foreground elements F given the per-image segmentations Si .
For that, we project every voxel v back onto all images, collect the
segmentation estimates Si , and combine them using a probabilistic
framework.

Usually, in 3D segmentation or visual hull computations, the
per-image segmentations are multiplied. However, this is biased
toward favoring background, since lower values tend to pull the
result to 0 [Kolev et al. 2006]. So, we accumulate this information
using a geometric mean:

H(v) =
(

n∏
i=1

P (v ∈ F |Si(p))

)1/n

. (8)

For each image Ii , we find P (v ∈ F |Si(p)), that is, the probability
of v being part of the foreground F given the segmentation value
Si(p) at the pixel it projects to, using Bayes’s rule:

P (v ∈ F |Si(p)) = P (Si(p)|v ∈ F) · P (v ∈ F)

P (Si(p))
. (9)

The term P (Si(p)|v ∈ F) is modeled as follows. The segmentation
value Si(p) has two possible sources: the actual projection of v,
which can only get the values 0 and 1, or erroneous segmentation
estimates with values in between. Hence, we model it using a normal
distribution N (1, σv) with mean 1, which is the expected value.
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Fig. 5. From left to right: Two segmentation examples superimposed against desaturated input images with two light field slices, two views of the meshed
object segmentations generated using marching cubes, and a point cloud rendering. Please refer to the accompanying video and supplemental material for
further visualizations of our results.

Since Si(p) ∈ [0, 1], we truncate the normal distribution to the
domain [0, 1]:

P (Si(p)|v ∈ F) = N (1, σv)

c
, (10)

where c is the normalization constant. By similar arguments, the
background probability is defined using a normal distribution with
mean 0:

P (Si(p)|v ∈ B) = N (0, σv)

c
. (11)

In all our experiments, we used σv = 0.1. The denominator of
Equation (9) can then be computed simply as

P (Si(p)) = P (Si(p)|v ∈ F) · P (v ∈ F)
+ P (Si(p)|v ∈ B) · P (v ∈ B). (12)

Similar to before, as we do not assume any priors about the scene,
we use a value of 0.5 for the unknown probabilities P (v ∈ F) and
P (v ∈ B). With this, we have all the ingredients required to compute
the probabilistic object segmentation in Equation (8).

In our pipeline, we ask the user to define a bounding box around
the foreground object with the help of SfM points. The resolution
of the grid is chosen relative to image resolution: we set the voxel
size such that when the central voxel is projected onto an image,
it does not occupy more than 1.25 pixels. This way, we make sure
that the average footprint of a voxel stays comparable to the im-
age resolution. In our examples, the grid resolutions ranged from
400 × 800 × 400 in the ORCHID dataset to 1000 × 800 × 1500
in the DRAGON dataset. This last step of the pipeline operates inde-
pendently on each voxel v ∈ V without any global regularization
requirement, such that this step can also be easily parallelized and
computed highly efficiently.

Fig. 6. Our capture setups: Hand-held capture (left) and a circular boom
that rotates around a fixed object (right).

4. EXPERIMENTS AND RESULTS

Our datasets and results will be made publicly available with the
article to facilitate future research.

Acquisition and timing. All datasets were acquired using a Canon
5D Mark III. The hand-held datasets were captured by walking
slowly around the objects of interest. For more automated acquisi-
tion, we built a setup with the camera mounted on a boom rotating
around the object (see Figure 6). This setup is useful in cases where
the captured objects cannot be placed on a turntable because they
are immobile or heavy, or because they are not rigid (e.g., plants,
like the orchid in Figure 1). For all datasets, camera calibrations
were computed as a preprocessing step, assuming no prior knowl-
edge of the setup, using standard structure-from-motion techniques
[Wu 2013].

For each circular dataset, we captured about 3,000 to 4,500 video
frames at 2-megapixel resolution, covering a single circle around the
object with about 10 images per degree. This amounts to ca. 21 GB
of image data. For the hand-held datasets, we captured between
3,000 and 4,000 video frames at 1-megapixel resolution with 60 fps
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Fig. 7. Reconstruction from hand-held capture. With a sufficiently dense sampling of viewpoints, our method is able to compute segmentations even from
hand-held captured video without any modification to the pipeline. For each dataset, we show two segmented input frames, slices of the light fields, two
viewpoints of the 3D object segmentation, and a point-cloud rendering. Refer to the accompanying video for the inputs.

for denser image capture. All results where computed on a desktop
with 3.2 GHz Intel Quad-Core and 32 GB RAM.

For a 1-megapixel dataset with 3,000 frames, the initial seg-
mentation (Section 3.1) took approximately 30 minutes, and the
propagation (Section 3.2) took 10 minutes, both of which depend
linearly on the image resolution and the number of images. For
datasets captured with the circular boom, a speedup of 4× can
be achieved for the initial segmentation step (60 minutes down to
15 minutes using 3,000 two-megapixel images) by assuming
constant motion between successive frames and precomputing
the epipolar directions. For all datasets, the global gathering step
(Section 3.3) took 20 to 40 minutes; the time depends linearly on
the resolution of the voxel grid. Since the filtering step already
propagates the fine-scale foreground/background information
inside the light field and creates locally consistent per-image
segmentations, we use a quarter of the input images for the

gathering step without sacrificing quality. The total running time of
the algorithm is typically 60 to 100 minutes. As there is no global
optimization, all computationally expensive steps of the method can
be trivially parallelized on the CPU. We expect that with a proper
GPU implementation, these running times can be further reduced.

Segmentation results. Figure 5 shows some of our results cap-
tured with the rotating boom; we display several final image seg-
mentations for validation. In addition, we show triangle meshes by
thresholding the probabilistic 3D segmentations H at a value of
τ = 0.85 and using marching cubes to mesh the isosurface. We
note that in general, meshing of point clouds and volumetric data is
an open problem, and we do not propose a solution here. Additional
datasets can be seen in Figures 1 and 2. In some applications, bi-
nary image segmentation masks are required. For the segmentation
masks shown here, we use the same threshold τ and project the 3D
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Fig. 8. Top: Our procedure applied to a linear light field from the USCD/
MERL light field repository to segment the foreground object. Bottom: One
x-i slice of the light field demonstrating the motions of pixels.

resulting segmentation back to the images. Please see the accompa-
nying video and supplemental material for animated 3D renderings
and our resulting models.

We assume that the camera trajectory is continuous but otherwise
unrestricted. This allows us to work with hand-held videos, since
our process is robust to the unstructured nature of such light fields
as long as the sampling is sufficiently dense. Since our algorithm
works directly on epipolar manifolds for computing the gradients,
shaky camera motion is not problematic, as long as the camera poses
can be correctly estimated using SfM techniques.

Five examples with a hand-held camera are shown in Figure 7
with their corresponding segmentation results, and the results on
another hand-held dataset are shown in Figure 1 (right). THINPLANT

is a particularly challenging example with fine details, where the
foreground object and the background clutter have very similar
colors. Moreover, the object slightly moves between frames due to
wind. Still, our algorithm manages to construct a reasonable 2D-3D
segmentation.

For 3D object captures, circular light fields are especially useful,
as they provide a 360◦ view of objects, such that all sides can be
equally carved. However, our method can also generate probabilis-
tic segmentations for other camera trajectories. In the case of linear
light fields, scene elements map to lines with different slopes ac-
cording to their depth values. In such cases, two specific directions
can be selected to represent the foreground and the background
objects, which can then be used in Equation (2). As presented in
Figure 8, this approach achieves precise segmentations for linear
light fields.

Thanks to the dense angular sampling, small-scale features can be
resolved, which are challenging for traditional multiview segmen-
tation methods. In Figure 9, we show a comparison of our technique
with our implementation of the work by Campbell et al. [2011] on
two datasets. Since their method does not scale well to larger num-
bers of images, we used, as advised by the authors, 100 equidistantly
sampled images to run the algorithm. In addition, the algorithm re-
quired manual initialization by selecting some superpixels for the
foreground and background, since their assumption that all camera
axes intersect on the object does not hold on our datasets. As can be
seen, the work of Campbell et al. [2011] has problems in thin ob-
ject regions since it works with superpixels. Moreover, since it uses
explicit color models for modeling the foreground and background,
foreground objects consisting of significantly different colors, as
well as scenes where foreground and background colors are similar,
become problematic.

We also performed a quantitative analysis of our method using a
synthetically rendered sequence with ground-truth segmentations.

Fig. 9. Results of Campbell et al. [2011] on two datasets. Note the missing
features on the foreground and false positives on the background, especially
around thin object regions.

We asked a trained artist to generate the DRAGON scene and ren-
der 3,600 images using MAYA, where we rotated a camera around
the object in a circle. Then, we used our algorithm to compute the
2D/3D cosegmentations (see Figure 10). In order to measure the
quality of our results, we adopted the intersection-over-union simi-
larity metric, common for image segmentation evaluations [Li et al.
2013], and used it to compare our 2D segmentations against the
ground truth. It can be seen that our method results in very high
similarity values to the ground truth even in case of this very chal-
lenging dataset (see Figure 11). The same figure shows that the work
by Campbell et al. [2011] has a considerably higher reconstruction
error, since it cannot make use of the extra images and loses detail
due to superpixel-based computations.

Sampling density. The gradient-based analysis and propagation
both leverage the dense sampling of the light field volume. The
specific density requirements are a function of the texture of the
scene in the captured images. Essentially, for our method to work,
the motion parallax of an image feature should be smaller than the
frequency of the texture around that feature. With insufficient sam-
pling density, the smooth trajectories in light field slices disappear
due to aliasing and are replaced by discontinuities and additional
structures arising from scene texture (see Figure 12). However, as
the sampling rate increases, the structure of the trajectories becomes
more apparent. We observe that in real-world datasets, we usually
achieve the required coherency in the light field at about 10 images
per degree around the object of interest, a rate that is achievable us-
ing a standard video camera. If the objects are closer to the camera,
the relative speed of the scene points also becomes faster, resulting
in stronger motion parallax and requiring slower camera motion
to avoid aliasing. In our experiments, we went as close as 80 cen-
timeters to the object and saw that the aforementioned sampling
density was sufficient to observe the fine details. For closer capture
scenarios, the sampling rate can be increased for similar-quality
results.

For a quantitative evaluation of the sampling rate, we ran our al-
gorithm with the DRAGON dataset by changing the sampling density,
resulting in a different number of images. The resulting error values
are shown in Figure 11. Note that we get diminishing returns after
3,600 images.

Applications. As discussed in Section 2, there are various appli-
cations for 3D object segmentations. Here, we focus on applications
related to improving the result quality and efficiency of methods for
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Fig. 10. Our results on the rendered DRAGON dataset with many fine details. Note the reconstruction quality around thin features.

Fig. 11. The change of the similarity measure intersection-over-union of
our results when compared to the ground truth segmentations (in blue).
Note that the similarity to the ground truth improves as the number of
images goes up. The same similarity measure on the same dataset is shown
for Campbell et al. [2011] in red. The measure is considerably lower and
improvements become marginal after 100 images. Due to scalability issues,
we ran the method of Campbell et al. with a maximum of 300 images. Our
method needed the same amount of time to compute segmentations for 3,600
images as Campbell et al. [2011] required for 100 images. We used a log
scale for the x-axis for a clearer visualization of the trends of both curves.

image-based 3D reconstruction. We extend the depth-from-light-
fields (DFLF) approach [Kim et al. 2013] in two ways. First, we
modify the consistency check, such that only pixels lying inside the
segmentation masks are tested for depth estimation, which greatly
reduces the search space and considerably speeds up the algorithm
for 3D object reconstruction. Second, the reconstructed points are
only accepted if they are contained within the 3D segmentation,
and are otherwise rejected. Using these two extra steps in the DFLF
algorithm reduces reconstruction errors and greatly improves effi-
ciency. In our experiments, we observed that our modified DFLF
algorithm took 15% of the computation time of the original method:
for example, the running time for computing the final point cloud
on the full ORCHID dataset decreased from 190 minutes to 30 min-
utes on the GPU. A comparison of point clouds generated with the
original DFLF and our modified method is shown in Figure 13. The
outliers in the DFLF results stem from the fact that background
points are not captured with sufficient parallax variation due to the
rotating camera motion, leading to inaccurate depth estimates. Our
modification successfully removes all these artifacts. The cleaned
point clouds can be used as input to meshing techniques such as

Fig. 12. Reconstruction experiment with different sampling rates, that is,
numbers of input images. Top: Input image and closeup. Middle: A crop
from the same x − i slice with decreasing sampling rates. Note how angular
aliasing starts to occur. Bottom: Corresponding 3D segmentations.

Poisson surface reconstruction [Kazhdan and Hoppe 2013], as
shown in Figure 14.

Our segmentations can also be easily incorporated into any off-
the-shelf stereo software. In Figure 15, we show how the quality
of the depth maps generated by semiglobal matching [Hirschmüller
2006] can be improved with the help of our 3D object segmentations.
The floating outliers are caused by wrong correspondence estimates
around silhouettes, which can become substantial when merging
depth maps from different viewing directions around the object.
Our approach is able to produce results with fewer outliers while
preserving all details in the objects.

We also compare our method to four additional, publicly available
image-based reconstruction methods [Goesele et al. 2007; Zhang
et al. 2009; Furukawa and Ponce 2010; Furukawa et al. 2010]. All
four methods are state of the art and known for producing excellent-
quality results. However, like most existing MVS approaches, these
methods are designed to process smaller volumes of image data,
typically from 50 to a few hundred images (according to personal
communication with some of their authors). Our comparison in-
dicates that the amount of reconstructed object detail cannot be
easily increased by simply raising the number of input images with
existing techniques.
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Fig. 13. Left: Point clouds generated with DFLF [Kim et al. 2013]. Right:
Point clouds computed using our enhanced DFLF method that leverages the
2D-3D segmentations.

Fig. 14. Left: Oriented point cloud for the STATUE. Right: Results of Pois-
son surface reconstruction. Note the preserved fine details and accurate
silhouettes.

In Figure 16, we compare our method to a publicly available,
patch-based MVS method, both without optimal view selection
(PMVS [Furukawa and Ponce 2010]) and with view selection
(CMVS [Furukawa et al. 2010]). Both methods output oriented
point clouds, which we mesh using Poisson surface reconstruc-
tion [Kazhdan and Hoppe 2013]. Our meshes are generated as be-
fore by running marching cubes on H. Patch-based approaches may
struggle with capturing fine details, such as the ropes in the SHIP

dataset, and tend to grow object boundaries due to the employed
patch-based color consistency computation. The CMVS approach
improves upon the quality of the PMVS reconstructions thanks to
the optimized view selection, and therefore demonstrates that small
camera baselines can indeed be problematic for existing multiview
stereo approaches. In our results, the thin rigging in the SHIP is re-
constructed quite well, even though these structures occupy only a
few pixels. Similar effects can be observed in the straws and ropes
on the SCARECROW.

In Figure 17, we compare our method against two other
techniques that first compute per-image depth maps and either
merge them in 3D space (MVE [Goesele et al. 2007]) or make them
consistent over multiple views (ACTS [Zhang et al. 2009]). MVE
uses patch-based image comparisons to generate oriented point
clouds, which are meshed with the built-in floating scale surface

Fig. 15. Point clouds generated with the method of Hirschmüller [2006]
without constraints (left) and with our segmentation constraints (right).

reconstruction technique [Fuhrmann and Goesele 2014]. ACTS
computes per-image depth maps and makes them consistent over
multiple views via bundle adjustment. As ACTS only produces
point clouds without orientation information, we do not generate
any meshes for this data. Instead, we show two views of the
generated point clouds by projecting the depth maps into 3D
space. Since there is no global consistency check between the
depth maps, noise can accumulate when multiple views are used
together. Problems around object boundaries due to patch-based
comparisons are observed for both methods, where the background
is reconstructed as part of the foreground object, leading to
excessive debris around the reconstructed objects. The results by
MVE also show that producing meshes from oriented point clouds
for objects with thin features can lead to additional noise. Note that
most of these outliers could be removed using our segmentations
to improve the reconstruction quality.

The ORCHID dataset has further challenges, such as the specular
reflections on the plant pot (see bottom light field slice in Fig-
ure 1) that may present considerable difficulty for most multiview
reconstruction techniques, which generally assume Lambertian re-
flectance properties. In our results, the pot is faithfully segmented.
Moreover, these techniques do not scale well with an increased
number of images due to their high computational time complex-
ities. For the THINPLANT dataset with 4,000 frames at 1280×720
resolution, MVE requires 72 hours. This running time decreased
to 90 minutes when 200 frames were used instead. ACTS, on the
other hand, required 110 minutes on the GPU (or 700 minutes on
the CPU) to compute the depth maps for 200 frames. Our algorithm
generated the 3D segmentations in 100 minutes using all 4,000
frames, which translates to about 1.5 seconds per frame.

5. DISCUSSION

We presented an automatic method that generates precise 2D and
3D object segmentations from light fields. Our method efficiently
exploits coherence in densely sampled data and works effectively
with thousands of input images.

Our method requires the camera motion between two frames to
be slow for robustly estimating segmentation values, as shown in
Figure 12. However, in hand-held capture scenarios, the camera
can move too fast between two frames, causing wrong estimates.
Moreover, if the camera is almost stationary between two frames,
the initial estimates become unreliable. In our work, we identified
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Fig. 16. Comparison of our method to CMVS [Furukawa et al. 2010] and PMVS [Furukawa and Ponce 2010]. For each algorithm, we show the generated
meshes and point clouds from similar viewpoints. Please see Section 4 for a detailed discussion.

Fig. 17. Comparison of our method to MVE [Goesele et al. 2007] and ACTS [Zhang et al. 2009]. For each algorithm, we show the generated point clouds
from similar viewpoints. The point clouds of MVE are meshed with floating scale surface reconstruction [Fuhrmann and Goesele 2014] as part of their pipeline.
Since ACTS does not generate meshes, we show the point clouds from two different viewpoints. Please see Section 4 for a detailed discussion.

stationary frames using the SfM information and removed them
from the final gathering step.

As in most other methods for generating 3D shapes from images,
the quality of our approach depends on the accuracy of the camera
calibrations. Due to the multiplicative property of the gathering
step, a small number of minority views can remove otherwise well-
supported regions. In the PLANT dataset, we see errors in calibration
that cause some voxels at the tips of the top leaves to be lost.

We can additionally observe a number of failure cases in Fig-
ure 18. In this example, a ground plane is visible, violating our
depth-based segmentation assumption. Furthermore, the foreground
object moves substantially during capture, the image is saturated

(textureless) in brighter regions, the foreground and background
have similar color and texture, and the hand-held capture covers
only 180◦ around the object. These factors cause a number of er-
roneous estimates and missing regions, which can be seen in the
resulting segmentations. Nonetheless, the trunk is still clearly vis-
ible, and the resulting point cloud of our modified DFLF method
shows reasonable structure.

Our trajectory-based parallax segmentation generates high-
confidence results in edge regions. If a foreground object is
placed on a smooth background, we have to propagate confident
estimates to the rest of the volume, which can cause bleeding of
the foreground information into the background. If holes in the
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Fig. 18. Example of some failure modes of our approach. Artifacts include missing branches that were moved by the wind, holes in saturated regions of
the sky, a visible ground plane, and extraneous parts of the segmented object, due to only 180o of the tree being captured in the input video. Despite these
challenges, the reconstructed point cloud shows significant detail in the trunk and ground.

foreground object are small and no background edges are visible
through them, the method cannot carve these regions away. Such
cases can be seen in the TORCH and AFRICA datasets. In practice,
however, these cases are well addressed by existing color-based
segmentation methods, and combining the two approaches is an
interesting future work.

Our method can effectively filter noisy point clouds. However,
due to the amount of fine structures in the reconstructed objects,
it is still very challenging to mesh such point clouds. As long as
the amount of fine structures is relatively low, a good triangle mesh
can be extracted using Poisson surface reconstruction [Kazhdan
and Hoppe 2013], as in Figure 14. As the amount of fine struc-
tures increases, such as for the ropes of the SHIP dataset, current
meshing algorithms fail to incorporate this information. Meshing
point clouds for objects with intricate details is an interesting future
research direction.

As observed in recent works [Criminisi et al. 2005; Wanner and
Goldluecke 2012; Kim et al. 2013], dense data capture has en-
abled entirely novel strategies for image-based reconstruction. In
this work, we have extended this line of thought by presenting a
novel approach for computing object segmentations in 2D and 3D
with applications in 3D scene reconstruction. When faced with big
visual data, existing approaches can suffer from scalability issues
and cannot effectively make use of the full information available.
However, the coherency and redundancy inside such data offer new
opportunities and at the same time require rethinking existing ap-
proaches from a new vantage point. We hope that recent work on
dense data will open up various research avenues to take advantage
of the ever-increasing volume of visual data being generated and
stored.

ACKNOWLEDGMENTS

We are grateful to Changil Kim for his tremendous help with
generating the results and comparisons. We would also like to
thank Maurizio Nitti for rendering the DRAGON dataset, Derek
Bradley for discussions on MVS, Joel Bohnes for helping with the
figures, Benjamin Resch for helping with the camera calibrations,
and Guofeng Zhang for helping with generating the ACTS results.

REFERENCES

Xiaobo An and Fabio Pellacini. 2008. AppProp: All-pairs appearance-space
edit propagation. ACM Trans. Graphics 27, 3, 40:1–40:9.

Nicholas Apostoloff and Andrew W. Fitzgibbon. 2006. Automatic video seg-
mentation using spatiotemporal t-junctions. In Proceedings of the British
Machine Vision Conference. 1089–1098.

Jesse Berent and Pier Luigi Dragotti. 2007. Plenoptic manifolds – exploiting
structure and coherence in multiview images. IEEE Signal Proc. Mag. 24,
7, 34–44.

Robert C. Bolles, H. Harlyn Baker, and David H. Marimont. 1987. Epipolar-
plane image analysis: An approach to determining structure from motion.
Int. J. Comput. Vision 1, 1, 7–55.

Adam Bowen, Andrew Mullins, Roland Wilson, and Nasir Rajpoot. 2007.
Bayesian surface estimation from multiple cameras using a prior based on
the visual hull and its application to image based rendering. In Proceedings
of the British Machine Vision Conference. 1–8.

Yuri Boykov and Marie-Pierre Jolly. 2001. Interactive graph cuts for op-
timal boundary and region segmentation of objects in N-D images. In
Proceedings of the IEEE International Conference on Computer Vision.
105–112.

Derek Bradley, Tamy Boubekeur, and Wolfgang Heidrich. 2008. Accurate
multi-view reconstruction using robust binocular stereo and surface mesh-
ing. In Proceedings of the Conference on Computer Vision and Pattern
Recognition. 1–8.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and
Michael Cohen. 2001. Unstructured lumigraph rendering. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. 425–432.

N. D. F. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla. 2010. Auto-
matic 3D object segmentation in multiple views using volumetric graph-
cuts. Image Vision Comput. 28, 1, 14–25.

Neill D. F. Campbell, George Vogiatzis, Carlos Hernandez, and Roberto
Cipolla. 2011. Automatic object segmentation from calibrated images. In
Proceedings of the European Conference on Visual Media Production.
126–137.

Can Chen, Haiting Lin, Zhan Yu, Sing Bing Kang, and Jingyi Yu. 2014.
Light field stereo matching using bilateral statistics of surface cameras. In
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion. 1518–1525.

Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin, and
Richard Szeliski. 2002. Video matting of complex scenes. ACM Trans.
Graphics 21, 3, 243–248.

Antonio Criminisi, Sing Bing Kang, Rahul Swaminathan, Richard Szeliski,
and P. Anandan. 2005. Extracting layers and analyzing their specular
properties using epipolar-plane-image analysis. Comput. Vision Image
Understanding 97, 1, 51–85.

Abe Davis, Marc Levoy, and Fredo Durand. 2012. Unstructured light fields.
Comput. Graphics Forum 31, 2, 305–314.
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