
Dynamic Word Embeddings

Robert Bamler 1 Stephan Mandt 1

Abstract
We present a probabilistic language model for
time-stamped text data which tracks the se-
mantic evolution of individual words over time.
The model represents words and contexts by
latent trajectories in an embedding space. At
each moment in time, the embedding vectors
are inferred from a probabilistic version of
word2vec (Mikolov et al., 2013b). These em-
bedding vectors are connected in time through
a latent diffusion process. We describe two
scalable variational inference algorithms—skip-
gram smoothing and skip-gram filtering—that al-
low us to train the model jointly over all times;
thus learning on all data while simultaneously al-
lowing word and context vectors to drift. Experi-
mental results on three different corpora demon-
strate that our dynamic model infers word em-
bedding trajectories that are more interpretable
and lead to higher predictive likelihoods than
competing methods that are based on static mod-
els trained separately on time slices.

1. Introduction
Language evolves over time and words change their mean-
ing due to cultural shifts, technological inventions, or po-
litical events. We consider the problem of detecting shifts
in the meaning and usage of words over a given time span
based on text data. Capturing these semantic shifts requires
a dynamic language model.

Word embeddings are a powerful tool for modeling se-
mantic relations between individual words (Bengio et al.,
2003; Mikolov et al., 2013a; Pennington et al., 2014; Mnih
& Kavukcuoglu, 2013; Levy & Goldberg, 2014; Vilnis &
McCallum, 2014; Rudolph et al., 2016). Word embed-

1Disney Research, 4720 Forbes Avenue, Pittsburgh,
PA 15213, USA. Correspondence to: Robert Bamler
<Robert.Bamler@disneyresearch.com>, Stephan Mandt
<Stephan.Mandt@disneyresearch.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

dings model the distribution of words based on their sur-
rounding words in a training corpus, and summarize these
statistics in terms of low-dimensional vector representa-
tions. Geometric distances between word vectors reflect
semantic similarity (Mikolov et al., 2013a) and difference
vectors encode semantic and syntactic relations (Mikolov
et al., 2013c), which shows that they are sensible represen-
tations of language. Pre-trained word embeddings are use-
ful for various supervised tasks, including sentiment anal-
ysis (Socher et al., 2013b), semantic parsing (Socher et al.,
2013a), and computer vision (Fu & Sigal, 2016). As un-
supervised models, they have also been used for the ex-
ploration of word analogies and linguistics (Mikolov et al.,
2013c).

Word embeddings are currently formulated as static mod-
els, which assumes that the meaning of any given word is
the same across the entire text corpus. In this paper, we
propose a generalization of word embeddings to sequential
data, such as corpora of historic texts or streams of text in
social media.

Current approaches to learning word embeddings in a dy-
namic context rely on grouping the data into time bins
and training the embeddings separately on these bins (Kim
et al., 2014; Kulkarni et al., 2015; Hamilton et al., 2016).
This approach, however, raises three fundamental prob-
lems. First, since word embedding models are non-convex,
training them twice on the same data will lead to different
results. Thus, embedding vectors at successive times can
only be approximately related to each other, and only if the
embedding dimension is large (Hamilton et al., 2016). Sec-
ond, dividing a corpus into separate time bins may lead to
training sets that are too small to train a word embedding
model. Hence, one runs the risk of overfitting to few data
whenever the required temporal resolution is fine-grained,
as we show in the experimental section. Third, due to the
finite corpus size the learned word embedding vectors are
subject to random noise. It is difficult to disambiguate this
noise from systematic semantic drifts between subsequent
times, in particular over short time spans, where we expect
only minor semantic drift.

In this paper, we circumvent these problems by introducing
a dynamic word embedding model. Our contributions are
as follows:

Dynamic Word Embeddings

date
0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
di

st
an

ce

text
photographs
preface
references
memorandum

productivity
diminishing

elasticity
aggregate

utility

1. marginal

date

exact
accurate
sampling
observer
clever

software
user

machine
device
printer

2. computer

date

quam
aut
quod
Arizona
auf

Effects
Effect

Influence
Amer

pp.

3. versus

date

nomination
offender
custody
assignment
voting

willingness
loyalty

dedication
adherence

devotion

4. commitment

date

peripheral
basal
os
cortex
nuclear

TV
telephone

newspapers
phone

computer

5. radio

1850 1900 1950 2000

date

0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
di

st
an

ce

objective
perception
subjective
verb
verbs

possibilities
potentially
possibility

risks
likelihood

6. potential

1850 1900 1950 2000

date

materially
faithfully
effectually
clearly
abundantly

especially
particularly

including
notable

exemplified

7. notably

1850 1900 1950 2000

date

nobleman
lawyer
knight
member
nobility

classroom
cognitive
networks

teacher
parent

8. peer

1850 1900 1950 2000

date

emphatically
significant
gestures
smiled
sharply

considerably
substantially

greatly
materially

slightly

9. significantly

1850 1900 1950 2000

date

processing
Planning
Freud
enzyme
specialized

computer
Web

technology
applications

design

10. software

Figure 1. Evolution of the 10 words that changed the most in cosine distance from 1850 to 2008 on Google books, using skip-gram
filtering (proposed). Red (blue) curves correspond to the five closest words at the beginning (end) of the time span, respectively.

• We derive a probabilistic state space model where
word and context embeddings evolve in time accord-
ing to a diffusion process. It generalizes the skip-gram
model (Mikolov et al., 2013b; Barkan, 2017) to a dy-
namic setup, which allows end-to-end training. This
leads to continuous embedding trajectories, smoothes
out noise in the word-context statistics, and allows us
to share information across all times.

• We propose two scalable black-box variational in-
ference algorithms (Ranganath et al., 2014; Rezende
et al., 2014) for filtering and smoothing. These al-
gorithms find word embeddings that generalize bet-
ter to held-out data. Our smoothing algorithm carries
out efficient black-box variational inference for struc-
tured Gaussian variational distributions with tridiago-
nal precision matrices, and applies more broadly.

• We analyze three massive text corpora that span over
long periods of time. Our approach allows us to auto-
matically find the words whose meaning changes the
most. It results in smooth word embedding trajecto-
ries and therefore allows us to measure and visual-
ize the continuous dynamics of the entire embedding
cloud as it deforms over time.

Figure 1 exemplifies our method. The plot shows a fit of
our dynamic skip-gram model to Google books (we give
details in section 5). We show the ten words whose mean-
ing changed most drastically in terms of cosine distance
over the last 150 years. We thereby automatically dis-
cover words such as “computer” or “radio” whose meaning
changed due to technological advances, but also words like

“peer” and “notably” whose semantic shift is less obvious.

Our paper is structured as follows. In section 2 we discuss
related work, and we introduce our model in section 3. In
section 4 we present two efficient variational inference al-
gorithms for our dynamic model. We show experimental
results in section 5. Section 6 summarizes our findings.

2. Related Work
Probabilistic models that have been extended to latent time
series models are ubiquitous (Blei & Lafferty, 2006; Wang
et al., 2008; Sahoo et al., 2012; Gultekin & Paisley, 2014;
Charlin et al., 2015; Ranganath et al., 2015; Jerfel et al.,
2017), but none of them relate to word embeddings. The
closest of these models is the dynamic topic model (Blei &
Lafferty, 2006; Wang et al., 2008), which learns the evo-
lution of latent topics over time. Topic models are based
on bag-of-word representations and thus treat words as
symbols without modelling their semantic relations. They
therefore serve a different purpose.

Mikolov et al. (2013a;b) proposed the skip-gram model
with negative sampling (word2vec) as a scalable word em-
bedding approach that relies on stochastic gradient de-
scent. This approach has been formulated in a Bayesian
setup (Barkan, 2017), which we discuss separately in sec-
tion 3.1. These models, however, do not allow the word
embedding vectors to change over time.

Several authors have analyzed different statistics of text
data to analyze semantic changes of words over time (Mi-
halcea & Nastase, 2012; Sagi et al., 2011; Kim et al., 2014;

Dynamic Word Embeddings

Figure 2. a) Bayesian skip-gram model (Barkan, 2017). b) The
dynamic skip-gram model (proposed) connects T copies of the
Bayesian skip-gram model via a latent time series prior on the
embeddings.

Kulkarni et al., 2015; Hamilton et al., 2016). None of them
explicitly model a dynamical process; instead, they slice
the data into different time bins, fit the model separately
on each bin, and further analyze the embedding vectors in
post-processing. By construction, these static models can
therefore not share statistical strength across time. This
limits the applicability of static models to very large cor-
pora.

Most related to our approach are methods based on word
embeddings. Kim et al. (2014) fit word2vec separately on
different time bins, where the word vectors obtained for
the previous bin are used to initialize the algorithm for the
next time bin. The bins have to be sufficiently large and the
found trajectories are not as smooth as ours, as we demon-
strate in this paper. Hamilton et al. (2016) also trained
word2vec separately on several large corpora from differ-
ent decades. If the embedding dimension is large enough
(and hence the optimization problem less non-convex), the
authors argue that word embeddings at nearby times ap-
proximately differ by a global rotation in addition to a small
semantic drift, and they approximately compute this ro-
tation. As the latter does not exist in a strict sense, it is
difficult to distinguish artifacts of the approximate rotation
from a true semantic drift. As discussed in this paper, both
variants result in trajectories which are noisier.1

3. Model
We propose the dynamic skip-gram model, a generaliza-
tion of the skip-gram model (word2vec) (Mikolov et al.,
2013b) to sequential text data. The model finds word em-
bedding vectors that continuously drift over time, allowing
to track changes in language and word usage over short and
long periods of time. Dynamic skip-gram is a probabilistic
model which combines a Bayesian version of the skip-gram
model (Barkan, 2017) with a latent time series. It is jointly

1 Rudolph & Blei (2017) independently developed a similar
model, using a different likelihood model. Their approach uses
a non-Bayesian treatment of the latent embedding trajectories,
which makes the approach less robust to noise when the data per
time step is small.

trained end-to-end and scales to massive data by means of
approximate Bayesian inference.

The observed data consist of sequences of words from a
finite vocabulary of size L. In section 3.1, all sequences
(sentences from books, articles, or tweets) are considered
time-independent; in section 3.2 they will be associated
with different time stamps. The goal is to maximize the
probability of every word that occurs in the data given its
surrounding words within a so-called context window. As
detailed below, the model learns two vectors u

i

, v

i

2 Rd

for each word i in the vocabulary, where d is the embed-
ding dimension. We refer to u

i

as the word embedding
vector and to v

i

as the context embedding vector.

3.1. Bayesian Skip-Gram Model

The Bayesian skip-gram model (Barkan, 2017) is a prob-
abilistic version of word2vec (Mikolov et al., 2013b) and
forms the basis of our approach. The graphical model is
shown in Figure 2a). For each pair of words i, j in the
vocabulary, the model assigns probabilities that word i ap-
pears in the context of word j. This probability is �(u>

i

v

j

)

with the sigmoid function �(x) = 1/(1 + e

�x

). Let z
ij

2
{0, 1} be an indicator variable that denotes a draw from that
probability distribution, hence p(z

ij

= 1) = �(u

>
i

v

j

). The
generative model assumes that many word-word pairs (i, j)
are uniformly drawn from the vocabulary and tested for be-
ing a word-context pair; hence a separate random indicator
z

ij

is associated with each drawn pair.

Focusing on words and their neighbors in a context win-
dow, we collect evidence of word-word pairs for which
z

ij

= 1. These are called the positive examples. De-
note n

+
ij

the number of times that a word-context pair
(i, j) is observed in the corpus. This is a sufficient statis-
tic of the model, and its contribution to the likelihood is
p(n

+
ij

|u
i

, v

j

) = �(u

>
i

v

j

)

n

+
ij . However, the generative pro-

cess also assumes the possibility to reject word-word pairs
if z

ij

= 0. Thus, one needs to construct a fictitious sec-
ond training set of rejected word-word pairs, called nega-
tive examples. Let the corresponding counts be n

�
ij

. The
total likelihood of both positive and negative examples is
then

p(n

+
, n

�|U, V) =

LY

i,j=1

�(u

>
i

v

j

)

n

+
ij
�(�u

>
i

v

j

)

n

�
ij
. (1)

Above we used the antisymmetry �(�x) = 1 � �(x). In
our notation, dropping the subscript indices for n+ and n

�

denotes the entire L ⇥ L matrices, U = (u1, · · · , uL

) 2
Rd⇥L is the matrix of all word embedding vectors, and V

is defined analogously for the context vectors. To con-
struct negative examples, one typically chooses n

�
ij

/
P (i)P (j)

3/4 (Mikolov et al., 2013b), where P (i) is the

Dynamic Word Embeddings

frequency of word i in the training corpus. Thus, n� is
well-defined up to a constant factor which has to be tuned.

Defining n

±
= (n

+
, n

�
) the combination of both positive

and negative examples, the resulting log likelihood is

log p(n

±|U, V) =

LX

i,j=1

�
n

+
ij

log �(u

>
i

v

j

) + n

�
ij

log �(�u

>
i

v

j

)

�
. (2)

This is exactly the objective of the (non-Bayesian) skip-
gram model, see (Mikolov et al., 2013b). The count ma-
trices n

+ and n

� are either pre-computed for the entire
corpus, or estimated based on stochastic subsamples from
the data in a sequential way, as done by word2vec. Barkan
(2017) gives an approximate Bayesian treatment of the
model with Gaussian priors on the embeddings.

3.2. Dynamic Skip-Gram Model

The key extension of our approach is to use a Kalman fil-
ter as a prior for the time-evolution of the latent embed-
dings (Welch & Bishop, 1995). This allows us to share
information across all times while still allowing the em-
beddings to drift.

Notation. We consider a corpus of T documents which
were written at time stamps ⌧1 < . . . < ⌧

T

. For each time
step t 2 {1, . . . , T} the sufficient statistics of word-context
pairs are encoded in the L⇥L matrices n+

t

, n

�
t

of positive
and negative counts with matrix elements n

+
ij,t

and n

�
ij,t

,
respectively. Denote U

t

= (u1,t, · · · , uL,t

) 2 Rd⇥L the
matrix of word embeddings at time t, and define V

t

corre-
spondingly for the context vectors. Let U, V 2 RT⇥d⇥L

denote the tensors of word and context embeddings across
all times, respectively.

Model. The graphical model is shown in Figure 2b). We
consider a diffusion process of the embedding vectors over
time. The variance �

2
t

of the transition kernel is

�

2
t

= D(⌧

t+1 � ⌧

t

), (3)

where D is a global diffusion constant and (⌧

t+1�⌧

t

) is the
time between subsequent observations (Welch & Bishop,
1995). At every time step t, we add an additional Gaussian
prior with zero mean and variance �

2
0 which prevents the

embedding vectors from growing very large, thus

p(U

t+1|Ut

) / N (U

t

,�

2
t

)N (0,�

2
0). (4)

Computing the normalization, this results in

U

t+1|Ut

⇠ N
✓

U

t

1 + �

2
t

/�

2
0

,

1

�

�2
t

+ �

�2
0

I

◆
, (5)

V

t+1|Vt

⇠ N
✓

V

t

1 + �

2
t

/�

2
0

,

1

�

�2
t

+ �

�2
0

I

◆
. (6)

In practice, �0 � �

t

, so the damping to the origin is very
weak. This is also called Ornstein-Uhlenbeck process (Uh-
lenbeck & Ornstein, 1930). We recover the Wiener process
for �0 ! 1, but �0 < 1 prevents the latent time series
from diverging to infinity. At time index t = 1, we define
p(U1|U0) ⌘ N (0,�

2
0I) and do the same for V1.

Our joint distribution factorizes as follows:

p(n

±
, U, V) =

T�1Y

t=0

p(U

t+1|Ut

) p(V

t+1|Vt

)

⇥
TY

t=1

LY

i,j=1

p(n

±
ij,t

|u
i,t

, v

j,t

) (7)

The prior model enforces that the model learns embedding
vectors which vary smoothly across time. This allows to as-
sociate words unambiguously with each other and to detect
semantic changes. The model efficiently shares informa-
tion across the time domain, which allows to fit the model
even in setups where the data at every given point in time
are small, as long as the data in total are large.

4. Inference
We discuss two scalable approximate inference algorithms.
Filtering uses only information from the past; it is required
in streaming applications where the data are revealed to
us sequentially. Smoothing is the other inference method,
which learns better embeddings but requires the full se-
quence of documents ahead of time.

In Bayesian inference, we start by formulating a joint dis-
tribution (Eq. 7) over observations n

± and parameters U

and V , and we are interested in the posterior distribution
over parameters conditioned on observations,

p(U, V |n±
) =

p(n

±
, U, V)R

p(n

±
, U, V) dUdV

(8)

The problem is that the normalization is intractable. In vari-
ational inference (VI) (Jordan et al., 1999; Blei et al., 2016)
one sidesteps this problem and approximates the posterior
with a simpler variational distribution q

�

(U, V) by mini-
mizing the Kullback-Leibler (KL) divergence to the poste-
rior. Here, � summarizes all parameters of the variational
distribution, such as the means and variances of a Gaussian,
see below. Minimizing the KL divergence is equivalent to
optimizing the evidence lower bound (ELBO) (Blei et al.,
2016),

L(�) = E
q� [log p(n

±
, U, V)]�E

q� [log q�(U, V)]. (9)

For a restricted class of models, the ELBO can be com-
puted in closed-form (Hoffman et al., 2013). Our model is

Dynamic Word Embeddings

non-conjugate and requires instead black-box VI using the
reparameterization trick (Rezende et al., 2014; Kingma &
Welling, 2014).

4.1. Skip-Gram Filtering

In many applications such as streaming, the data arrive se-
quentially. Thus, we can only condition our model on past
and not on future observations. We will first describe in-
ference in such a (Kalman) filtering setup (Kalman et al.,
1960; Welch & Bishop, 1995).

In the filtering scenario, the inference algorithm iteratively
updates the variational distribution q as evidence from each
time step t becomes available. We thereby use a variational
distribution that factorizes across all times, q(U, V) =Q

T

t=1 q(Ut

, V

t

) and we update the variational factor at a
given time t based on the evidence at time t and the approx-
imate posterior of the previous time step. Furthermore, at
every time t we use a fully-factorized distribution:

q(U

t

, V

t

) =

LY

i=1

N (u

i,t

;µ

ui,t

,⌃

ui,t

)N (v

i,t

;µ

vi,t

.⌃

vi,t

),

The variational parameters are the means µ
ui,t

, µ

vi,t

2 Rd

and the covariance matrices ⌃
ui,t

and ⌃

vi,t

, which we re-
strict to be diagonal (mean-field approximation).

We now describe how we sequentially compute q(U

t

, V

t

)

and use the result to proceed to the next time step. As other
Markovian dynamical systems, our model assumes the fol-
lowing recursion,

p(U

t

, V

t

|n±
1:t) / p(n

±
t

|U
t

, V

t

) p(U

t

, V

t

|n±
1:t�1). (10)

Within our variational approximation, the ELBO (Eq. 9)
therefore separates into a sum of T terms, L =

P
t

L
t

with

L
t

= E[log p(n±
t

|U
t

, V

t

)] + E[log p(U
t

, V

t

|n±
1:t�1)]

� E[log q(U
t

, V

t

)], (11)

where all expectations are taken under q(U
t

, V

t

). We com-
pute the entropy term �E[log q] in Eq. 11 analytically and
estimate the gradient of the log likelihood by sampling
from the variational distribution and using the reparam-
eterization trick (Kingma & Welling, 2014; Salimans &
Kingma, 2016). However, the second term of Eq. 11, con-
taining the prior at time t, is still intractable. We approxi-
mate the prior as

p(U

t

, V

t

|n±
1:t�1) ⌘

E
p(Ut�1,Vt�1|n±

1:t�1)

⇥
p(U

t

, V

t

|U
t�1, Vt�1)

⇤

⇡ E
q(Ut�1,Vt�1)

⇥
p(U

t

, V

t

|U
t�1, Vt�1)

⇤
. (12)

The remaining expectation involves only Gaussians and
can be carried-out analytically. The resulting approximate

prior is a fully factorized distribution p(U

t

, V

t

|n±
1:t�1) ⇡Q

L

i=1 N (u

i,t

; µ̃

ui,t

,

˜

⌃

ui,t

)N (v

i,t

; µ̃

vi,t

,

˜

⌃

vit

) with

µ̃

ui,t

=

˜

⌃

ui,t

�
⌃

ui,t�1 + �

2
t

I

��1
µ

ui,t�1;

˜

⌃

ui,t

=

h�
⌃

ui,t�1 + �

2
t

I

��1
+ (1/�

2
0)I

i�1
.

(13)

Analogous update equations hold for µ̃
vi,t

and ˜

⌃

vi,t

. Thus,
the second contribution in Eq. 11 (the prior) yields a closed-
form expression. We can therefore compute its gradient.

4.2. Skip-Gram Smoothing

In contrast to filtering, where inference is conditioned on
past observations until a given time t, (Kalman) smoothing
performs inference based on the entire sequence of obser-
vations n±

1:T . This approach results in smoother trajectories
and typically higher likelihoods than with filtering, because
evidence is used from both future and past observations.

Besides the new inference scheme, we also use a different
variational distribution. As the model is fitted jointly to all
time steps, we are no longer restricted to a variational distri-
bution that factorizes in time. For simplicity we focus here
on the variational distribution for the word embeddings U ;
the context embeddings V are treated identically. We use a
factorized distribution over both embedding space and vo-
cabulary space,

q(U1:T) =

LY

i=1

dY

k=1

q(u

ik,1:T). (14)

In the time domain, our variational approximation is struc-
tured. To simplify the notation we now drop the indices
for words i and embedding dimension k, hence we write
q(u1:T) for q(u

ik,1:T) where we focus on a single factor.
This factor is a multivariate Gaussian distribution in the
time domain with tridiagonal precision matrix ⇤,

q(u1:T) = N (µ,⇤

�1
) (15)

Both the means µ = µ1:T and the entries of the tridiago-
nal precision matrix ⇤ 2 RT⇥T are variational parameters.
This gives our variational distribution the interpretation of a
posterior of a Kalman filter (Blei & Lafferty, 2006), which
captures correlations in time.

We fit the variational parameters by training the model
jointly on all time steps, using black-box VI and the repa-
rameterization trick. As the computational complexity of
an update step scales as ⇥(L

2
), we first pretrain the model

by drawing minibatches of L

0
< L random words and

L

0 random contexts from the vocabulary (Hoffman et al.,
2013). We then switch to the full batch to reduce the sam-
pling noise. Since the variational distribution does not fac-
torize in the time domain we always include all time steps
{1, . . . , T} in the minibatch.

Dynamic Word Embeddings

We also derive an efficient algorithm that allows us to es-
timate the reparametrization gradient using ⇥(T) time and
memory, while a naive implementation of black-box varia-
tional inference with our structured variational distribution
would require ⇥(T

2
) of both resources. The main idea is to

parametrize ⇤ = B

>
B in terms of its Cholesky decompo-

sition B, which is bidiagonal (Kılıç & Stanica, 2013), and
to express gradients of B�1 in terms of gradients of B. We
use mirror ascent (Ben-Tal et al., 2001; Beck & Teboulle,
2003) to enforce positive definiteness of B. The algorithm
is detailed in our supplementary material.

5. Experiments
We evaluate our method on three time-stamped text cor-
pora. We demonstrate that our algorithms find smoother
embedding trajectories than methods based on a static
model. This allows us to track semantic changes of indi-
vidual words by following nearest-neighbor relations over
time. In our quantitative analysis, we find higher predictive
likelihoods on held-out data compared to our baselines.

Algorithms and Baselines. We report results from our
proposed algorithms from section 4 and compare against
baselines from section 2:

• SGI denotes the non-Bayesian skip-gram model
with independent random initializations of word vec-
tors (Mikolov et al., 2013b). We used our own imple-
mentation of the model by dropping the Kalman fil-
tering prior and point-estimating embedding vectors.
Word vectors at nearby times are made comparable by
approximate orthogonal transformations, which corre-
sponds to Hamilton et al. (2016).

• SGP denotes the same approach as above, but with
word and context vectors being pre-initialized with the
values from the previous year, as in Kim et al. (2014).

• DSG-F: dynamic skip-gram filtering (proposed).

• DSG-S: dynamic skip-gram smoothing (proposed).

Data and preprocessing. Our three corpora exemplify
opposite limits both in the covered time span and in the
amount of text per time step.

1. We used data from the Google books corpus2 (Michel
et al., 2011) from the last two centuries (T = 209).
This amounts to 5 million digitized books and approx-
imately 10

10 observed words. The corpus consists of
n-gram tables with n 2 {1, . . . , 5}, annotated by year
of publication. We considered the years from 1800 to

2
http://storage.googleapis.com/books/

ngrams/books/datasetsv2.html

2008 (the latest available). In 1800, the size of the data
is approximately ⇠ 7 ·107 words. We used the 5-gram
counts, resulting in a context window size of 4.

2. We used the “State of the Union” (SoU) addresses of
U.S. presidents, which spans more than two centuries,
resulting in T = 230 different time steps and approx-
imately 10

6 observed words.3 Some presidents gave
both a written and an oral address; if these were less
than a week apart we concatenated them and used the
average date. We converted all words to lower case
and constructed the positive sample counts n

+
ij

using
a context window size of 4.

3. We used a Twitter corpus of news tweets for 21 ran-
domly drawn dates from 2010 to 2016. The median
number of tweets per day is 722. We converted all
tweets to lower case and used a context window size
of 4, which we restricted to stay within single tweets.

Hyperparameters. The vocabulary for each corpus was
constructed from the 10,000 most frequent words through-
out the given time period. In the Google books corpus, the
number of words per year grows by a factor of 200 from the
year 1800 to 2008. To avoid that the vocabulary is domi-
nated by modern words we normalized the word frequen-
cies separately for each year before adding them up.

For the Google books corpus, we chose the embedding
dimension d = 200, which was also used in Kim et al.
(2014). We set d = 100 for SoU and Twitter, as d = 200

resulted in overfitting on these much smaller corpora. The
ratio ⌘ =

P
ij

n

�
ij,t

/

P
ij

n

+
ij,t

of negative to positive word-
context pairs was ⌘ = 1. The precise construction of the
matrices n

±
t

is explained in the supplementary material.
We used the global prior variance �

2
0 = 1 for all corpora

and all algorithms, including the baselines. The diffusion
constant D controls the time scale on which information
is shared between time steps. The optimal value for D

depends on the application. A single corpus may exhibit
semantic shifts of words on different time scales, and the
optimal choice for D depends on the time scale in which
one is interested. We used D = 10

�3 per year for Google
books and SoU, and D = 1 per year for the Twitter corpus,
which spans a much shorter time range. In the supplemen-
tary material, we provide details of the optimization proce-
dure.

Qualitative results. We show that our approach results in
smooth word embedding trajectories on all three corpora.
We can automatically detect words that undergo significant
semantic changes over time.

Figure 1 in the introduction shows a fit of the dynamic
skip-gram filtering algorithm to the Google books corpus.

3
http://www.presidency.ucsb.edu/sou.php

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://www.presidency.ucsb.edu/sou.php

Dynamic Word Embeddings

Figure 3. Word embeddings over a sequence of years trained on
Google books, using DSG-F (proposed, top row) and compared
to the static method by Hamilton et al. (2016) (bottom). We used
dynamic t-SNE (Rauber et al., 2016) for dimensionality reduc-
tion. Colored lines in the second to fourth column indicate the tra-
jectories from the previous year. Our method infers smoother tra-
jectories with only few words that move quickly. Figure 4 shows
that these effects persist in the original embedding space.

Here, we show the ten words whose word vectors change
most drastically over the last 150 years in terms of co-
sine distance. Figure 3 visualizes word embedding clouds
over four subsequent years of Google books, where we
compare DSG-F against SGI. We mapped the normal-
ized embedding vectors to two dimensions using dynamic
t-SNE (Rauber et al., 2016) (see supplement for details).
Lines indicate shifts of word vectors relative to the preced-
ing year. In our model only few words change their position
in the embedding space rapidly, while embeddings using
SGI show strong fluctuations, making the cloud’s motion
hard to track.

Figure 4 visualizes the smoothness of the trajectories di-
rectly in the embedding space (without the projection to
two dimensions). We consider differences between word
vectors in the year 1998 and the subsequent 10 years.
In more detail, we compute histograms of the Euclidean
distances ||u

it

� u

i,t+�

|| over the word indexes i, where
� = 1, . . . , 10 (as discussed previously, SGI uses a global
rotation to optimally align embeddings first). In our model,
embedding vectors gradually move away from their origi-
nal position as time progresses, indicating a directed mo-
tion. In contrast, both baseline models show only little di-
rected motion after the first time step, suggesting that most
temporal changes are due to finite-size fluctuations of n±

ij,t

.
Initialization schemes alone, thus, seem to have a minor
effect on smoothness.

Our approach allows us to detect semantic shifts in the us-
age of specific words. Figures 5 and 1 both show the cosine
distance between a given word and its neighboring words
(colored lines) as a function of time. Figure 5 shows results
on all three corpora and focuses on a comparison across
methods. We see that DSG-S and DSG-F (both proposed)

Figure 4. Histogram of distances between word vectors in the
year 1998 and their positions in subsequent years (colors).
DSG-F (top panel) displays a continuous growth of these dis-
tances over time, indicating a directed motion. In contrast, in
SGP (middle) (Kim et al., 2014) and SGI (bottom) (Hamilton
et al., 2016), the distribution of distances jumps from the first to
the second year but then remains largely stationary, indicating ab-
sence of a directed drift; i.e. almost all motion is random.

result in trajectories which display less noise than the base-
lines SGP and SGI. The fact that the baselines predict zero
cosine distance (no correlation) between the chosen word
pairs on the SoU and Twitter corpora suggests that these
corpora are too small to successfully fit these models, in
contrast to our approach which shares information in the
time domain. Note that as in dynamic topic models, skip-
gram smoothing (DSG-S) may diffuse information into the
past (see ”presidential” to ”clinton-trump” in Fig. 5).

Quantitative results. We show that our approach gener-
alizes better to unseen data. We thereby analyze held-out
predictive likelihoods on word-context pairs at a given time
t, where t is excluded from the training set,

1
|n±

t | log p(n
±
t

| ˜U
t

,

˜

V

t

). (16)

Above, |n±
t

| =
P

i,j

�
n

+
ij,t

+ n

�
ij,t

�
denotes the total num-

ber of word-context pairs at time ⌧

t

. Since inference is dif-
ferent in all approaches, the definitions of word and con-
text embedding matrices ˜

U

t

and ˜

V

t

in Eq. 16 have to be
adjusted:

• For SGI and SGP, we did a chronological pass
through the time sequence and used the embeddings
˜

U

t

= U

t�1 and ˜

V

t

= V

t�1 from the previous time
step to predict the statistics n±

ij,t

at time step t.

• For DSG-F, we did the same pass to test n±
ij,t

. We
thereby set ˜

U

t

and ˜

V

t

to be the modes U

t�1, Vt�1 of
the approximate posterior at the previous time step.

• For DSG-S, we held out 10%, 10% and 20% of the
documents from the Google books, SoU, and Twitter
corpora for testing, respectively. After training, we
estimated the word (context) embeddings ˜

U

t

(˜V
t

) in

Dynamic Word Embeddings

GDte

0.0

0.5

1.0

Fo
s.

 G
is

tD
n

Fe "FoPSuteU" to "DFFuUDte"

Google Books

GDte

"FoPPunity" to "nDtuUe"

"6tDte oI the 8nion" DGGUesses

2010 2011 2012 2013 2014 2015 2016

GDte

"SUesiGentiDl" to "bDUDFk"

TwitteU
D6G-6
D6G-F
6GI
6G3

1800 1850 1900 1950 2000

GDte

0.0

0.5

1.0

Fo
s.

 G
is

tD
n

Fe "FoPSuteU" to "PDFhine"

1800 1850 1900 1950 2000

GDte

"FoPPunity" to "tUDnsSoUtDtion"

2010 2011 2012 2013 2014 2015 2016

GDte

"SUesiGentiDl" to "Flinton-tUuPS"

Figure 5. Smoothness of word embedding trajectories, compared across different methods. We plot the cosine distance between two
words (see captions) over time. High values indicate similarity. Our methods (DSG-S and DSG-F) find more interpretable trajectories
than the baselines (SGI and SGP). The different performance is most pronounced when the corpus is small (SoU and Twitter).

1800 1850 1900 1950 2000

GDte oI test books

−0.56

−0.55

−0.54

−0.53

−0.52

n
o
UP

D
liz

e
G

 l
o
g

(S
Ue

G
iF

ti
v
e
 l
ik

e
lih

o
o
G

) Google books

D6G-6
D6G-)
6GI
6G3

1800 1850 1900 1950 2000

GDte oI test 6o8 DGGUess

−0.85

−0.80

−0.75

−0.70

−0.65

"6tDte oI the 8nion" DGGUesses

D6G-6
D6G-)
6GI
6G3

2010 2011 2012 2013 2014 2015 2016

GDte oI test tweets

−0.85

−0.80

−0.75

−0.70

−0.65

7witteU

D6G-6
D6G-)
6GI
6G3

1800 1820

−0.56

−0.55

−0.54

1980 2000

−0.53

−0.52
2015

−0.845

−0.840

−0.835

1882 1884
−0.770

−0.768

Figure 6. Predictive log-likelihoods (Eq. 16) for two proposed versions of the dynamic skip-gram model (DSG-F & DSG-S) and two
competing methods SGI (Hamilton et al., 2016) and SGP (Kim et al., 2014) on three different corpora (high values are better).

Eq. 16 by linear interpolation between the values of
U

t�1 (V
t�1) and U

t+1 (V
t+1) in the mode of the vari-

ational distribution, taking into account that the time
stamps ⌧

t

are in general not equally spaced.

The predictive likelihoods as a function of time ⌧

t

are
shown in Figure 6. For the Google Books corpus (left panel
in figure 6), the predictive log-likelihood grows over time
with all four methods. This must be an artifact of the cor-
pus since SGI does not carry any information of the past.
A possible explanation is the growing number of words per
year from 1800 to 2008 in the Google Books corpus. On
all three corpora, differences between the two implementa-
tions of the static model (SGI and SGP) are small, which
suggests that pre-initializing the embeddings with the pre-
vious result may improve their continuity but seems to have
little impact on the predictive power. Log-likelihoods for
the skip-gram filter (DSG-F) grow over the first few time
steps as the filter sees more data, and then saturate. The
improvement of our approach over the static model is par-
ticularly pronounced in the SoU and Twitter corpora, which
are much smaller than the massive Google books corpus.
There, sharing information between across time is crucial
because there is little data at every time slice. Skip-gram
smoothing outperforms skip-gram filtering as it shares in-

formation in both time directions and uses a more flexible
variational distribution.

6. Conclusions
We presented the dynamic skip-gram model: a Bayesian
probabilistic model that combines word2vec with a latent
continuous time series. We showed experimentally that
both dynamic skip-gram filtering (which conditions only
on past observations) and dynamic skip-gram smoothing
(which uses all data) lead to smoothly changing embedding
vectors that are better at predicting word-context statistics
at held-out time steps. The benefits are most drastic when
the data at individual time steps is small, such that fitting a
static word embedding model is hard. Our approach may
be used as a data mining and anomaly detection tool when
streaming text on social media, as well as a tool for his-
torians and social scientists interested in the evolution of
language.

Acknowledgements

We would like to thank Marius Kloft, Cheng Zhang,
Andreas Lehrmann, Brian McWilliams, Romann Weber,
Michael Clements, and Ari Pakman for valuable feedback.

Dynamic Word Embeddings

References
Barkan, Oren. Bayesian Neural Word Embedding. In Pro-

ceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, 2017.

Beck, Amir and Teboulle, Marc. Mirror Descent and Non-
linear Projected Subgradient Methods for Convex Opti-
mization. Operations Research Letters, 31(3):167–175,
2003.

Ben-Tal, Aharon, Margalit, Tamar, and Nemirovski,
Arkadi. The Ordered Subsets Mirror Descent Optimiza-
tion Method with Applications to Tomography. SIAM
Journal on Optimization, 12(1):79–108, 2001.

Bengio, Yoshua, Ducharme, Réjean, Vincent, Pascal, and
Jauvin, Christian. A Neural Probabilistic Language
Model. Journal of Machine Learning Research, 3:1137–
1155, 2003.

Blei, David M and Lafferty, John D. Dynamic Topic Mod-
els. In Proceedings of the 23rd International Conference
on Machine Learning, pp. 113–120. ACM, 2006.

Blei, David M., Kucukelbir, Alp, and McAuliffe, Jon D.
Variational Inference: A Review for Statisticians. arXiv
preprint arXiv:1601.00670, 2016.

Charlin, Laurent, Ranganath, Rajesh, McInerney, James,
and Blei, David M. Dynamic Poisson Factorization.
In Proceedings of the 9th ACM Conference on Recom-
mender Systems, pp. 155–162, 2015.

Fu, Yanwei and Sigal, Leonid. Semi-Supervised
Vocabulary-Informed Learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5337–5346, 2016.

Gultekin, San and Paisley, John. A Collaborative Kalman
Filter for Time-Evolving Dyadic Processes. In Proceed-
ings of the 2nd International Conference on Data Min-
ing, pp. 140–149, 2014.

Hamilton, William L, Leskovec, Jure, and Jurafsky, Dan.
Diachronic word embeddings reveal statistical laws of
semantic change. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 1489–1501, 2016.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John William. Stochastic Variational Inference.
Journal of Machine Learning Research, 14(1):1303–
1347, 2013.

Jerfel, Ghassen, Basbug, Mehmet E, and Engelhardt, Bar-
bara E. Dynamic Compound Poisson Factorization. In
Artificial Intelligence and Statistics, 2017.

Jordan, Michael I, Ghahramani, Zoubin, Jaakkola,
Tommi S, and Saul, Lawrence K. An Introduction to
Variational Methods for Graphical Models. Machine
learning, 37(2):183–233, 1999.

Kalman, Rudolph Emil et al. A New Approach to Linear
Filtering and Prediction Problems. Journal of Basic En-
gineering, 82(1):35–45, 1960.

Kılıç, Emrah and Stanica, Pantelimon. The Inverse of
Banded Matrices. Journal of Computational and Applied
Mathematics, 237(1):126–135, 2013.

Kim, Yoon, Chiu, Yi-I, Hanaki, Kentaro, Hegde, Dar-
shan, and Petrov, Slav. Temporal Analysis of Language
Through Neural Language Models. In Proceedings of
the ACL 2014 Workshop on Language Technologies and
Computational Social Science, pp. 61–65, 2014.

Kingma, Diederik P and Welling, Max. Auto-Encoding
Variational Bayes. In Proceedings of the 2nd Interna-
tional Conference on Learning Representations (ICLR),
2014.

Kulkarni, Vivek, Al-Rfou, Rami, Perozzi, Bryan, and
Skiena, Steven. Statistically Significant Detection of
Linguistic Change. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pp. 625–635,
2015.

Levy, Omer and Goldberg, Yoav. Neural Word Embedding
as Implicit Matrix Factorization. In Advances in Neural
Information Processing Systems, pp. 2177–2185, 2014.

Michel, Jean-Baptiste, Shen, Yuan Kui, Aiden,
Aviva Presser, Veres, Adrian, Gray, Matthew K,
Pickett, Joseph P, Hoiberg, Dale, Clancy, Dan, Norvig,
Peter, Orwant, Jon, et al. Quantitative Analysis of
Culture Using Millions of Digitized Books. Science,
331(6014):176–182, 2011.

Mihalcea, Rada and Nastase, Vivi. Word Epoch Dis-
ambiguation: Finding how Words Change Over Time.
In Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Short Papers-
Volume 2, pp. 259–263, 2012.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jef-
frey. Efficient Estimation of Word Representations in
Vector Space. arXiv preprint arXiv:1301.3781, 2013a.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed Representations of
Words and Phrases and their Compositionality. In Ad-
vances in Neural Information Processing Systems 26, pp.
3111–3119. 2013b.

Dynamic Word Embeddings

Mikolov, Tomas, Yih, Wen-tau, and Zweig, Geoffrey. Lin-
guistic Regularities in Continuous Space Word Repre-
sentations. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(NAACL-HLT-2013), pp. 746–751, 2013c.

Mnih, Andriy and Kavukcuoglu, Koray. Learning Word
Embeddings Efficiently with Noise-Contrastive Estima-
tion. In Advances in Neural Information Processing Sys-
tems, pp. 2265–2273, 2013.

Pennington, Jeffrey, Socher, Richard, and Manning,
Christopher D. Glove: Global Vectors for Word Rep-
resentation. In EMNLP, volume 14, pp. 1532–43, 2014.

Ranganath, Rajesh, Gerrish, Sean, and Blei, David M.
Black Box Variational Inference. In AISTATS, pp. 814–
822, 2014.

Ranganath, Rajesh, Perotte, Adler J, Elhadad, Noémie, and
Blei, David M. The Survival Filter: Joint Survival Anal-
ysis with a Latent Time Series. In UAI, pp. 742–751,
2015.

Rauber, Paulo E., Falcão, Alexandre X., and Telea, Alexan-
dru C. Visualizing Time-Dependent Data Using Dy-
namic t-SNE. In EuroVis 2016 - Short Papers, 2016.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra,
Daan. Stochastic Backpropagation and Approximate In-
ference in Deep Generative Models. In The 31st Interna-
tional Conference on Machine Learning (ICML), 2014.

Rudolph, Maja and Blei, David. Dynamic Bernoulli
Embeddings for Language Evolution. arXiv preprint
arXiv:1703.08052, 2017.

Rudolph, Maja, Ruiz, Francisco, Mandt, Stephan, and Blei,
David. Exponential Family Embeddings. In Advances
in Neural Information Processing Systems, pp. 478–486,
2016.

Sagi, Eyal, Kaufmann, Stefan, and Clark, Brady. Trac-
ing Semantic Change with Latent Semantic Analysis.
Current Methods in Historical Semantics, pp. 161–183,
2011.

Sahoo, Nachiketa, Singh, Param Vir, and Mukhopadhyay,
Tridas. A Hidden Markov Model for Collaborative Fil-
tering. MIS Quarterly, 36(4):1329–1356, 2012.

Salimans, Tim and Kingma, Diederik P. Weight Normaliza-
tion: A Simple Reparameterization to Accelerate Train-
ing of Deep Neural Networks. In Advances in Neural
Information Processing Systems, pp. 901–901, 2016.

Socher, Richard, Bauer, John, Manning, Christopher D,
and Ng, Andrew Y. Parsing with Compositional Vector
Grammars. In ACL (1), pp. 455–465, 2013a.

Socher, Richard, Perelygin, Alex, Wu, Jean Y, Chuang, Ja-
son, Manning, Christopher D, Ng, Andrew Y, and Potts,
Christopher. Recursive Deep Models for Semantic Com-
positionality over a Sentiment Treebank. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), volume 1631, pp.
1642, 2013b.

Uhlenbeck, George E and Ornstein, Leonard S. On the
Theory of the Brownian Motion. Physical Review, 36
(5):823, 1930.

Vilnis, Luke and McCallum, Andrew. Word Representa-
tions via Gaussian Embedding. In Proceedings of the
2nd International Conference on Learning Representa-
tions (ICLR), 2014.

Wang, Chong, Blei, David, and Heckerman, David. Con-
tinuous time dynamic topic models. In Proceedings of
the Twenty-Fourth Conference on Uncertainty in Artifi-
cial Intelligence, pp. 579–586, 2008.

Welch, Greg and Bishop, Gary. An Introduction to the
Kalman Filter. 1995.

Supplementary Material to “Dynamic Word Embeddings”

Robert Bamler 1 Stephan Mandt 1

Table 1. Hyperparameters for skip-gram filtering and skip-gram
smoothing.

PARAMETER COMMENT

L=104 vocabulary size
L0 =103 batch size for smoothing
d=100 embedding dimension for SoU and Twitter
d=200 embedding dimension for Google books

Ntr =5000 number of training steps for each t (filtering)
N 0

tr =5000 number of pretraining steps with minibatch
sampling (smoothing; see Algorithm 2)

Ntr =1000 number of training steps without minibatch
sampling (smoothing; see Algorithm 2)

cmax =4 context window size for positive examples
⌘=1 ratio of negative to positive examples
�=0.75 context exponent for negative examples
D=10�3 diffusion const. per year (Google books & SoU)
D=1 diffusion const. per year (Twitter)
�2
0 =1 variance of overall prior
↵=10�2 learning rate (filtering)
↵0 =10�2 learning rate during minibatch phase (smoothing)
↵=10�3 learning rate after minibatch phase (smoothing)
�1 =0.9 decay rate of 1st moment estimate
�2 =0.99 decay rate of 2nd moment estimate (filtering)
�2 =0.999 decay rate of 2nd moment estimate (smoothing)
�=10�8 regularizer of Adam optimizer

1. Dimensionality Reduction in Figure 1
To create the word-clouds in Figure 1 of the main text we
mapped the fitted word embeddings from Rd to the two-
dimensional plane using dynamic t-SNE (Rauber et al.,
2016). Dynamic t-SNE is a non-parametric dimension-
ality reduction algorithm for sequential data. The algo-
rithm finds a projection to a lower dimension by solving
a non-convex optimization problem that aims at preserving
nearest-neighbor relations at each individual time step. In

1Disney Research, 4720 Forbes Avenue, Pittsburgh,
PA 15213, USA. Correspondence to: Robert Bamler
<Robert.Bamler@disneyresearch.com>, Stephan Mandt
<Stephan.Mandt@disneyresearch.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

addition, projections at neighboring time steps are aligned
with each other by a quadratic penalty with prefactor � � 0

for sudden movements.

There is a trade-off between finding good local projections
for each individual time step (� ! 0), and finding smooth
projections (large �). Since we want to analyze the smooth-
ness of word embedding trajectories, we want to avoid
bias towards smooth projections. Unfortunately, setting
� = 0 is not an option since, in this limit, the optimization
problem is invariant under independent rotations at each
time, rendering trajectories in the two-dimensional projec-
tion plane meaningless. To still avoid bias towards smooth
projections, we anneal � exponentially towards zero over
the course of the optimization. We start the optimizer with
� = 0.01, and we reduce � by 5% with each training step.
We run 100 optimization steps in total, so that � ⇡ 6⇥10

�6

at the end of the training procedure. We used the open-
source implementation,1 set the target perplexities to 200,
and used default values for all other parameters.

2. Hyperparemeters and Construction of n±
1:T

Table 1 lists the hyperparameters used in our experiments.
For the Google books corpus, we used the same context
window size cmax and embedding dimension d as in (Kim
et al., 2014). We reduced d for the SoU and Twitter corpora
to avoid overfitting to these much smaller data sets.

In constrast to word2vec, we construct our positive and
negative count matrices n±

ij,t

deterministically in a prepro-
cessing step. As detailed below, this is done such that it
resembles as closely as possible the stochastic approach in
word2vec (Mikolov et al., 2013). In every update step,
word2vec stochastically samples a context window size
uniformly in an interval [1, · · · , c

max

], thus the context size
fluctuates and nearby words appear more often in the same
context than words that are far apart from each other in
the sentence. We follow a deterministic scheme that re-
sults in similar statistics. For each pair of words (w1, w2)

in a given sentence, we increase the counts n

+
iw1 jw2

by
max (0, 1� k/cmax), where 0  k  c

max

is the num-
ber of words that appear between w1 and w2, and i

w1 and
j

w2 are the words’ unique indices in the vocabulary.
1
https://github.com/paulorauber/thesne

https://github.com/paulorauber/thesne

Supplementary Material to “Dynamic Word Embeddings”

Algorithm 1 Skip-gram filtering; see section 4 of the main
text.

Remark: All updates are analogous for word and con-
text vectors; we drop their indices for simplicity.
Input: number of time steps T , time stamps ⌧1:T , posi-
tive and negative examples n±

1:T , hyperparameters.

Init. prior means µ̃
ik,1 0 and variances ˜

⌃

i,1 = I

d⇥d

Init. variational means µ
ik,1 0 and var. ⌃

i,1 = I

d⇥d

for t = 1 to T do
if t 6= 1 then

Update approximate Gaussian prior with params.
µ̃

ik,t

and ˜

⌃

i,t

using µ

ik,t�1 and ⌃

i,t�1, see Eq. 13.
end if
Compute entropy E

q

[log q(·)] analytically.
Compute expected log Gaussian prior with parameters
µ̃

ik,t

and ˜

⌃

k,t

analytically.
Maximize L

t

in Eq. 11, using black-box VI with the
reparametrization trick.
Obtain µ

ik,t

and ⌃

i,t

as outcome of the optimization.
end for

We also used a deterministic variant of word2vec to con-
struct the negative count matrices n�

t

. In word2vec, ⌘ nega-
tive samples (i, j) are drawn for each positive sample (i, j0)
by drawing ⌘ independent values for j from a distribution
P

0
t

(j) defined below. We define n

�
ij,t

such that it matches
the expectation value of the number of times that word2vec
would sample the negative word-context pair (i, j). Specif-
ically, we define

P

t

(i) =

P
L

j=1 n
+
ij,tP

L

i

0
,j=1 n

+
i

0
j,t

, (1)

P

0
t

(j) =

�
P

t

(j)

�
�

P
L

j

0=1

�
P

t

(j

0
)

�
�

, (2)

n

�
ij,t

=

✓
LX

i

0
,j

0=1

n

+
i

0
j

0
,t

◆
⌘P

t

(i)P

0
t

(j). (3)

We chose � = 0.75 as proposed in (Mikolov et al., 2013),
and we set ⌘ = 1. In practice, it is not necessary to explic-
itly construct the full matrices n�

t

, and it is more efficient
to keep only the distributions P

t

(i) and P

0
t

(j) in memory.

3. Skip-gram Filtering Algorithm
The skip-gram filtering algorithm is described in section 4
of the main text. We provide a formulation in pseudocode
in Algorithm 1.

4. Skip-gram Smoothing Algorithm
In this section, we give details for the skip-gram smoothing
algorithm, see section 4 of the main text. A summary is

Algorithm 2 Skip-gram smoothing; see section 4. We drop
indices i, j, and k for word, context, end embedding dimen-
sion, respectively, when they are clear from context.

Input: number of time steps T , time stamps ⌧1:T , word-
context counts n+

1:T , hyperparameters in Table 1
Obtain n

�
t

8t using Eqs. 1–3
Initialize µ

u,1:T , µv,1:T 0

Initialize ⌫

u,1:T , ⌫
v,1:T , !

u,1:T�1, and !

v,1:T�1 such
that B>

u

B

u

= B

>
v

B

v

= ⇧ (see Eqs. 5 and 11)
for step = 1 to N

0
tr do

Draw I ⇢ {1, . . . , L0} with |I| = L

0 uniformly
Draw J ⇢ {1, . . . , L0} with |J | = L

0 uniformly
for all i 2 I do

Draw ✏

[s]
ui,1:T ⇠ N (0, I)

Solve B

u,i

x

ui,1:T = ✏

ui,1:T for x
ui,1:T

end for
Obtain x

vj,1:T by repeating last loop 8j 2 J
Calculate gradient estimates of L for minibatch
(I,J) using Eqs. 10, 14, and 15

Obtain update steps d[·] for all variational parameters
using Adam optimizer with parameters in Table 1

Update µ
u,1:T µ

u,1:T +d[µ

u,1:T], and analogously
for µ

v,1:T , !
u,1:T�1, and !

v,1:T�1

Update ⌫

u,1:T and ⌫

v,1:T according to Eq. 18
end for
Repeat above loop for Ntr more steps, this time without

minibatch sampling (i.e., setting L

0
= L)

provided in Algorithm 2.

Variational distribution. For now, we focus on the word
embeddings, and we simplify the notation by dropping the
indices for the vocabulary and embedding dimensions. The
variational distribution for a single embedding dimension
of a single word embedding trajectory is

q(u1:T) = N (µ

u,1:T , (B
>
u

B

u

)

�1
). (4)

Here, µ
u,1:T is the vector of mean values, and B

u

is the
Cholesky decomposition of the precision matrix. We re-
strict the latter to be bidiagonal,

B

u

=

0

BBBBB@

⌫

u,1 !

u,1

⌫

u,2 !

u,2

.
⌫

u,T�1 !

u,T�1

⌫

T

1

CCCCCA
(5)

with ⌫

u,t

> 0 for all t 2 {1, . . . , T}. The variational pa-
rameters are µ

u,1:T , ⌫
u,1:T , and !1:T�1. The variational

distribution of the context embedding trajectories v1:T has
the same structure.

Supplementary Material to “Dynamic Word Embeddings”

With the above form of B
u

, the variational distribution is a
Gaussian with an arbitrary tridiagonal symmetric precision
matrix B

>
u

B

u

. We chose this variational distribution be-
cause it is the exact posterior of a hidden time-series model
with a Kalman filtering prior and Gaussian noise (Blei &
Lafferty, 2006). Note that our variational distribution is a
generalization of a fully factorized (mean-field) distribu-
tion, which is obtained for !

u,t

= 0 8t. In the general
case, !

u,t

6= 0, the variational distribution can capture cor-
relations between all time steps, with a dense covariance
matrix (B

>
u

B

u

)

�1.

Gradient estimation. The skip-gram smoothing algo-
rithm uses stochastic gradient ascent to find the variational
parameters that maximize the ELBO,

L = E
q

⇥
log p(U1:T , V1:T , n

±
1:T)

⇤
� E

q

⇥
log q(U1:T , V1:T)

⇤
.

(6)

Here, the second term is the entropy, which can be evalu-
ated analytically. We obtain for each component in vocab-
ulary and embedding space,

�E
q

[log q(u1:T)] = �
X

t

log(⌫

u,t

) + const. (7)

and analogously for �E

q

[log q(v1:T)].

The first term on the right-hand side of Eq. 6 cannot be eval-
uated analytically. We approximate its gradient by sam-
pling from q using the reparameterization trick (Kingma &
Welling, 2014; Rezende et al., 2014). A naive calculation
would require ⌦(T

2
) computing time since the derivatives

of L with respect to ⌫

u,t

and !

u,t

for each t depend on
the count matrices n±

t

0 of all t0. However, as we show next,
there is a more efficient way to obtain all gradient estimates
in ⇥(T) time.

We focus again on a single dimension of a single word em-
bedding trajectory u1:T , and we drop the indices i and k.
We draw S independent samples u[s]

1:T with s 2 {1, . . . , S}
from q(u1:T) by parameterizing

u

[s]
1:T = µ

u,1:T + x

[s]
u,1:T (8)

with

x

[s]
u,1:T = B

�1
u

✏

[s]
u,1:T where ✏

[s]
u,1:T ⇠ N (0, I). (9)

We obtain x

[s]
u,1:T in ⇥(T) time by solving the bidiagonal

linear system B

u

x

[s]
u,1:T = ✏

[s]
u,1:T . Samples v

[s]
1:T for the

context embedding trajectories are obtained analogously.
Our implementation uses S = 1, i.e., we draw only a sin-
gle sample per training step. Averaging over several sam-
ples is done implicitly since we calculate the update steps

using the Adam optimizer (Kingma & Ba, 2014), which ef-
fectively averages over several gradient estimates in its first
moment estimate.

The derivatives of L with respect to µ

u,1:T can be obtained
using Eq. 8 and the chain rule. We find

@L
@µ

u,1:T
⇡ 1

S

SX

s=1

h
�

[s]
u,1:T �⇧u

[s]
1:T

i
. (10)

Here, ⇧ 2 RT⇥T is the precision matrix of the prior
u1:T ⇠ N (0,⇧

�1
). It is tridiagonal and therefore the

matrix-multiplication ⇧u

[s]
1:T can be carried out efficiently.

The non-zero matrix elements of ⇧ are

⇧11 = �

�2
0 + �

�2
1

⇧

TT

= �

�2
0 + �

�2
T�1

⇧

tt

= �

�2
0 + �

�2
t�1 + �

�2
t

8t 2 {2, . . . , T � 1}
⇧1,t+1 = ⇧

t+1,1 = ��

�2
t

. (11)

The term �

[s]
u,1:T on the right-hand side of Eq. 10 comes

from the expectation value of the log-likelihood under q. It
is given by

�

[s]
ui,t

=

LX

j=1

h�
n

+
ij,t

+ n

�
ij,t

�
�

⇣
�u

[s]>
i,t

v

[s]
j,t

⌘
� n

�
ij,t

i
v

[s]
j,t

(12)

where we temporarily restored the indices i and j for words
and contexts, respectively. In deriving Eq. 12, we used the
relations @ log �(x)/@x = �(�x) and �(�x) = 1� �(x).

The derivatives of L with respect to ⌫

u,t

and !

u,t

are
more intricate. Using the parameterization in Eqs. 8–9, the
derivatives are functions of @B�1

u

/@⌫

t

and @B

�1
u

/@!

t

, re-
spectively, where B

�1
u

is a dense (upper triangular) T ⇥ T

matrix. An efficient way to obtain these derivatives is to
use the relation

@B

�1
u

@⌫

t

= �B

�1
u

@B

u

@⌫

t

B

�1
u

(13)

and similarly for @B

�1
u

/@!

t

. Using this relation and
Eqs. 8–9, we obtain the gradient estimates

@L
@⌫

u,t

⇡ � 1

S

SX

s=1

y

[s]
u,t

x

[s]
u,t

� 1

⌫

u,t

, (14)

@L
@!

u,t

⇡ � 1

S

SX

s=1

y

[s]
u,t

x

[s]
u,t+1. (15)

The second term on the right-hand side of Eq. 14 is the
derivative of the entropy, Eq. 7, and

y

[s]
u,1:T = (B

>
u

)

�1
h
�

[s]
u,1:T �⇧u

[s]
1:T

i
. (16)

Supplementary Material to “Dynamic Word Embeddings”

The values y

[s]
u,1:T can again be obtained in ⇥(T) time by

bringing B

>
u

to the left-hand side and solving the corre-
sponding bidiagonal linear system of equations.

Sampling in vocabulary space. In the above paragraph,
we described an efficient strategy to obtain gradient esti-
mates in only ⇥(T) time. However, the gradient estimation
scales quadratic in the vocabulary size L because all L2 el-
ements of the positive count matrices n+

t

contribute to the
gradients. In order speed up the optimization, we pretrain
the model using a minibatch of size L

0
< L in vocabulary

space as explained below. The computational complexity
of a single training step in this setup scales as (L0

)

2 rather
than L

2. After N 0
tr = 5000 training steps with minibatch

size L

0, we switch to the full batch size of L and train the
model for another Ntr = 1000 steps.

The subsampling in vocabulary space works as follows. In
each training step, we independently draw a set I of L

0

random distinct words and a set J of L0 random distinct
contexts from a uniform probability over the vocabulary.
We then estimate the gradients of L with respect to only
the variational parameters that correspond to words i 2 I
and contexts j 2 J . This is possible because both the prior
of our dynamic skip-gram model and the variational distri-
bution factorize in the vocabulary space. The likelihood of
the model, however, does not factorize. This affects only
the definition of �[s]

uik,t

in Eq. 12. We replace �

[s]
uik,t

by an
estimate �

[s]0
uik,t

based on only the contexts j 2 J in the
current minibatch,

�

[s]
ui,t

=

L

L

0

X

j2J

h �
n

+
ij,t

+ n

�
ij,t

�
�

⇣
�u

[s]>
i,t

v

[s]
j,t

⌘

� n

�
ij,t

i
v

[s]
j,t

. (17)

Here, the prefactor L/L0 restores the correct ratio between
evidence and prior knowledge (Hoffman et al., 2013).

Enforcing positive definiteness. We update the varia-
tional parameters using stochastic gradient ascent with the
Adam optimizer (Kingma & Ba, 2014). The parame-
ters ⌫

u,1:T are the eigenvalues of the matrix B

u

, which
is the Cholesky decomposition of the precision matrix
of q. Therefore, ⌫

u,t

has to be positive for all t 2
{1, . . . , T}. We use mirror ascent (Ben-Tal et al., 2001;
Beck & Teboulle, 2003) to enforce ⌫

u,t

> 0. Specifically,
we update ⌫

t

to a new value ⌫

0
t

defined by

⌫

0
u,t

=

1

2

⌫

u,t

d[⌫

u,t

] +

s✓
1

2

⌫

u,t

d[⌫

u,t

]

◆2

+ ⌫

2
u,t

(18)

where d[⌫
u,t

] is the step size obtained from the Adam opti-
mizer. Eq. 18 can be derived from the general mirror ascent
update rule �

0
(⌫

0
u,t

) = �

0
(⌫

u,t

) + d[⌫

u,t

] with the mirror

map � : x 7! �c1 log(x) + c2x
2
/2, where we set the pa-

rameters to c1 = ⌫

u,t

and c2 = 1/⌫

u,t

for dimensional
reasons. The update step in Eq. 18 increases (decreases)
⌫

u,t

for positive (negative) d[⌫

u,t

], while always keeping
its value positive.

Natural basis. As a final remark, let us discuss an op-
tional extension to the skip-gram smoothing algorithm that
converges in less training steps. This extension only in-
creases the efficiency of the algorithm. It does not change
the underlying model or the choice of variational distri-
bution. Observe that the prior of the dynamic skip-gram
model connects only neighboring time-steps with each
other. Therefore, the gradient of L with respect to µ

u,t

depends only on the values of µ
u,t�1 and µ

u,t+1. A naive
implementation of gradient ascent would thus require T�1

update steps until a change of µ
u,1 affects updates of µ

u,T

.

This problem can be avoided with a change of basis from
µ

u,1:T to new parameters ⇢
u,1:T ,

µ

u,1:T = A⇢

u,1:T (19)

with an appropriately chosen invertible matrix A 2 RT⇥T .
Derivatives of L with respect to ⇢

u,1:T are given by the
chain rule, @L/@⇢

u,1:T = (@L/@µ
u,1:T)A. A natural (but

inefficient) choice for A is to stack the eigenvectors of the
prior precision matrix ⇧, see Eq. 11, into a matrix. The
eigenvectors of ⇧ are the Fourier modes of the Kalman fil-
tering prior (with a regularization due to �0). Therefore,
there is a component ⇢

u,t

that corresponds to the zero-mode
of ⇧, and this component learns an average word embed-
ding over all times. Higher modes correspond to changes
of the embedding vector over time. A single update to the
zero immediately affects all elements of µ

u,1:T , and there-
fore changes the word embeddings at all time steps. Thus,
information propagates quickly along the time dimension.
The downside of this choice for A is that the transforma-
tion in Eq. 19 has complexity ⌦(T

2
), which makes update

steps slow.

As a compromise between efficiency and a natural basis,
we propose to set A in Eq. 19 to the Cholesky decomposi-
tion of the prior covariance matrix ⇧

�1 ⌘ AA

>. Thus, A
is still a dense (upper triangular) matrix, and, in our experi-
ments, updates to the last component ⇢

u,T

affect all compo-
nents of µ

u,1:T in an approximately equal amount. Since ⇧
is tridiagonal, the inverse of A is bidiagonal, and Eq. 19 can
be evaluated in ⇥(T) time by solving Aµ

u,1:T = ⇢

u,1:T for
µ

u,1:T . This is the parameterization we used in our imple-
mentation of the skip-gram smoothing algorithm.

References
Beck, Amir and Teboulle, Marc. Mirror Descent and Non-

linear Projected Subgradient Methods for Convex Opti-

Supplementary Material to “Dynamic Word Embeddings”

mization. Operations Research Letters, 31(3):167–175,
2003.

Ben-Tal, Aharon, Margalit, Tamar, and Nemirovski,
Arkadi. The Ordered Subsets Mirror Descent Optimiza-
tion Method with Applications to Tomography. SIAM
Journal on Optimization, 12(1):79–108, 2001.

Blei, David M and Lafferty, John D. Dynamic Topic Mod-
els. In Proceedings of the 23rd International Conference
on Machine Learning, pp. 113–120. ACM, 2006.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John William. Stochastic Variational Inference.
Journal of Machine Learning Research, 14(1):1303–
1347, 2013.

Kim, Yoon, Chiu, Yi-I, Hanaki, Kentaro, Hegde, Dar-
shan, and Petrov, Slav. Temporal Analysis of Language
Through Neural Language Models. In Proceedings of
the ACL 2014 Workshop on Language Technologies and
Computational Social Science, pp. 61–65, 2014.

Kingma, Diederik and Ba, Jimmy. Adam: A Method
for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Auto-Encoding
Variational Bayes. In Proceedings of the 2nd Interna-
tional Conference on Learning Representations (ICLR),
2014.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed Representations of
Words and Phrases and their Compositionality. In Ad-
vances in Neural Information Processing Systems 26, pp.
3111–3119. 2013.

Rauber, Paulo E., Falcão, Alexandre X., and Telea, Alexan-
dru C. Visualizing Time-Dependent Data Using Dy-
namic t-SNE. In EuroVis 2016 - Short Papers, 2016.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra,
Daan. Stochastic Backpropagation and Approximate In-
ference in Deep Generative Models. In The 31st Interna-
tional Conference on Machine Learning (ICML), 2014.

