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ABSTRACT 
 
Current trends in video technology indicate a significant 
increase in spatial and temporal resolution of video data. 
Recently, a linear-runtime feature diffusion algorithm was 
presented which aims for fast and accurate processing of 
such high resolution data. In this paper, we introduce this 
algorithm from the perspective of image-based depth esti-
mation, expanding upon the algorithm by requiring inter-
view consistency in the depth diffusion process.  We also 
discuss different application scenarios and provide an in-
depth analysis of the method in this context.  
 

Index Terms— Depth estimation, depth enhancement, 
depth diffusion, disparity. 
 
1. INTRODUCTION 
 
Depth maps are widely used in many areas, enabling appli-
cations such as controller-free gaming [1], depth-aware 
compositing [2], or depth adjustment in stereoscopic dis-
plays. Depth maps will also be a part of new standards cur-
rently in development for compressed 3D video [3], which 
will enable glasses-free stereo.  

Depending on the application, the requirements for 
depth map accuracy are different. While low resolution and 
low accuracy depth maps are sufficient for some applica-
tions, e.g. for human pose estimation in gaming application 
[1], for some others much higher accuracy is required, e.g. 
professional content production [2]. Current automatic im-
age-based depth estimation algorithms do not provide suffi-
ciently accurate depth maps in general. For this reason, in 
professional content production, depth map generation 
workflow still involves a vast amount of manual interaction. 
This is not surprising since depth estimation from image 
data alone is an ill-posed problem. Often additional high-
level knowledge about the scene content is required in order 
to resolve depth ambiguities, and to estimate correct depth 
values in some parts of a scene such as regions with limited 
texture. 

There are also other factors which limit accuracy of 
some automatic depth estimation algorithms. Current tech-
nology trends in content creation, transmission and display 
indicate wider adoption of ultra-high spatial and temporal 

resolutions (2k, 4k, 8k @ 48, 60, 120 fps). Typically com-
plexities of depth estimation algorithms do not scale as the 
resolution increases. In addition, depth estimation algo-
rithms often work only on image pairs or on short temporal 
windows and cannot exploit the coherent information avail-
able in a complete video volume belonging to multiple 
views. Consequently, estimated depth maps often suffer 
from jagged depth edges (Fig. 1(a)) and/or temporal depth 
inconsistencies. 

 
Recently, a linear run-time feature propagation method 

was presented [4], which we will refer to as the Feature 
Flow algorithm.  This method estimates the optical flow for 
a whole video volume and is able to coherently distribute 
sparse features, like colors, scribbles or depth values, in 
space and time (Fig. 1(b)). In this work, we expand upon the 
Feature Flow algorithm for stereo video by requiring bidi-
rectional agreement between left-to-right and right-to-left 
feature diffusion. In addition we provide an in-depth analy-
sis of how this method performs in the context of depth 
estimation, something that was missing from the original 
work.  

The rest of the paper is organized as follows: In section 
2, we summarize the Feature Flow algorithm. Then in     
section 3, we discuss applications of the algorithm and in-
troduce an extension, which enforces inter-view consistency 
during the depth diffusion. In section 4, we report and ana-
lyze experimental results and lastly we finalize the paper in 
section 5 with a brief conclusion.  
 

  
(a) (b) 

Fig. 1. Images overlaid with associated depth maps: (a) 
from MPEG’s 3D test data set, and (b) estimated with the 
Feature Flow algorithm. Note the strong alignment of depth 
edges with texture edges in (b). 



2. FEATURE FLOW ALGORITHM FOR SPARSE 
DEPTH DIFFUSION 
 
The Feature Flow algorithm diffuses depth features, which 
are sparsely defined over a video volume. They are diffused 
over the whole video volume in space and time by an aniso-
tropic edge-aware diffusion process (Fig. 2). Diffusion stops 
on color edges in spatial direction; and following the optical 
flow in temporal direction, it stops at pixel occlusions and 
disocclusions. Thereby the optical flow is computed simul-
taneously with the depth by diffusing sparse optical flow 
vectors. 

 

  
(a) (b) 

Fig. 2. (a) Sparse depth estimates, and (b) diffused depth 
map.  

 
Sparse depth features are diffused by a process speci-

fied by the following general iteration equation: 
 

!!!! !, !, ! ≔
(!!.!.! ∗ !!)(!, !, !)
(!!.!.! ∗ 1!!)(!, !, !)

 (1) 

 
,where ∗ is a convolution operator, !! is a 3-dimensional 
volume with !, !, and ! dimensions that is sparsely populat-
ed with depth values, 1!! is an indicator function having the 
value 1 for all positions in !! where sparse depth values are 
defined and 0 otherwise, and !!.!.! is a volumetric space and 
time varying linear filter with finite support (note: if the 
denominator is zero, then !!!! is defined as zero at the 
corresponding position). Intuitively, the numerator of the 
iteration is responsible for the actual diffusion. Depending 
on the diffusion filter, depth values at new positions may get 
attenuated with respect to the depth values that were used as 
input. The denominator takes this into account and normal-
izes the final depth values for this attenuation, and also 
restores input depth values used for diffusion.  

The Feature Flow algorithm presents an efficient linear-
runtime implementation of this diffusion process where the 
filter !!.!.! is a geodesic filter [4]. A geodesic filter is simi-
lar to a bilateral filter [5], however, in contrast it computes 
inter-pixel distances as geodesic distances in color images 
[4] where bilateral filter uses Euclidian distance instead. 
This has the advantage of classifying pixels of similar color 
as far away when they are separated by a color edge, which 
stops the diffusion process at color edges. Consequently the 
diffusion process stops at spatial color edges, and pixel 
occlusion and disocclusions in temporal direction, which is 

a highly desired property when diffusing sparse depth val-
ues.  

Together with the sparse depth !!, which is used as the 
input to the diffusion algorithm, often confidence data ! is 
also available. Confidence data describes the reliability of 
each of the given sparse depth values. The Feature Flow 
algorithm can take advantage of this information to increase 
the influence of more reliable depth values on the final 
depth diffusion result. This is achieved by pre-multiplying 
all sparse depth values !! and indicator values 1!! with 
their corresponding confidence before using this data in the 
diffusion algorithm. This increases the range of diffusion of 
more reliable depth values and suppresses the influence of 
less reliable depth values on the final result. 

For more details on the implementation of the Feature 
Flow algorithm the reader is referred to [4]. 
 
3. APPLICATIONS AND EXTENSION TO FEATURE 
FLOW 
 
The main depth-related application areas for the Feature 
Flow algorithm are depth estimation and depth enhance-
ment. The Feature Flow algorithm uses sparse depth values 
as input and associated confidence information if it is avail-
able. Sparse depth values and associated confidence levels 
can be acquired from different sources, which depend on the 
application scenario and the type of data available.  
 
3.1. Depth estimation 
 
Given a stereoscopic video, sparse but reliable disparity and 
confidence can be estimated from image pairs using state-
of-the-art feature tracking and feature matching algorithms. 
If camera calibration information is available, disparities can 
then be converted to depth. Nevertheless, Feature Flow can 
also be applied directly on sparse disparity instead of depth. 
In our implementation, we estimate disparities using the 
OpenCV implementation of the Lukas-Kanade feature 
tracker and combine this data with disparity features ob-
tained with a fast and reliable feature matching method [6].  

For multi-view video, when more than 2 views are 
available and associated camera parameters are given, the 
additional information can be exploited to estimate more 
reliable depth features for a given view. In particular, the 
additional views can provide depth information in regions 
that are not visible in all views. Additionally the larger 
number of sparse depth features contributes to the diffusion 
of more accurate dense depth maps. Experimental results are 
shown in Sections 4.1 and 4.2. 
 
3.2. Depth enhancement 
 
The Feature Flow algorithm can also be used to enhance 
depth maps obtained by a different method, e.g. by a con-
ventional image-based depth estimation method or measured 
by a depth sensor. Sparse or dense depth values can be pro-



vided as input to the Feature Flow algorithm. If confidence 
information is available, this can also be utilized for explic-
itly reducing the impact of inaccurate depth values. Corre-
sponding experimental results are shown in Section 4.3 
 
3.3. Inter-view consistency extension to Feature Flow 
 
When applied to stereoscopic or multi-view video, the Fea-
ture Flow algorithm diffuses depth values independently in 
each view. However, if cameras capture the same scene 
from slightly different positions, which is the usual applica-
tion scenario, there are dependencies between the depth 
values of different views. In particular, in a parallel stereo-
scopic camera setup the depth !!(!, !) at pixel !, !  in the 
left view is equal to !!(! + !, !) in the right view where 
!  is the corresponding disparity at pixel position !, ! . We 
extend the Feature Flow algorithm to enforce this property 
during simultaneous diffusion of depth maps for both views. 
This is achieved by computing confidence values 
!! !, ! = !!(! + !, !) for each depth value of each view.  
We define a normalized confidence based on depth differ-
ences 
 
! !, ! = 1 −max{|!! !, ! − !!(! + !, !)|,4}/4 (2) 

 
and then transform these confidences nonlinearly to increase 
the contribution of strongly matching depth values 
 

!! !, ! = !! ! + !, ! = 0.3 + 0.7 ∙ ! !, ! !   (3) 
 
The diffusion process for both views is then influenced by 
this confidence such that the impact of inaccurate depth 
values on the final diffusion result is reduced. Instead depth 
values of neighboring more confident pixels are diffused 
into these regions. That is achieved by pre-multiplying all 
intermediate depth maps and indicator values in Eq. (1) with 
the corresponding confidence values before using them for 
diffusion: 
 

!!,!"#! := !!! ∙ !!!      and 1!!! ,!"#:= 1!!! ∙ !!
!  (4) 

 
The operator ∙ in Eq. (4) represents a pixel-wise 
multiplication. A similar update is conducted for the right 
view simultaneously with the left view. Corresponding 
experimental results are shown in Section 4.4. 
 
4. EXPERIMENTAL RESULTS 
 
4.1. Ground truth test 
 
In this section we assess the objective accuracy of dense 
depth maps estimated by diffusion with Feature Flow. We 
use the deviation from ground truth depth maps in order to 
measure their accuracy. For this experiment, we use the 
animated sequence Undo Dancer, which is part of the 
MPEG test set for 3D Video standardization. We use sparse 

depth values acquired by subsampling the ground truth 
depth maps by a factor of 8 as the input. In Fig. 3 corre-
sponding depth maps are shown for one frame of the se-
quence. The results show that the diffusion algorithm is 
edge-aware, i.e. it is able to estimate sharp depth discontinu-
ities. The root-mean-square error (RMSE) between the 
depth frames is 6.6. 
 

  
(a) (b) 

 
(c) 

Fig. 3. (a) Ground truth dense depth, (b) depth estimated 
from sparse ground truth depth, and (c) illustration of depth 
estimation errors. 
 
4.2. Dense depth estimation by diffusion of estimated 
sparse depth features 
 
In contrast to the previous ground truth test, in this section 
we estimate the sparse depth values from multi-view video 
for a specific view, and diffuse these values with Feature 
Flow. First, we estimate disparities at good localizable im-
age positions with respect to the other views and convert 
them to depth. To identify good features we use [7] and 
employ the disparity estimation methods mentioned in Sec-
tion 3.1. In Fig. 4 the estimation results are shown for 2, 3, 
and 5 input views. Note that a larger number of views can 
also be used to obtain additional depth estimates.  

When compared against the ground truth depth map of 
Undo Dancer, we measured RMSEs of 14.4, 8.25, and 8.31 
for the depth maps estimated from 2, 3, and 5 input views 
respectively. There is a saturation when using 3 views and 
this can be explained by the reduced reliability of the depth 
features obtained from additional but more distant views. A 
comparison to the result of Section 4.1 shows that the use of 
estimated sparse depth leads to an increase of the depth 
estimation error by 25% in comparison to diffusing error-
free sparse depth values. 

 



   
(a) 2views (b) 3views (c) 5views 

Fig. 4. Depth maps estimated by diffusion of sparse depth 
features, which are estimated from 2, 3, and 5 input views 
respectively. 
 
4.3. Depth map enhancement 
 
In this section we use the Feature Flow algorithm to enhance 
existing depth maps, which were estimated by other meth-
ods. Fig. 5(a) shows a depth map used by MPEG, which is 
estimated with method [8]. It suffers from inaccuracies at 
depth edges and fine structures like the plant on the left or 
the balloon rope (also see Fig. 1(a)). We apply Feature Flow 
on sparse depth values obtained by subsampling MPEG 
depth maps by a factor of 4. As shown in Fig. 5(b), Feature 
Flow is able to improve the shape of depth discontinuities, 
which is clearly observable on the fine details of the plant 
and the round edges of the balloons. 
 

  
(a) (b) 

Fig. 5. (a) Depth map from MPEG’s 3D test data set, and 
(b) corresponding depth map enhanced by Feature Flow. 
 

To demonstrate the benefits of the depth map enhance-
ment, we use the depth maps for depth-aware compositing 
(Fig. 6). The depth map inaccuracies of the original MPEG 
depth map lead to occlusions of the logo with background 
pixels, while the enhanced depth map significantly reduces 
these errors and keeps edges between the logo and the image 
content sharp. 
 

  
(a) (b) 

Fig. 6. Depth-aware compositing results with (a) MPEG 
depth map, and (b) enhanced MPEG depth map. 
 
4.4. Inter-view consistency 
 
To investigate the impact of the inter-view consistency 
extension (Section 3.3) to the diffusion result of Feature 

Flow, we estimate the depth maps for both views of a stere-
oscopic sequence with and without the proposed extension 
(Fig. 7). The difference image in Fig. 7(c) shows that the 
extension has its highest impact on regions close to depth 
discontinuities, which correspond to regions that have no 
visible correspondences between views due to occlusions. 
Hence, this shows that enforcing inter-view consistency can 
help the diffusion of the correct depth values into the occlu-
sion regions. 
 

   
(a) (b) (c) 

Fig. 7. Left depth map estimated without (a) and with (b) 
inter-view consistency, and (c) the difference image be-
tween (a) and (b). 
 
5. CONCLUSION 
 
In this paper we presented an extension to a recently intro-
duced work for linear-runtime feature diffusion. We applied 
this feature diffusion algorithm to the depth estimation prob-
lem, and introduced a novel extension for enforcing inter-
view depth consistency when simultaneously estimating 
depth for two views. We discussed possible application 
scenarios of the algorithm, and presented and analyzed 
corresponding experimental results. The results show that 
sparse depth diffusion is a promising low-complexity meth-
od for depth estimation and enhancement of existing depth 
maps, reaching quality levels suitable for corresponding 
applications.  
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