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Fig. 1. Our differentiable optimal control enables the retargeting of expressive motions, taken from either animals or animations, onto legged robots of vastly
different proportions and mass distribution, as illustrated here with a dog motion retargeted onto seven different quadrupeds.

Legged robots are designed to perform highly dynamic motions. However,

it remains challenging for users to retarget expressive motions onto these

complex systems. In this paper, we present a Differentiable Optimal Control
(DOC) framework that facilitates the transfer of rich motions from either

animals or animations onto these robots. Interfacing with either motion

capture or animation data, we formulate retargeting objectives whose pa-

rameters make them agnostic to differences in proportions and numbers of

degrees of freedom between input and robot. Optimizing these parameters

over the manifold spanned by optimal state and control trajectories, we min-

imize the retargeting error. We demonstrate the utility and efficacy of our

modeling by applying DOC to aModel-Predictive Control (MPC) formulation,

showing retargeting results for a family of robots of varying proportions

and mass distribution. With a hardware deployment, we further show that

the retargeted motions are physically feasible, while MPC ensures that the

robots retain their capability to react to unexpected disturbances.
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1 INTRODUCTION
Legged robots have become widely accessible, and are designed

to perform fast and dynamic motions. While demonstrations of

expressive performances such as dancing exist [Ackerman 2021; Bi

et al. 2018], it requires expert knowledge and manual trial-and-error

to make these legged systems appear as believable characters rather

than robots.

To give these mechanical systems traits of animals, motion cap-

ture systems are a valuable source of data. Skilled artists have also

mastered the art of breathing life into digital characters. However,

significant differences in proportions, mass distributions, and num-

ber of degrees of freedom make the retargeting of motions onto

these systems an utmost challenging task. Further complicating

matters, artistic input is not constrained to obey the laws of physics.

Recent advances in machine learning has made it possible for

robots to learn agile and dynamic motor skills [Peng et al. 2020].

However, artists only have limited or indirect control of the resulting

motion. Alternative retargeting techniques that interface either with

artistic or captured input exist. However, they either require the

robot to have similar proportions [Kang et al. 2022, 2021], to be fully

actuated [Hoshyari et al. 2019], or that the animation is created with

a rig that has the same degrees of freedom as the robot.
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In this paper, we describe a technique that enables the optimal
retargeting of expressive motions onto freely walking robots. At the

technical core of our approach is a Differentiable Optimal Control
(DOC) framework that interfaces with arbitrary sources of motion

data. While we ask users to define loose correspondences between

points of interest on the input and the robot, we optimize parame-

ters of a set of retargeting objectives to account for differences in

proportions and degrees of freedom.

To demonstrate the utility of our modeling, we make a specific

Model-Predictive Control (MPC) formulation [Grandia et al. 2022]

differentiable with respect to objective parameters, then use it to

transfer the samemotion capture or animation data onto quadrupeds

of vastly different proportions and mass distribution (see Fig. 1).

Because the robots have to fulfill kinematic and dynamic constraints

dictated by physics, the retargeting result is natural, with potential

applications in physics-based character animation. As we showwith

experiments on a physical robot, the system retains its capability

to react to uncertainty in the environment through online MPC,

closely following the target motion before and after unexpected

disturbances.

In short, our contributions are

• a differentiable continuous optimal control framework that

applies to general constrained optimal control strategies, and

• an easy-to-use retargeting technique that is agnostic to dif-

ferences in proportions, mass distributions, and degrees of

freedom between the input source and the robot model.

2 RELATED WORK
Creating Realistic Motions. In computer graphics, much work has

been dedicated to producing realistic-looking quadrupedal anima-

tions [Raibert and Hodgins 1991; Skrba et al. 2009]. Physics-based

simulation techniques bring these results closer to the physical

world [Coros et al. 2011; Ye and Liu 2010], and more recent work

has also leveraged learning-based approaches to improve anima-

tions based on real-world data [Lee et al. 2021; Peng et al. 2022; Won

et al. 2022; Yao et al. 2022a]. This is a valuable inspiration for robotic

motions, but is not directly applicable.

For animated characters, some work has also looked at motion

retargeting onto characters of different proportions [Reveret et al.

2005; Won and Lee 2019] or morphologies [Gleicher 1998; Hecker

et al. 2008]. Da Silva et al. [2008] use an MPC formulation to track a

mocap reference. Ryu et al. [2021] use a muscle-based retargeting

for improved realism on animated characters. Zordan et al. [2002]

combine a mocap reference with a physics simulation model to cre-

ate responsive motions based on a mocap input. However, bringing

motions onto physical robots presents additional challenges.

For humanoid robots, the problem of motion retargeting from

a mocap input has been studied through model-based approaches

[Ayusawa and Yoshida 2017; Dariush et al. 2008a; Darvish et al. 2019;

Nakaoka et al. 2007; Pollard et al. 2002; Yamane et al. 2010], or by

defining motion primitives [Dariush et al. 2008b; Ott et al. 2008].

Data-driven approaches have also been explored [Hausman et al.

2018; Sok et al. 2007]. Gielniak et al. [2011] evaluate metrics for

measuring human-to-robot motion similarity. Retargeting problems

have also been studied for humanoid robots for teleoperation tasks

[Rouxel et al. 2022; Tosun et al. 2014], gestures [Choi et al. 2020,

2021], and locomotion [Taylor et al. 2021]. However, none of the

above works demonstrate retargeting of highly dynamic locomotion

with aperiodic footfall patterns.

Outside the domain of dynamic walking, Schumacher et al. [2021]

consider motion retargeting for quasi-static walking, and Hoshyari

et al. [2019] retarget dynamic motions for fixed-base robots. Gielniak

et al. [2010] add so-called secondary animations to robot motions

for improved realism.

Kim et al. [2022] demonstrate an early result of using a deep-

learning-based formulation to retarget motions from a human in a

mocap space onto a quadrupedal robot.

Creating Motions for Walking Robots. Recent years have seen a

surge of work in the domain of quadrupedal locomotion, spurred

by the availability of quadrupedal robots.

Model-based approaches to robot locomotion typically imple-

ment a Model Predictive Controller (MPC) [Farshidian et al. 2017a;

Neunert et al. 2016]. By repeatedly solving an optimal control prob-

lem, functional motions such as walking can be generated [Apgar

et al. 2018; Gehring et al. 2016; Grandia et al. 2019; Katz et al. 2019;

Neunert et al. 2017; Nishiwaki et al. 2002; Xi and Remy 2014; Zhou

et al. 2022]. These controllers are typically set up to follow hig-level

walking commands and use handcrafted heuristics to regularize

the walking style. During the hardware experiments in this work,

we use MPC to track retargeted motions, removing the need for

additional heuristics.

There are some recent examples where mocap or artistic input

is combined with model-based locomotion approaches. Kang et

al. [2022; 2021] extract the body and footfall pattern from a mocap

source, then compute a robot gait using heuristics. Li et al. [2021] use

trajectory optimization with a MPC-based approach to produce a

robot gait which is close to amocap input. In both of these works, the

retargeting from mocap skeleton to robot was performed manually,

and the transfer of motions onto robots with different proportions

was not considered. By optimizing over retargeting parameters, we

automate this task for a range of proportions and mass distributions.

Similar to the bi-level optimization approach proposed in this

work, Zhao et al. [2020] solve a robot design optimization problem,

wrapped around an MPC formulation. However, their focus is on

optimizing the design of the robot rather than optimally retargeting

a motion onto a given robot.

Boston Dynamics have reached world-wide fame with videos of

dancing quadrupeds [2021], however their approach is proprietary

and unpublished. In a blogpost, they briefly describe their “Choreog-

rapher” tool, which allows for the specification of dance sequences,

and can also interface with animation data from Autodesk Maya,

but their underlying approach is undisclosed.

Another branch of work has applied deep reinforcement learning

and other machine learning methods to locomotion problems [Smith

et al. 2021; Tan et al. 2018; Yang et al. 2020]. Recent results have

demonstrated the learning of quadrupedal gaits from mocap sources

on simulated robots [Yin et al. 2021] and on hardware [Bohez et al.

2022; Peng et al. 2020; Yao et al. 2022b]. While learning-based tech-

niques can yield impressive performance, they commonly require
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significant reward engineering if proportions and mass distributions

between input and target robot differ.

Differential Dynamic Programming. DOC is closely related to Dif-

ferential Dynamic Programming (DDP). Seminal work focused on

unconstrained discrete-time optimal control problems [Jacobson

and Mayne 1970; Mayne 1966; Mitter 1966], followed by formula-

tions that can handle linear [Murray and Yakowitz 1979; Shi et al.

1990], box inequality [Tassa et al. 2014], or more general equality

and inequality constraints [Aoyama et al. 2021; De O. Pantoja and

Mayne 1989; Giftthaler and Buchli 2017; Howell et al. 2019; Lin and

Arora 1991; Todorov and Li 2005; Xie et al. 2017]. We focus on a

continuous-time formulation [Sleiman et al. 2021; Sun et al. 2014]

and use projection to handle equality constraints [Farshidian et al.

2017b], similar to the QR-decomposition approach for state-only

constraints described by Giftthaler et al. [2017].

However, in contrast, we not only solve an optimal control prob-

lem, but make the resulting optimal trajectories differentiable with

respect to parameters. Oshin et al. [2022] describe a differentiable

unconstrained discrete-time formulation, and Amos et al. [2018]

present a similar method that also supports box constraints. Our

technique interfaces with the larger class of equality-constrained

Optimal Control (OC) problems. Moreover, we show that two similar

sets of matrix Riccati equations can be derived to efficiently solve

for optimal trajectories as well as their sensitivities with respect

to a generic set of parameters, reducing the code that needs to be

written to make an OC problem differentiable.

3 OVERVIEW
Before describing how we take derivatives of optimal control and

robot state trajectories, we briefly review the continuous control

problem considered here.

To get robots to perform dynamic motions, control problems of

the form

min

x(𝑡 ),u(𝑡 )

∫ 𝑡𝑒

𝑡𝑠

𝑓 (x(𝑡), u(𝑡); p) d𝑡 + 𝐹 (x(𝑡𝑒 ); p) (1)

s.t. robot in dynamic equilibrium for all 𝑡,

where x(𝑡) is the time-varying state of the robot and u(𝑡) the cor-
responding control trajectory, are solved for a fixed time horizon

[𝑡𝑠 , 𝑡𝑒 ]. Because we assume a fixed and finite time horizon, it is

common practice to differentiate between an intermediate objective

𝑓 and a terminal objective 𝐹 [Jacobson and Mayne 1970]. The in-

termediate objective measures the difference to the target motion,

parameterized with parameters p that provide control of the retar-

geting result. The terminal objective accounts for effects beyond

the finite horizon. For example, we can use 𝐹 to ask for an end

state from which the robot can transition into standing. We also add

regularization terms to the objective pair, (𝑓 , 𝐹 ), where necessary.
With a motion capture system, we can track the motion of a

set of points on an animal’s body. Similarly, we can extract target

trajectories of points of interest on an artist-specified input (Fig. 2,

Input). To retarget an extracted motion onto a robot, it is natural

to define reference frames on the robot, then guide their motion

using the extracted target trajectories (Defining Correspondences).

Measuring the differences between simulated and target states with

Algorithm 1 Optimal Control (OC)

1: function OC(p, x(𝑡), u(𝑡))
2: loop
3: 𝛿x(𝑡), 𝛿u(𝑡),𝝀(𝑡),𝝂 (𝑡) := OCSearchDir(p, x(𝑡), u(𝑡))
4: find step length 𝛼 [Nocedal and Wright 2006]

5:

[
x(𝑡)
u(𝑡)

]
:=

[
x(𝑡)
u(𝑡)

]
+ 𝛼

[
𝛿x(𝑡)
𝛿u(𝑡)

]
6: if converged then break end if
7: end loop
8: return x(𝑡), u(𝑡),𝝀(𝑡),𝝂 (𝑡) ⊲ optimal trajectories

9: end function

per-point objectives, we solve for optimal state and control trajec-

tories, x(𝑡) and u(𝑡), that minimize a weighted sum of differences.

We will describe our retargeting objectives in Sec. 6.

Because our objective pair and the robot dynamics are both, in

general, nonlinear, we resort to an iterative scheme. However, in con-

trast to standard numerical minimization problems, the unknowns

in our OC problem are time-varying functions instead of variables.

Our search direction are therefore functions, 𝛿x(𝑡) and 𝛿u(𝑡), that
we compute with a local approximation as we describe in Sec. 4.

We can then perform line search to determine a step length, 𝛼 , to

update our current best estimate (see Alg. 1).

3.1 Defining the Retargeting Task
To make our retargeting agnostic to differences in proportions, mass

distribution, and number of degrees of freedom, we parameterize,

for example, the non-uniform scaling of target trajectories and the

reference location and orientation of points of interest on the com-

ponents of the robot (see Sec. 6).

Due to the limited number of degrees of freedom of a legged

robot, the motion of its components is tightly coupled. Moreover,

the robot will rarely have similar proportions and mass distribution

to the input. It is therefore tedious for users to find good values for

p, and hence best to solve for optimal values using optimization.

3.2 Solving for Optimal Parameters
If we make adjustments to parameters, the optimal control and state

trajectories change. We therefore need to solve the OC problem

repeatedly when solving for optimal parameters. To this end, we

formulate a bi-level or nested optimization where we solve for an

optimal p in the outer loop (Alg. 2; Fig. 2, DOC), and for optimal

trajectories in the inner loop (Alg. 1).

The outer optimization minimizes a pair of intermediate and

terminal objectives, (𝑔,𝐺), that depend on optimal state and control

trajectories, x(𝑡) and u(𝑡), and is set to a modified set of retargeting

objectives and regularization terms

min

p

∫ 𝑡𝑒

𝑡𝑠

𝑔(x(𝑡, p), u(𝑡, p); p) d𝑡 + 𝐺 (x(𝑡𝑒 , p); p) (2)

s.t. parameters fulfill a set of requirements.

Because the optimal trajectories implicitly depend on p, we solve
the OC problem whenever we evaluate the objective pair or its
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Legged RobotInput Defining Correspondences

DOC Iteration

Di�erentiable Optimal Control (DOC)

mocap

animation
Optimal Control (OC)

Fig. 2. Overview. Our processing starts with extracting motion trajectories of points of interest from captured input or common animation representations
(Input). To define the retargeting problem, the user then selects corresponding locations on the robot (Defining Correspondences). Using our differentiable
optimal control framework, we then make automated adjustments to the scaling of target trajectories or the locations of initial reference locations (DOC).
Applying DOC to MPC results in expressive and believable motions on physical robots, while they retain their capability to respond and recover from external
disturbances (Legged Robot).

Algorithm 2 Differentiable Optimal Control (DOC)

1: function DOC(p, x(𝑡), u(𝑡))
2: loop
3: x(𝑡), u(𝑡),𝝀(𝑡),𝝂 (𝑡) := OC(p, x(𝑡), u(𝑡))
4: xp (𝑡), up (𝑡) := DOCSens(p, x(𝑡), u(𝑡),𝝀(𝑡),𝝂 (𝑡))
5: evaluate gradient (Eq. 3)

6: compute quasi-Newton search direction d
7: find step length 𝛼 ([Nocedal and Wright 2006])

8: p := p − 𝛼 d
9: x(𝑡), u(𝑡) := x(𝑡), u(𝑡)
10: if converged then break end if
11: end loop
12: return p, x(𝑡), u(𝑡) ⊲ optimal retargeting parameters

13: end function

gradient∫ 𝑡𝑒

𝑡𝑠

(
𝑔𝑇x xp (𝑡) + 𝑔𝑇u up (𝑡) + 𝑔𝑇p

)
d𝑡 +𝐺𝑇

x xp (𝑡𝑒 ) +𝐺𝑇
p , (3)

omitting optimal trajectory arguments. While the gradients of the

intermediate and terminal functions with respect to state and control

parameters (𝑔x, 𝑔u, 𝑔p, 𝐺x and 𝐺p) are straightforward to compute,

the total derivatives of the optimal state and control trajectories,

xp (𝑡) and up (𝑡), cannot directly be computed using symbolic or

automatic differentiation.

One of our technical contributions is the derivation of continuous

two-boundary problems that allow us to compute search directions

for our OC and sensitivities for our DOC problems (Sec. 4). To solve

them, we propose a projection technique that results in efficient

algorithms for the OCSearchDir and DOCSens functions (Sec. 5).

We then apply DOC to Model-Predictive Control (MPC) in Sec. 6.

4 DIFFERENTIABLE OPTIMAL CONTROL
Optimal control of legged systems requires us to consider dynamic

equilibrium and other algebraic constraints. We will first describe

these constraints, recasting our optimal control problem as a non-

linear two-boundary problem that we iteratively solve using the

algorithm outlined in Alg. 1. We will then derive a second two-

boundary problem to compute sensitivities in Alg. 2.

4.1 Optimally Controlling Legged Systems
To ensure that the optimal state and control trajectories are feasible,

we constrain them to fulfill kinematic and dynamic constraints,

¤x = f (x(𝑡), u(𝑡)). By introducing velocity variables, second-order

equations of motion can always be brought into this standard form.

The state x(𝑡𝑠 ) = x𝑠 at the start time 𝑡𝑠 is assumed to be known.

Contacts between the feet and the ground form additional, time-

varying, constraints on the feasible trajectories. We enforce these

conditions with general equality constraints, g(x(𝑡), u(𝑡)) = 0.
Moreover, we assume that inequality constraints, in our case

friction cone constraints and joint and torque limits, are enforced

with penalty functions that are part of the objective 𝑓 [Grandia et al.

2022]. The continuous-time, equality constrained optimal control

problem we consider is therefore

min

x(𝑡 ),u(𝑡 )

∫ 𝑡𝑒

𝑡𝑠

𝑓 (x(𝑡), u(𝑡); p) d𝑡 + 𝐹 (x(𝑡𝑒 ); p) (4)

s.t. x(𝑡𝑠 ) = x𝑠 and ¤x = f (x(𝑡), u(𝑡))
and g(x(𝑡), u(𝑡)) = 0.

4.2 Solving for Optimal Trajectories
Common practice in deriving solution strategies for optimal control

problems is to recast the minimization as a two-boundary prob-

lem [Jacobson and Mayne 1970]. Following standard procedure, we

form the Lagrangian

𝐿(x, u,𝝀,𝝂 ; p) =
∫ 𝑡𝑒

𝑡𝑠

𝐻 (x, u,𝝀,𝝂 ; p) − 𝝀𝑇 ¤x d𝑡 (5)

with Hamiltonian

𝐻 (x, u,𝝀,𝝂 ; p) = 𝑓 (x, u; p) + 𝝀𝑇 f (x, u) + 𝝂𝑇 g(x, u), (6)

where 𝝀(𝑡) are so-called costates and 𝝂 (𝑡) Lagrange multipliers.

We then recast the optimal control problem as the two-boundary

problem
𝐻x (x, u,𝝀,𝝂 ; p)
𝐻u (x, u,𝝀,𝝂 ; p)
𝐻𝝀 (x, u,𝝀,𝝂 ; p)
𝐻𝝂 (x, u,𝝀,𝝂 ; p)

 =

−¤𝝀
0
¤x
0

 with

x(𝑡𝑠 ) = x𝑠
𝝀(𝑡𝑒 ) = 𝐹x (x(𝑡𝑒 )),

(7)

by applying the Euler-Lagrange equation or Pontryagin’s Mini-

mum Principle [Bertsekas 2012]. The solution of this two-boundary
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problem is the set of optimal state, control, costate and Lagrange

multiplier trajectories that minimize our OC objective.

Because the boundary condition at 𝑡𝑒 depends on the optimal

state x, we cannot directly solve this problem. Moreover, since the

equations in Eq. 7 are generally nonlinear in the state and control

trajectories, it is common practice to resort to an iterative scheme.

To numerically solve standard nonlinear systems of equations, we

linearize the equations around the current iterate, compute a search

direction, and perform line search to determine the next iterate.

The setting here is different in that the unknowns are time-

varying functions instead of variables. However, to solve the two-

boundary problem, we can proceed analogously: We form first-order

Taylor expansions of the right- and left-hand side of the nonlinear

equations in problem 7,
𝐻x
𝐻u
𝐻𝝀
𝐻𝝂

 +

𝐻xx 𝐻xu 𝐻x𝝀 𝐻x𝝂
𝐻ux 𝐻uu 𝐻u𝝀 𝐻u𝝂
𝐻𝝀x 𝐻𝝀u 𝐻𝝀𝝀 𝐻𝝀𝝂
𝐻𝝂x 𝐻𝝂u 𝐻𝝂𝝀 𝐻𝝂𝝂

︸                               ︷︷                               ︸
H


𝛿x
𝛿u
𝝀
𝝂

 and


−¤𝝀
0

¤x + 𝛿 ¤x
0

 , (8)

and the boundary condition at 𝑡𝑒

𝐹x (x) + 𝐹xx (x)𝛿x. (9)

Because the Hamiltonian is already linear in co-states and Lagrange

multipliers, we only linearize state and control trajectories in the

above expansions, evaluating them at the point (x, u, 0, 0) in the

neighborhood (𝛿x, 𝛿u,𝝀,𝝂). By substituting these three expansions

in problem 7, and using the constraint ¤x = f to simplify the third

equation, we form the linear two-boundary problem
𝐻xx 𝐻xu f𝑇x g𝑇x
𝐻ux 𝐻uu f𝑇u g𝑇u
fx fu 0 0
gx gu 0 0



𝛿x
𝛿u
𝝀
𝝂

 +

𝐻x
𝐻u
0
g

 =

−¤𝝀
0
𝛿 ¤x
0

 (10)

with conditions

𝛿x(𝑡𝑠 ) = 0 and 𝝀(𝑡𝑒 ) = 𝐹xx (x(𝑡𝑒 )) 𝛿x(𝑡𝑒 ) + 𝐹x (x(𝑡𝑒 )) . (11)

Solving the linearized problem for delta trajectories, 𝛿x(𝑡) and
𝛿u(𝑡), we then update our current best state and control trajectory

estimates, x(𝑡) and u(𝑡), as summarized in Alg. 1. This algorithm is

known as Differential Dynamic Programming (DDP) [Mayne 1966].

Standard formulations, however, do not consider an additional set

of equality constraints.

It remains to discuss how we can efficiently solve the linear two-

boundary problem for the delta trajectories. Because a similar sys-

tem will emerge when we discuss derivatives of optimal trajectories,

we will discuss the solution strategy after introducing our differen-

tiable control formulation. To keep the notation in the next section

compact, we introduce the Hamiltonian matrixH that collects all

second derivatives of the Hamiltonian in the above Taylor expan-

sion.

4.3 Computing Sensitivities
To derive a two-boundary problem for computing sensitivities, we

again use first-order Taylor expansions of problem 7, but now con-

sidering a change in parameters, p + 𝛿p. Because 𝐻 is a function of

optimal trajectories and the set of parameters, and optimal trajecto-

ries implicitly depend on p, we expand the total derivative on either

side of the equation in problem 7
𝐻x
𝐻u
𝐻𝝀
𝐻𝝂

 +H


xp
up
𝝀p
𝝂p

 𝛿p +


𝐻xp
𝐻up
𝐻𝝀p
𝐻𝝂p

 𝛿p =


−( ¤𝝀 + ¤𝝀p𝛿p)

0
¤x + ¤xp𝛿p

0

 , (12)

using time derivatives of expansions of optimal trajectories, for

example, ¤x(𝑡, p + 𝛿p) ≈ ¤x(𝑡, p) + ¤xp (𝑡) 𝛿p, for state trajectories, on
the right-hand side. Because 𝐻x = −¤𝝀, 𝐻u = 0, 𝐻𝝀 = ¤x, 𝐻𝝂 = 0
at (x, u,𝝀,𝝂), and 𝛿p cancels, we can bring these equations into

standard form
𝐻xx 𝐻xu f𝑇x g𝑇x
𝐻ux 𝐻uu f𝑇u g𝑇u
fx fu 0 0
gx gu 0 0



xp
up
𝝀p
𝝂p

 +

𝐻xp
𝐻up
fp
gp

 =

−¤𝝀p
0
¤xp
0

 , (13)

with boundary conditions

xp (𝑡𝑠 ) = 0 and 𝝀p (𝑡𝑒 ) = 𝐹xx (x(𝑡𝑒 ))xp (𝑡𝑒 ) + 𝐹xp (x(𝑡𝑒 )) . (14)

Note that the resulting derivatives are exact because the resulting
system is independent of 𝛿p. This is also the case if we use a higher-
order Taylor expansion, providing a recipe to compute higher-order

derivatives. All Hamiltonian derivatives are evaluated at optimal

trajectories, (x, u,𝝀,𝝂), for a given p.
A key insight is that the above linear two-boundary problem

resembles the linearized problem 10 we solve when iteratively com-

puting optimal trajectories. We can therefore use the same solution

strategy for solving both linear two-boundary problems, as we will

explain in the next section.

5 SOLVING LINEAR TWO-BOUNDARY PROBLEMS
For problems without equality constraints, a common solution strat-

egy for linear two-boundary problems is the so-called backward

sweep method [Bryson Jr 1965; Mitter 1966]. In this method, one of

the two boundary conditions is removed by recasting the problem.

The resulting set of matrix Riccati equations is then solved backward

in time.

What is different in our setting is that we have a set of equality

constraints, and therefore a fourth equation and an additional set

of unknown Lagrange multiplier trajectories. Below, we describe a

technique to project the continuous equations onto the constraint

manifold, reducing the 4x4 to a 2x2 two-boundary problem that we

know how to solve using Riccati equations [Bertsekas 2012]. We

describe our projection next, then derive the Riccati equations in

Sec. 5.2

5.1 Projecting Equations onto Constraint Manifold
The linear two-boundary OC problem 10 and DOC problem 13 are

similar. The differences are

• In the OC problem, derivatives are evaluated at the current it-

erate (x, u, 0, 0), while we use optimal trajectories, (x, u,𝝀,𝝂),
as arguments in the DOC problem.
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• The unknowns in the OC problem are time-varying vector

functions (𝛿x, 𝛿u,𝝀,𝝂), while we solve for time-varying ma-

trix functions, (xp, up,𝝀p,𝝂p) in the DOC problem.

• The constant vector in the inhomogeneous linear system of

equations has entries (𝐻x, 𝐻u, 0, g) in the OC, and entries

(𝐻xp, 𝐻up, fp, gp) in the DOC problem.

• In the boundary conditions for co-states at time 𝑡𝑒 , we are

using terminal function derivatives (𝐹xx, 𝐹x) in the OC, and

derivatives (𝐹xx, 𝐹xp) in the DOC problem.

To derive our solution strategy, we work with time-varying vector

variables (x, u,𝝀,𝝂), a constant vector C with entries (𝐻x, 𝐻u, f, g),
and terminal function derivatives (𝐹xx, 𝐹x) for which we can sub-

stitute quantities for the OC and DOC problems to derive our final

algorithms: 
𝐻xx 𝐻xu f𝑇x g𝑇x
𝐻ux 𝐻uu f𝑇u g𝑇u
fx fu 0 0
gx gu 0 0



x
u
𝝀
𝝂

 +

𝐻x
𝐻u
f
g

 =

−¤𝝀
0
¤x
0

 (15)

with boundary conditions

x(𝑡𝑠 ) = 0 and 𝝀(𝑡𝑒 ) = 𝐹xx (x(𝑡𝑒 ))x(𝑡𝑒 ) + 𝐹x (x(𝑡𝑒 )). (16)

Our goal is to first remove the constraint equation and the La-

grange multiplier trajectories from the above system, reducing it

to a 3x3 problem. To do so, we work with a reduced set of control

variables that fulfill the constraint equations.

Assuming that the constraint Jacobian gu has full row rank, we

form the QR decomposition of its transpose

g𝑇u = QR =
[
Q1 Q2

] [R1
0

]
= Q1R1 . (17)

We then substitute R𝑇
1
Q𝑇
1
for gu in the 4th equation to express the

set of all control trajectories that satisfy the constraint equations

as a combination of a range space and null space solution that is

parameterized with subspace control trajectories ũ(𝑡)

u = Pxx + Puũ + P with (18)

Px = −Q1R−𝑇1 gx, Pu = Q2, P = −Q1R−𝑇1 g. (19)

Substituting for u in problem 15, we remove the direct dependence

on control trajectories
𝐻xx + 𝐻xuPx 𝐻xuPu f𝑇x g𝑇x
𝐻ux + 𝐻uuPx 𝐻uuPu f𝑇u g𝑇u
fx + fuPx fuPu 0 0
gx + guPx guPu 0 0



x
ũ
𝝀
𝝂

 +

𝐻x + 𝐻xuP
𝐻u + 𝐻uuP
f + fuP
g + guP

 =

−¤𝝀
0
¤x
0

 .
By using properties of the QR decomposition, we can easily verify

that all coefficients in the last equation, namely gx + guPx, guPu,
and g + guP, are zero.
By premultiplying the equations with the projection matrix

I P𝑇x 0 0
0 P𝑇u 0 0
0 0 I 0
0 0 0 I

 , (20)

the coefficients corresponding to the Lagrange multiplier trajectory

become zero, resulting in the system
�̃�xx �̃�xu ˜f𝑇x 0
�̃�ux �̃�uu ˜f𝑇u 0
˜fx ˜fu 0 0
0 0 0 0



x
ũ
𝝀
𝝂

 +

�̃�x
�̃�u
˜f
0

 =

−¤𝝀
0
¤x
0

 (21)

whose solution is independent of the 4th equation and the Lagrange

multipier trajectories. Explicit expressions for the entries of the

reduced 3x3 Hamiltonian matrix
˜H as well as the entries of the

3-entry vector C̃ can be found in the Appendix.

In a last reduction step, we remove the second equation by sub-

stituting

ũ = −�̃�−1
uu

(
�̃�uxx + ˜f𝑇u 𝝀 + �̃�u

)
(22)

in the remaining two equations, resulting in the 2x2 system[
�̂�xx −ˆf𝑇x
ˆfx Ĥ

] [
x
𝝀

]
+
[
�̂�x
ˆf

]
=

[ ¤𝝀
¤x

]
(23)

with the 2x2 Hamiltonian matrix
ˆH and 2-entry vector Ĉ (see Ap-

pendix).

5.2 Reducing the Two- to a Single-Boundary Problem
A general two-boundary problem is difficult to solve, but because

the two-boundary problem is linear, we can recast it as a single-

boundary problem [Bertsekas 2012]. To this end, we assume that

there is a matrix and vector, S(𝑡) and s(𝑡), such that

𝝀(𝑡) = S(𝑡)x(𝑡) + s(𝑡) (24)

for all 𝑡 . At time 𝑡𝑒 , the boundary conditions are fulfilled if we

set S(𝑡𝑒 ) and s(𝑡𝑒 ) to the two terminal functions, 𝐹xx (x(𝑡𝑒 )) and
𝐹x (x(𝑡𝑒 )), respectively.
If we substitute the above expression and its time derivative in

the 2x2 two-boundary problem[
�̂�xx −ˆf𝑇x
ˆfx Ĥ

] [
x

Sx + s

]
+
[
�̂�x
ˆf

]
=

[ ¤Sx + S¤x + ¤s
¤x

]
,

then substitute the second equation

¤x = (ˆfx + ĤS)x + (ˆf + Ĥs), (25)

which represents the projected simulation, into the first one, we get(
¤S − �̂�xx + ˆf𝑇x S + Sˆfx + SĤS

)
x +

(
¤s − �̂�x + ˆf𝑇x s + Sˆf + SĤs

)
= 0.

This equation can only be satisfied for general x ≠ 0 if

¤S = �̂�xx − ˆf𝑇x S − Sˆfx − SĤS (26)

¤s = �̂�x − ˆf𝑇x s − Sˆf − SĤs

with boundary conditions

S(𝑡𝑒 ) = 𝐹xx (x(𝑡𝑒 )) and s(𝑡𝑒 ) = 𝐹x (x(𝑡𝑒 )) . (27)

These so-called matrix Riccati equations [Bertsekas 2012] can

then be solved backwards in time. See Alg. 3 for final algorithms to

compute search directions for the OC and sensitivities for the DOC

problem.
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Algorithm 3 OC Search Direction and DOC Sensitivities

1: function TwoBoundaryProblem(P,C,F)

2: for all 𝑡 do
3: evaluate matrixH and vector C at point P

4: evaluate terminal function derivatives F at point P

5: form QR decomposition of g𝑇u (Eq. 17)

6: compute Px, Pu, and P (Eq. 18)

7: compute
˜H and

˜C (Eqs. 21, 32, 32)

8: compute
ˆH and Ĉ (Eqs. 23, 34, 34)

9: end for
10: solve matrix Riccati eqs. backw. in time (Eqs. 26, 27)

11: return S(𝑡), s(𝑡)
12: end function
13: function OCSearchDir(p, x(𝑡), u(𝑡))
14: P := (x, u, 0, 0), C := (𝐻x, 𝐻u, 0, g), F := (𝐹xx, 𝐹x)
15: S(𝑡), s(𝑡) := TwoBoundaryProblem(P,C,F)

16: compute 𝛿x(𝑡) by solving proj. sim. forw. in time (Eq. 25)

17: compute 𝛿u(𝑡) using Eqs. 18 and 22

18: compute 𝝀(𝑡) using Eq. 24
19: compute 𝝂 (𝑡) using the 2nd eq. in system 15

20: return 𝛿x(𝑡), 𝛿u(𝑡), 𝝀(𝑡), 𝝂 (𝑡)
21: end function
22: function DOCSens(p, x(𝑡), u(𝑡),𝝀(𝑡),𝝂 (𝑡))
23: P := (x, u,𝝀,𝝂), C := (𝐻xp, 𝐻up, gp, gp), F := (𝐹xx, 𝐹xp)
24: S(𝑡), s(𝑡) := TwoBoundaryProblem(P,C,F)

25: compute xp (𝑡) by solving proj. sim. forw. in time (Eq. 25)

26: compute up (𝑡) using Eqs. 18 and 22

27: return xp (𝑡), up (𝑡)
28: end function

6 APPLICATION: LEGGED ROBOTS
While DOC is applicable to a large class of control problems and

is agnostic to the parameters that we seek to optimize, we apply

our approach to a model-predictive control formulation for legged

systems, solving an optimal retargeting task that enables the transfer

onto robots of varying sizes, shapes, and mass distributions. Before

discussing the MPC simulation model and the control parameters,

we introduce our parameterized retargeting objectives, which are

used in both the inner and outer loop of our bi-level optimization.

6.1 Retargeting Objectives
To direct legged systems, standard objectives control the base posi-

tion and orientation of the robot, and the positions and velocities of

its joints [Tassa et al. 2012]. To provide more flexiblity, we instead

rely on parameterized objectives that measure differences in posi-

tion, orientation, and linear and angular velocity at a discrete set

of locations, letting our optimization decide on how to optimally

retarget the motion.

When defining correspondences, a user selects a location, r
rb
,

and orthonormal frame axes, A
rb

=
[
a𝑥 , a𝑦, a𝑧

]
, in local coordinates

of a robot’s component for every point of interest. To measure

differences to a provided target motion, we then transform the

frame from local to global coordinates

r(x(𝑡); p) = R r
rb
+ t and A(x(𝑡); p) = RA

rb
, (28)

where the rotation matrix R and the translation vector t depend
on the state trajectory. The frame origin and its axes are part of

the set of parameters p that we can optimize. This is helpful if, for

example, two points of interest are guiding the motion of a single
rigid component. DOC can refine initial reference frames to correct

offsets between them.

Our first type of retargeting objective penalizes differences in

linear motion between simulated and target positions, r and r̂, and
corresponding velocities

∥r − Dr̂∥2Wr
+ ∥¤r − D¤̂r∥2W¤r

, (29)

with scaling factors,D = diag(𝑠𝑥𝑦, 𝑠𝑥𝑦, 𝑠𝑧), that enable non-uniform
scaling of target trajectories and can be included in the set of pa-

rameters. Note that we intentionally keep the scaling factors in the

xy-plane, or more precisely the plane orthogonal to the direction of

gravity, the same, because otherwise the motion would be warped

if the robot walked in a non-axis-aligned direction.

We define an analogous type of objective for angular motion

∥A ⊟ Â∥2WA
+ ∥𝝎 − �̂�∥2W𝝎

. (30)

where ⊟ is the logarithm map operator that measures the difference

between the two rotation matrices with a 3D angle-axis vector,

and 𝝎 is the angular velocity of the component that frame A
rb

is

attached to. Note that [𝝎]× = ¤AA𝑇 = ¤RR𝑇 .
The weight matrices, Wr, W¤r, WA, and W𝝎 , are all 3D diagonal

matrices and provide users with control of the relative importance

of objectives and objective terms.

6.2 Model-Predictive Control
The following paragraphs describe the MPC formulation used for

the optimal motion retargeting. Note that we consider the full time

horizon of the input motion at once and start at a given initial

state of the robot. The formulation follows the approach described

in [Grandia et al. 2022], with the cost function adapted to the retar-

geting application.

Simulation Model. For simulation, we rely on a simplified cen-

troidal dynamics formulation. We represent the state x of the robot

with the position c, orientation 𝜽 (in Euler angles), linear velocity v,
and angular velocity 𝝎, of its base, and the joint positions, q, of its

Fig. 3. Retargeting Objectives. A user selects a location rrb and frame
axes Arb in local component coordinates (left). Our retargeting objectives
then measure the differences between simulated positions and axes, r and
A, and their corresponding targets, r̂ and Â, in global coordinates (right).
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State

Control

Fig. 4. MPC Simulation variables (in blue) and control parameters (in red).

actuators as shown in Fig. 4 in blue. The control parameters u that

we consider are the forces 𝝁 that act from the ground onto the feet,

together with the joint velocities ¤q (in red). The centroidal dynamics

¤x = f (x, u) =


f1 (𝜽 , v)
f2 (𝜽 ,𝝎)
f3 (x, u)
f4 (x, u)

¤q


, with x =


c
𝜽
v
𝝎
q


, u =

[
𝝁
¤q

]
, (31)

are governed by four nonlinear equations [Grandia et al. 2022]: f1
transforms the linear velocity of the base in local base to world

coordinates, f2 uses a conversion between angular body rates and

Euler angle derivatives to transform the angular velocity of the

base, and f2 and f3 rely on an augmented centroidal dynamics that

encourages smooth solutions for control inputs u(𝑡).

Constraints. We enforce contact conditions with equality con-

straints, g(x, u) = 0. If a foot is in contact with the ground, its

height and velocity has to remain zero, and if a foot is in a swing

phase, the contact force that acts on the foot cannot take on non-zero

values

v𝑖 (x(𝑡), u(𝑡)) = 0, h𝑖 (x(𝑡)) = 0, ∀𝑖 ∈ I(𝑡),
𝝁𝑖 (u(𝑡)) = 0, ∀𝑖 ∉ I(𝑡),

where v𝑖 , h𝑖 , and 𝝁𝑖 are the linear velocity, foot height, and contact

force for foot 𝑖 , respectively. The subscripts for the legs that are

in contact with the ground are contained in the set I, which is

a subset of all possible contact points, I ⊆ {LF, RF, LH, RH} (see
Fig. 4). The velocity and contact force constraint are handled with

the projection approach described in Sec. 5.1, and the foot height

constraint is enforced through a quadratic penalty. To ensure that

our control problem remains differentiable, we assume the footfall

pattern to remain fixed and extract it from the input motion in a

pre-processing step.

Objectives. For MPC, we set the intermediate and terminal objec-

tives, 𝑓 and 𝐹 , to a weighted sum of our parameterized retargeting

objectives, a set of penalties that enforce limits and friction con-

straints [Grandia et al. 2022], and regularization terms that penalize

the magnitude of joint velocities and contact forces. For 𝐹 , we add

an optional term that minimizes the squared difference between

q(𝑡𝑒 ) and the nominal actuator positions, with a weight that varies

per actuator.

Numerical Optimization. In proximity to optimal trajectories, the

HessianHuu is positive definite. However, for trajectories that are far
from optimal, Huu is often indefinite, causing the iterative scheme

(Alg. 1) to diverge [Mitter 1966]. A common strategy to mitigate

this problem is to use an approximation of the Hessian where sec-

ond derivatives of the dynamics and constraints are omitted when

constructing the Hamiltonian matrix H [Farshidian et al. 2017b; Li

and Todorov 2004]. This is similar to a Gauss-Newton scheme in

the discrete setting.

6.3 Differentiable Model-Predictive Control
In our outer optimization, we set the intermediate and terminal ob-

jectives,𝑔 and𝐺 , to the same weighted sum of retargeting objectives,

but omit penalties. However, we add a regularizer that penalizes

the squared difference between p and their initial values to ensure

that the DOC problem is well-posed, independent of the number of

retargeting objectives.

Time Integration and Integrals. For time integration of the two

boundary value problems, we use the Runge-Kutta-Fehlberg method

(RKF45). To evaluate the integrals in objectives and their gradients,

a zero-order hold approximation provides sufficient accuracy.

Search Direction. To obtain a search direction in Alg. 2, we use

the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

method and corresponding line search [Nocedal and Wright 2006].

7 RESULTS
We evaluate our method by retargeting both motion capture data

and artistic input animation onto a set of 10 different robots, thereby

demonstrating generality to different inputs and across robots. We

show that the retargeted motions can be executed on the physical ro-

bot, and that the robot retains its robustness to external disturbances

while executing the motions. In the following, we first evaluate the

effect of robot variations such as kinematics, dynamics, and body

shape in the retargeting process. We then study the performance of

the two-level optimization.

7.1 Motions and Robots
In our pipeline, we aim for automatic retargeting with minimum

human intervention. We assume that the input target motion starts

at the origin and we initialize the robot in a standing configuration

with feet at zero height. The gait sequence, i.e., the footfall pattern,

is extracted from the target using a threshold on the foot velocity.

The user specifies pairs of frames from the target motion and frames

attached to the robot, which define our objective function in the

retargeting pipeline as introduced in Sec. 6.1.

Motions. We use a selection of motion capture sequences taken

from the dataset in Zhang et al. [2018], which contains motion cap-

ture data of a dog for a set of different motions including locomotion,

idling, and playful jumping and bounding. The dataset provides a

skeletal animation for each motion, and we extract the locations

of the rig joints for use as input to our pipeline. We also use a set

of artist-created quadruped animations. These were created using

standard animation tools, and do therefore not take into account

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



DOC: Differentiable Optimal Control for Retargeting Motions onto Legged Robots • 9

Fig. 5. Max Family: We retarget our motions onto a family of 7 simulated dog-like robots of varying sizes, proportions, and mass distributions.

Table 1. Motion capture (M) and animation (A) IDs together with short
descriptions of the motions.

ID Description

M1 High jump; tight turn after landing.

M2 Standing up from lying; stepping in-place, looking around.

M3 Explosive sprint; turn while looking down; walk away.

M4 Forward pace; looking around.

M5 Walking with tight turns, legs crossing over.

M6 Standing on box; stepping onto ground; jumping forwards.

M7 Jumping forwards; walking onto box.

M8 Walking around; turning; short gallop.

A1 Notices object and takes closer look; hopping/walking sideways.

A2 Jumping straight up from standing.

A3 Extending and swirling diagonal pairs of legs.

A4 Turning around, quick short steps.

the physics of the robot. See Table 1 for a list of the motion capture

and animation motions.

Robots. To demonstrate that our method generalizes across robots,

we show results on the following set, of varying size, proportions,

and kinematics:

• A family of simulated dog-like robots (the “Max family”),

with varying proportions (see Fig. 5): Max (dog-like size and

proportions); Tall Max (taller); Short-foot Max (different

leg proportions), Skinny Max (lighter legs, knee actuators in

hip); Stocky Max (short and stubby); Monkey Max (longer

fore-legs, shorter hind-legs); and PackMax (carrying a heavy

backpack).

• Lizard, a simulated robot with leg kinematics resembling

those of a lizard, where the legs point outwards from the

body (see Fig. 6, bottom).

• The ANYmal robot platform from ANYbotics, for which

we also show a hardware result. We also show a simulated

result for a fictitious Strong ANYmal, which has stronger

actuators.

The simulated robots are between 300 and 605 mm tall, weigh

between 16 and 27 kg, and have 3 actuators per leg. They have been

designed so that they could be built in the future, having plausible

geometry and mass distributions. We use velocity limits of 20 rad/s

and torque limits of 200 Nm, which is in line with state-of-the-art

actuators for quadrupedal robots [Bledt et al. 2018].

7.2 Automatic Motion Retargeting
We evaluate the performance of our pipeline for retargeting motion

capture data to the Max family, Lizard, and ANYmal robots in simu-

lation. We pair 13 frames on the robot with corresponding frames

of the target motions and optimize the linear offset parameters. Ad-

ditionally, we optimize non-uniform scaling of the reference motion

parameterized by xy-scaling and z-scaling, resulting in a total of 41

open parameters in the upper-level optimization. We use one frame

on the torso of the robot and define a linear motion tracking and

an angular motion tracking task for it. For each leg, we define one

frame per link with only linear motion tracking task. For both the

linear and angular motion tasks we use diagonal weight matrices as

Wr = WA = diag[5, 5, 5] andW¤r = W𝝎 = diag[1, 1, 1].

Initialization. We initialize the offset parameters to zero and the

scaling coefficients by the relative base height in a canonical stand-

ing pose. The frame in the input animation that is paired with the

torso of the robot is used to initialize the xy-position and yaw-

orientation in the state trajectory, x(𝑡). The remaining states and

the input trajectory, u(𝑡), are initialized with the canonical standing

pose of the robot. After the first DOC iteration, each OC problem is

warm-started with the solution of the previous iteration.

Generalization Across Robots. As seen in the accompanying video,

our optimization can successfully retarget the dog’s motion capture

trajectories onto the different robots. One can observe differences

in the retargeted motions for the extreme kinematics variations

of Tall Max, Stocky Max, and Lizard. The same procedure is used

to retarget the animation inputs (A1-A4) onto ANYmal, preparing

for deployment on the physical robot. Selected frames of the retar-

geting of a jumping motion (M1) are shown in Fig. 6. During this

motion, the dog makes great use of its flexible spine to transition

between the different motion phases. Our simulated robots, having

rigid spines, are able to compensate for the spine motion and find

motions that maintain the qualities of the reference motions while

respecting the robot dynamics and kinematics. The retargeting for

Lizard is particularly pronounced because of its entirely different

joint configuration.

Even when the kinematics of the robots are identical, significant

difference can arise due to differences in dynamics. Fig. 7 shows

how different contact forces arise due to the additional weight con-

centrated at the front of Pack Max.

Fig. 8 shows the optimized vertical scaling of the reference motion

M8 for all robots in the Max Family. The reported physical height
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is the torso height of each robot relative to max for the stance

configuration shown in Fig. 5. The solver consistently converges to

a solution close to the expected height.

Input Exceeding Robot Limits. We demonstrate the effect of actua-

tor limits by comparing retargeting results for ANYmal and Strong

ANYmal. As the two robots are identical apart from their actuator

limits, the difference in the retargeted motion is solely due to these

limits. For motion M6, with corresponding plots in Fig. 9, the weaker

actuators often saturate during the motion, which results in signifi-

cantly lower forward velocity and therefore jumping distance. Our

setup accommodates the actuation limits by shrinking the motion

in the xy-directions, thereby decreasing the actuation requirements.

As best seen in the supporting video, the actuator limits are handled

gracefully, preserving the motion, without introducing artefacts.

Non-physical Input. For motions M6 and M7, which start and

end on a box respectively, our retargeting pipeline is able to retar-

get the motion to flat terrain. The jump in each of the motion is

maintained while the foothold constraints in the optimal control

problem enforce the solution to be physically consistent with the

new environment.

7.3 Hardware Deployment
For the deployment on hardware, we reuse the MPC formulation

described in Sec. 6.2. Instead of the retargeting objectives, the cost

function from [Grandia et al. 2022] is used to track the already-

retargeted state and input trajectories. Due to computational limits

of the real system, the MPC horizon is fixed to 1.0 s and the con-

troller is executed in a receding horizon fashion, re-optimizing the

trajectory at 100 Hz. The output of the MPC layer is fed to a whole-

body controller that uses a more accurate simulation model, but

only solves for the next time step. At the lowest level is the joint

control layer that commands the individual actuators.

Two retargeted motion clips are executed on the ANYmal hard-

ware. The video shows the executed motion and retargeting result

together. Because the retargeting is physically realistic, the system is

able to closely follow the retargeted motion. Furthermore, through

the use of online model-predictive control, the system is able to

recover from disturbances and return to the motion reference when

balance is regained (see video). Finally, we retarget four animation

motion clips, as described in Table 1, to ANYmal and execute the mo-

tion clips on hardware. Here, unlike the motion capture data, there

are no explicit physical constraints on the input motion. Frames

comparing the creative animation and the end result on hardware

are shown in Fig. 10.

7.4 Performance
Table 2 shows the required computation time of the retargeting

pipeline for Max. Timings are reported for an Intel
®
Xeon

®
E-2178M

CPU. Even though each iteration of the optimal control solver and

each gradient computation scale linearly with the duration of the

animation, the total solver time deviates from this. This is due to

the variable number of iterations required at each level of the opti-

mization.

Table 2. The computational time of the retargeting pipeline and number of
iterations required by each component on a subset of the retarget motions.

Animation ID M1 M2 M3 M4 M5 M6 M7 M8

Anim. Duration [s] 4.7 10.0 9.8 11.0 13.5 3.5 3.8 10.2

Solver Tot. Time [s] 129.7 138.6 139.2 148.3 265.8 75.7 57.5 177.7

DOCSens Time [s] 44.2 90.8 71.4 63.3 127.1 29.8 25.0 78.0

OC Time [s] 85.4 47.8 67.8 85.0 138.7 45.9 32.6 99.8

DOC iterations 10 13 13 12 12 15 9 11

DOCSens iterations 32 38 15 25 53 39 25 24

OC iterations 1555 419 616 655 856 1065 715 851

To highlight the performance of the upper-level optimization,

we examine the convergence of the retargeting cost for Max in

Fig. 11 (right). Here, we have normalized the retargeting cost with

respect to the cost at the iteration zero which results from the initial

parameters. Additionally, we show the cost convergence for the

entire Max family for motion M8 in Fig. 11 (left). Qualitatively, the

convergence behavior is independent of the robot and the motion.

The complexity of the MPC scales cubically with the number of

state and control parameters.

7.5 Limitations
When a motion sequence contains full rotations of the robot, local

minima arise due to the topology of rotations. Careful initialization

of the torso trajectory, as described in Sec. 7.2, was found to work

well for the motions used in this work. However, it does not guaran-

tee that undesired minima are avoided. For acrobatic motions that

include multiple rotations, a different strategy or global exploration

might be required.

Self-collisions can occur due to differences in degrees of freedom

and proportions between the input source and our robot family. An

example can be found in the retargeted motion M5, see Fig. 12. The

handling of self-collisions between the feet is left as future work.

8 CONCLUSION
We have devised a differential optimal control framework that inter-

faces with a large class of continuous optimal control problems with

an additional set of equality constraints. By projecting the linearized

equations onto the constraint manifold, we derive two similar sets

of continuous matrix Riccati equations that allow us to compute a

functional search direction to iteratively solve for optimal control

trajectories as well as compute derivatives of optimal trajectories

with respect to parameters.

Future Work. We assume the footfall pattern extracted from the

input data to remain fixed throughout optimizations. This assump-

tion may limit the quality of the retargeting result, especially for

fast and dynamic input exceeding the limit of what the hardware

can achieve. Letting the optimization make changes to this pattern,

also referred to as optimal switching [Farshidian et al. 2017b; Li and

Wensing 2020], could improve the retargeting result for challenging

cases.

Our optimal retargeting is fast, but does not fulfill the require-

ments for a real-time deployment. The latter would enable real-time

authoring ofmotions on hardware. Extensions of our algorithms that

avoid dynamics derivatives [Plancher et al. 2017] or the exploration
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Fig. 6. Retargeting of mocap motion M1 onto Max and Lizard robots. Top row shows the skeleton motion input, for representative frames. Middle row
shows the result on Max; bottom row shows the result on Lizard. Despite the differences in kinematics between the input and the two robots, the characteristic
traits of the motion are preserved. (Mirrored w.r.t. video.)

Fig. 7. Contact force visualization for Max (left) and Pack Max (right) at
the same frame of motion M4. Due to the difference in mass distribution,
the contact forces (inset) are significantly different, even for similar looking
motions.

H
ei

gh
t s

ca
le

0.0

0.5

1.0

1.5

Max Tall Max Short-foot 
Max

Skinny 
Max

Stocky 
Max

Monkey 
Max

Pack Max

Physical (relative to Max) Optimized

Fig. 8. Physical and optimized height scale for the Max Family on motion
M8. The physical height scale is the torso height at a canonical stance
relative to Max.

of alternative simultaneous or sequential solution strategies [Har-

graves and Paris 1987; Posa et al. 2016] are left as future work. Recent

work on solving DDP problems under parameter uncertainty could

improve robustness under sim-to-real gaps [Aoyama et al. 2021].
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Fig. 9. Effect of torque limits on retargeting result. Plot of torso forward
velocity and a representative motor torque for jumping motion (M6) retar-
geted onto ANYmal (torque limit 80 Nm) and Strong ANYmal (torque limit
200 Nm) robots. The optimization compensates for the limited torque of
ANYmal by widening the torque spikes (bottom plot, e.g. at t=1.0 s), and also
by scaling down the forward velocity of the motion (top plot). As seen in the
supporting video, the limits are thus handled gracefully, while preserving
the motion, without introducing artefacts.

While we have used our differential optimal control to solve a

retargeting problem for MPC, our method is agnostic to the un-

derlying control problem and parameters. It is therefore applicable

to generic equality-constrained optimal control problems, and has

applications far beyond retargeting tasks we consider here.
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Fig. 10. Retargeting of artist-designed animation onto ANYmal robot.
Selected frames from the input animation, alongside corresponding frames
for the same motion executed on the physical robot. The robot motion
remains visually close to the input, even though the original animation does
not obey the laws of physics. See supporting video for full sequence.
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APPENDIX
In Sec. 5, we reduced a generic linear two-boundary problem with

four equations and variables to a problem with two equations and

unknowns. We provide expressions for the matrix coefficients of

the 3x3 matrix
˜H

�̃�xx = 𝐻xx + 𝐻xuPx + P𝑇x𝐻ux + P𝑇xHuuPx
�̃�ux = P𝑇u𝐻ux + P𝑇u𝐻uuPx
˜fx = fx + fuPx

�̃�uu = P𝑇u𝐻uuPu
�̃�xu = �̃�𝑇

ux
˜fu = fuPu

(32)

and the corresponding constant vector
˜C

�̃�x = 𝐻x + 𝐻xuP + P𝑇x𝐻u + P𝑇x𝐻uuP �̃�u = P𝑇u𝐻u + P𝑇u𝐻uuP (33)

˜f = f + fuP

in the system 21, and for the coefficients of
ˆH

�̂�xx = �̃�xu�̃�
−1
uu �̃�ux − �̃�xx Ĥ = −˜fu�̃�−1

uu
˜f𝑇u (34)

ˆfx = ˜fx − ˜fu�̃�−1
uu �̃�ux

and vector coefficients Ĉ

�̂�x = �̃�xu�̃�
−1
uu �̃�u − �̃�x ˆf = ˜f − ˜fu�̃�−1

uu �̃�u (35)

in the 2x2 problem 23.
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