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Figure 1: We retarget an actor’s expressions to characters with dissimilar facial structure. Using a layered composition model
of expressions, we first deconstruct the content of the actor’s facial expression into emotion, speech, and blink layers. We
transfer parameters of each layer to parallel layers for the character. Finally, we construct the character’s facial expression by
compositing the content of the emotion, speech, and blink layers. By definition, the retargeted parameter values are identical
for all characters.

Abstract
Facial motion retargeting approaches often transfer expressions by establishing correspondences between shared
units of motion, such as action units, or spatial correspondences of landmarks between the source actor and target
character faces. When the actor and character are structurally dissimilar, shared units of motion or spatial land-
marks may not exist, and subtle styles of performance may differ. We present a method to deconstruct the content
of an actor’s facial expression into three layers using an additive composition function, transfer the content to
parameter-parallel layers for the character, and reconstruct the character’s expression using the same composi-
tion function. Our algorithm uses a parameter-parallel layered model of facial expression for both the actor and
character, separating the content of facial expressions into emotion, speech, and eye-blink layers. Facial motion in
each layer is embedded in simplicial bases, each of which encodes semantically significant configurations of the
face. We show the transfer of facial motion capture and video-based tracking of the eyes and mouth of an actor to
a number of faces with dissimilar facial structure and expressive disposition.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Computer graphics characters have been used to augment
or embody the protagonist’s performance in several recent
theatrical releases including Tron, Avatar, and The Curious
Case of Benjamin Button. In each of these movies, facial mo-
tion retargeting — the process of transferring performance

from a source face to a target face — was used to allow actors
to realistically control the timing and content of the charac-
ters’ expressions with their own. With a few exceptions, cur-
rent approaches to facial retargeting deconstruct and transfer
facial motion over shared elementary units of motion such as
muscles or action units [PW96,CLK01,PL06] or transfer fa-
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cial deformations based on explicit spatial correspondences
between the faces [LWP10, WLGP09, MJC∗08, NJ04]. Re-
targeting facial expressions by transferring local motion
fields is difficult when the source and target faces are dis-
similar in their facial structure (e.g., retargeting to a charac-
ter with an oddly shaped nose or two mouths) because the
source face may not have the necessary elementary units of
motion or explicit spatial correspondences needed to drive
the motion of the target. Instead, compelling target anima-
tions that preserve the intent of the source expressions can
be created by recognizing and retargeting the content of the
source performance rather than transferring the motion. By
retargeting content, we let animators define the target face’s
expressions (how do crocodiles smile? [Gle98]), and give
creative control of timing and content to actors.

We define the content of facial motion in terms of
three underlying processes: emotion, speech, and eye-blinks.
These processes describe the degree of various emotional ex-
pressions in the actor or character performance, the types of
visemes (stylized mouth patterns corresponding to speech
production such as ‘ah,’ ‘oo,’ and ‘wa’), and the blink pat-
terns present in the performance. Each process forms a layer
in a compositional form, which also incorporates rigid head
motion. We express the content of each layer using a simpli-
cial basis, where the simplex vertices correspond to seman-
tic extremes for each process. The influence of each layer in
producing the final character expression is modulated over
time using weighted masks. This allows us to seamlessly
produce the facial expression in cases where more than one
layer influences a region of the face. For instance, blinking
occurs involuntarily to irrigate the eyes, but it can also occur
due to emotions such as grief or submission. The weights al-
low us to emphasize or de-emphasize involuntary blinking as
opposed to eye-closure due to emotion, at the time instances
when they occur, in the final composition.

We use the same composition function for facial expres-
sions of both the actor and the character. As input, we ob-
tain active appearance model (AAM) [MB04] points for the
eyes and lips from actor video, and we use motion capture
markers for the rest of the actor’s face. As shown in Fig-
ure 2, we extract model parameters from the actor by de-
constructing the actor’s expression into the three layers and
actor masks of the composition function; we then transfer
the same parameters to parallel character layers; finally, we
reconstruct the 3D character output using the same compo-
sition function. The measurement and representation of the
actor and parameterization of the character is independent of
the induced simplicies and retargeting method. The motiva-
tion behind using such a parameter-parallel approach is that
it does not require explicit spatial correspondence between
the actor and character spaces. Instead, correspondences are
provided in terms of content that carries semantic signifi-
cance to artists and actors. Artists design characters that of-
ten possess facial features which do not correspond to an
actor’s face, and therefore providing explicit spatial corre-

spondences may not be intuitive. However, artists are able
to expertly pose semantically significant facial configura-
tions such as emotions and speech patterns on characters.
The parameter-parallel approach leverages the talent of ani-
mators to pose believable emotions and speech on dissimilar
characters.

We illustrate results of retargeting to characters that have
structurally different facial configurations from the actor.
Our characters include a human with a familiar facial config-
uration, a tortoise with non-human-like facial parts, a globe
with facial parts whose numbers and arrangements are un-
usual, and a cassette player, with non-facial components.
We show results for vignettes covering a broad spectrum of
emotions, and demonstrate that the model effectively modu-
lates the time-varying contributions of emotions, blinks, and
speech.

2. Related work

There have been two principal approaches for performing
retargeting of facial and bodily motion: mesh deformation
and parameter transfer. In mesh deformation techniques, de-
formations of a source mesh with respect to a base mesh
are computed and the deformation is spatially mapped to
deform a target base mesh through initial vertex correspon-
dences. Sumner and Popovic [SP04] map deformation trans-
formations from a source mesh due to deformation to a target
mesh while ensuring that vertices belonging to the same tri-
angle in the target mesh are aligned. Weise et al. [WLGP09]
smoothly deform a generic model to conform to an actor’s
face, and track it offline over time with optical flow, border,
and mesh constraints. They use a PCA model to improve on-
line tracking performance, and apply deformation transfer to
retarget the actor’s face to a similar character face for live
puppetry. Techniques for using 3D scans of the actor include
polynomial displacement maps (PDMs) [MJC∗08] and mesh
refinement by hierarchical subdivision [NJ04]. Bickel et al.
[2008] perform large-scale deformation of high-resolution
meshes with a few manual correspondences, and represent
finer details through a pose space that is based on a strain-
vector representation.

In parameter-transfer techniques, the span of facial mo-
tions is expressed in terms of parameters of a model. These
parameters are then transferred from the source space to
the target space. A popular approach for doing parame-
ter transfer is to use predetermined actions units or mus-
cles [PW96, EFH02, PL06, Osi07]. Another approach is
to sue linear basis. The vectors of the basis may be ob-
tained automatically or selected manually from actor perfor-
mances. In these approaches, basis weights may be uncon-
strained or may include constraints such as non-negativity
bounds, sum-to-one, or combinations of the previous three
[CB02, BLCD02, JTDP03, CLK01]. Joshi et al. [JTDP03]
perform scattered data interpolation using RBF kernels to
interpolate dense spatial data for expressions given sparse
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Figure 2: Parameter-parallel layered model: we use motion capture data and AAM tracks from the actor as input to the system.
The actor performance is deconstructed into emotion, speech, and blink layer outputs, and weighted actor masks. Using basis
coefficients and weights of each layer, we reconstruct the layer outputs and weighted influence masks for the character in
parallel, and composite them in vertex space to yield the character output.

tracked data and dense neutral frame data. To develop the
linear bases for the source, Chuang et al. [CB02] extract data
points with minimum and maximum projections on the prin-
cipal eigenvectors, Bregler et al. [BLCD02] manually pick
key shapes, and enlarge their basis set with non-linear in-
terpolation, and Choe et al. [CLK01] use skin deformations
in response to an underlying muscle model whose weights
are muscle actuation parameters. Other bases include motion
captured action unit data [CBK∗06], and non-rigid 3D mod-
els of the face [ZWT09]. Linear bases for the character typ-
ically consist of 3D character meshes, but retargeting is also
done to 2D cartoon data [BLCD02], 3D scans [CBK∗06]. In
some cases, retargeting is done from facial geometry to get
texture information for a source [JTDP03, ZLT∗06]. Baran
et al. [BVGP09] express source and target meshes in patch-
based linear rotation invariant coordinates to retarget to tar-
gets whose motions are visually different but semantically
similar. Buck et al. [BFJ∗00] deconstruct the face into piece-
wise linear models of motions of the eye, mouth, and face to
retarget the motion of an actor from video to facial expres-
sions in sketches.

To separate facial expressions and speech, [DCFN06] use
PCA coefficients of mouth points to represent phonemes.
They express frames between the two or three phoneme sam-
ples of a diphone or triphone as weights of the PCA coeffi-
cients, and learn polynomial fitting functions from multiple
training instances. They subtract neutral facial motion from
expressive motion for the same sentence to get a phoneme-
independent space, and reduce its dimensionality by PCA.
During synthesis, they use a set of 13 key-shapes to gen-
erate diphone or triphone coarticulations by a greedy algo-
rithm, and a patch-based sampling method to synthesize ex-
pressive motion from the phoneme-independent eigenspace.
Vlasic et al. [VBPP05] use bilinear and trilinear tensor mod-
els to separate identity, expressions, and speech visemes.
They use subspace decomposition to obtain the tensor whose

each mode represents one feature, and determine weights
that multiply the tensor to generate the data point. Chuang
and Bregler [CB05] use a bilinear model to express the in-
teraction of expression (style) variables with speech (con-
tent) variables. These models are multiplicative and like
most multilinear models require a number of cross-model
observations to ensure tractability (although Vlasic et al.
[VBPP05] do propose strategies to mitigate this problem).

Our work lies in the realm of parameter transfer tech-
niques, but whereas other methods encode and transfer mo-
tion, we recover and transfer the content of facial perfor-
mance from the actor to the character. We use a layered
model to capture subtleties of emotions, speech, and eye-
blinks, and we estimate time varying weights to modulate
the parameters. The weights define the contributions of emo-
tion, speech, and blink layers to the final facial output at dif-
ferent points on the face. They enable us to represent a wide
range of facial motions with a concise basis of semantically
meaningful facial poses (emotions defined by Plutchik, com-
monly used visemes, and blink patterns). The layered model
differs from prior multilinear models that assume cross-talk
between emotion and speech components, i.e., they interact
multiplicatively. We additively composite outputs of emo-
tion, speech, and blink layers using weighted masks, and
there is no cross-talk between emotion and speech. We de-
scribe the contribution of emotion and speech through their
weighted influence on the final output.

3. Layered Model

The input from the actor is P1 3D motion capture points
from the face, and P2 active appearance model points from
the eyes and the lips. These points are arranged in a vec-
tor xA(t) ∈ RDA , where DA = 3P1 + 2P2. We represent the
facial expression of the actor in terms of head motion, and
three layers, namely, emotion, speech, and eye blinks. We
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Figure 3: Simplicial basis for the emotion layer. The layer
output within the simplex is represented by barycentric co-
ordinates of 29 simplex extremes (for instance, extremes of
the sadness, fear, and disapproval emotions). The actor sim-
plex has hand-picked emotion expressions, and the character
simplex has emotional poses designed by the artist.

indicate emotion, speech, and eye-blinks by subscripts 1, 2,
and 3 throughout the text. At any time instant t, these layers
form the content of the actor’s performance in the following
additive compositional form,

xA(t) = R(t)

(
xµA +

3

∑
j=1

WA j(t)BA jα j(t)

)
+ t(t). (1)

R(t) and t(t) represent the rotation and translation param-
eters of head motion, and xµA is the actor mean. BA j, j ∈
{1,2,3} are simplices bases corresponding to emotion,
speech, and blink processes respectively. α j(t) are simplex
coefficients, and WA j(t) are matrices with weights modulat-
ing the influence of layers over time.

To ensure parameter-parallel transfer of content, we have
an identical compositional form for the character,

xC(t) = R3D(t)

(
xµC +

3

∑
j=1

WC j(t)BC jα j(t)

)
+ t3D(t).

(2)
The character mesh is in 3D, and xC ∈RDC where DC = 3P,
P is the number of character vertices; xµC is the character
mean, R3D(t) and t3D(t) are the 3D components of rotation
and translation, BC j are simplicial bases for the character,
WC j(t) are matrices with weights of influence and α j(t) are
simplex coefficients. Note that Equations 1 and 2 are driven
by the same α j(t) which are components of the three layer
processes. Sections 3.1 and 3.2 describe the bases, coeffi-
cients, and weights in depth. Figure 2 depicts the interaction
of the weights of influence with the layer outputs for the ac-
tor and in parallel for the tortoise character Oliver.

3.1. Simplicial Basis and Coefficients

We represent the data for each layer using emotion, speech,
and blink simplicial bases for the actor (BA1 ∈ RDA×K1 ,

= w11(t)

= w11(t)

+w31(t)

+w31(t)

+w21(t)

+w21(t)

Figure 4: Masks for emotion layer. The emotion mask is a
weighted sum of 3 manually specified masks for the fore-
head, mouth, and eye regions. With the masks we mark out
regions that move similarly in the actor and the character.

BA2 ∈ RDA×K2 , and BA3 ∈ RDA×K3 ) and the character
(BC1 ∈ RDC×K1 , BC2 ∈ RDC×K2 , and BC3 ∈ RDC×K3 ). K1,
K2, and K3 are the numbers of extremes in the emotion,
speech, and blink simplices respectively. The components of
each basis form a simplex†. We define that the data for each
layer is contained within the simplex as shown in Figure 3,
and we express the data in terms of the simplex extremes
using nonnegative barycentric coordinates that sum to one.
Barycentric coordinates α1(t), α2(t), and α3(t) of the emo-
tion, speech, and blink simplices form the set of simplex co-
efficients that are common to the actor and the character. For
the j-th simplex,

K j

∑
k=1

α jk(t) = 1, α jk(t)≥ 0.

The products BA jα j(t) and BC jα j(t) (shown in Figure 2) are
outputs of the j-th layer for the actor and the character. The
layer outputs for the actor and character femotion simplices
(BA1 and BC1) are shown in Figure 3. The non-negativity
and summation-to-one constraints of each simplex provide
a bound on the L1-norm of the simplex coefficients. These
constraints induce sparsity as opposed to the more common
purely nonnegative constraints. Bound constraints of non-
negativity alone can turn on too many coefficients to recon-
struct the input with low error, and combine several emo-
tions that do not plausibly occur together. The sparse con-
straints maintain perceptual plausibility by mixing a small
subset of emotions and the sum-to-one bound keeps the mo-
tions within the span of the extremes.

The emotion simplex consists of K1 = 29 extremes of
emotion from a set of 32 emotions characterized by Plutchik
[Plu80]. There are 8 primary emotions (joy, anger, sadness,
surprise, disgust, fear, trust, and anticipation), each of which

† A simplex in RD is the simplest possible polytope in that space,
and has D+1 vertices. A triangle is a simplex in R2, a tetrahedron in
R3, etc. If a simplex is centered at one of its vertices, the remaining
vertices are linearly independent.
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Figure 5: Plutchik [Plu80] inspired 29 emotions with the neutral face for the actor and the character Cappellini.

has three degrees: mild, medium, and strong. Additional 8
emotions lie at the junctures of the primary emotions. Figure
5 shows these emotions for the actor and the character Cap-
pellini. The speech simplex is composed of K2 = 12 com-
monly used viseme extremes, and the blink simplex con-
sists of extremes of closed eyes, open eyes and partially
open eyes, K3 = 3. We hand-pick the frames for the ac-
tor simplices from actor performance, and the poses for the
character simplices are created by an artist. We describe the
extraction of simplex coefficients in Section 4. Under the
parameter-parallel approach, we can directly transfer sim-
plex coefficients from the actor layers to the character layers.

3.2. Weights and Masks of Influence

The matrices WA1(t), WA2(t), and WA3(t) are DA×DA di-
agonal matrices‡ that specify the influence of the emotion,
speech, and blink layers BA jα j(t) to each vertex of the ac-
tor’s face. The i-th row of each WA j(t) weights the impor-
tance of the i-th element of each layer output BA jα j(t) in
generating the i-th element xi(t) of xA(t). For instance if
xi(t) is a forehead point, at time instant t, its motion is domi-
nated by the emotion component BA1α1(t), and the diagonal
of WA1(t) has a high value at the i-th location; diagonals of
WA2(t) and WA3(t) have low values. Mouth points get their
contributions from both emotion and speech leading to high
values at their locations in diagonals of WA1(t) and WA2(t).
To conserve energy, we constrain the diagonals of the WA j’s
to be nonnegative and sum to 1 across j.

∀i,
3

∑
j=1

WA j(t) = I,WA j(t)≥ 0.

‡ We make WA j(t) diagonal to apply the i-th diagonal entry of
WA j(t) to all elements of the i-th row of BA jα j(t).

The weight matrices WC1(t) to WC3(t) similarly account for
the influence of the three layers to the character output, and

∀i,
3

∑
j=1

WC j(t) = I,WC j(t)≥ 0.

We cannot transfer the weights from the actor to the char-
acter directly because DA 6= DC, and WA j(t) 6= WC j(t). To
address this issue, we introduce a structure on the diagonals
of the weight matrices using masks. The diagonal of the j-
th actor weight matrix WA j(t) can take on one of m val-
ues, w j1(t), w j2(t), ... w jm(t) (m = 3), and m masks mark
out points on the actor that will take on each value. The l-th
mask MAl is a DA×DA matrix with ones on the diagonal for
points at which WA j(t) has the value w jl(t). Similarly, for
the character, the diagonal of the l-th mask MCl ∈ RDC×DC

has ones where WCl(t) takes the value w jl(t).

We manually specify the l-th mask for the actor and char-
acter MAl and MCl , such that points marked out by the l-
th mask have shared influences from a particular layer, and
they move similarly in the actor and the character. We have
an upper face mask, a lower face mask, and an eyes mask
for the actor, Oliver, and Cappellini. For Monstergea, a four-
mouthed globe, the masks correspond to the body (devoid of
the eyes and mouth), the mouths, and the eyes. For Radio-
head, they correspond to the radio chassis, the cassette com-
partment, and the speakers. Using the mask, we can write
the j-th weight matrix for the actor and the character as:

WA j(t) =
m

∑
l=1

w jl(t)MAl , WC j(t) =
m

∑
i=1

w jl(t)MCl . (3)

∀ j,
3

∑
j=1

w jl(t) = 1,w jl(t)≥ 0.

The weight matrices can now be viewed as weighted masks.
Figure 4 shows these weighted masks and their relation-
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Figure 6: Timeline of variation of mask weights. The rows
show actor input, weighted outputs of the emotion, speech,
and blink layers, and character output for frames 14, 73, and
132.

ship with the manually specified masks for the actor and for
Oliver. The figure is a diagrammatic representation of Equa-
tion 3. Figure 2 shows the action of the weighted masks on
the layer outputs BA jα j(t) for the actor and BC jα j(t) for
Oliver.

We can substitute Equation 3 in Equations 1 and 2 to get
the following parameter-parallel forms:

xA(t) = R(t)

(
xµA +

3

∑
j=1

m

∑
l=1

w jl(t)MAlBA jα j(t)

)
+ t(t), (4)

xC(t) = R(t)

(
xµC +

3

∑
j=1

m

∑
l=1

w jl(t)MClBC jα j(t)

)
+ t(t). (5)

The weights w jl(t) and the coefficients α j(t) at each time
step are now common for the actor and the character, and
they can be directly retargeted to the character. We discuss
the extraction of parameters R(t), t(t), w jl(t), and α j(t)
from the actor’s data in Section 4, and their retargeting to
the character in Section 5. For notational convenience, we
also use the matrices W(t) and α(t) represented as:

W(t) =


w11(t) w21(t) w31(t)
w12(t) w22(t) w32(t)

...
...

...
w1m(t) w2m(t) w3m(t)

 , α(t) =

α1(t)
α2(t)
α3(t)


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Figure 7: Time-varying masks weighted masks for the actor
and the character Oliver for a ‘guilty’ sequence.

In W(t), w jl(t) represents the weight by which the j-th
layer (emotion, speech, or eye-blinks) influences points de-
marcated by the l-th mask. Figure 6 provides an example
of the weights for an angry sequence applied to the tortoise
Oliver. Points in the forehead (masked out by MC1) have
almost complete influence from emotion (i.e., w11(t) = 1,
w12(t) = 0, and w13(t) = 0) throughout the sequence. Mouth
points (masked out by MC2) have mixed contributions from
emotion and speech, and almost no influence from blink-
ing. In particular, when the actor produces a pronounced
‘wa’, ‘o’, or ‘mm’ sound, the mouth weight for the speech
layer, w22(t) becomes high. In a state of strong emotion and
minimal speech, the mouth weight for the emotion layer,
w21(t), spikes up. Eyelid points (MC3) show mixed influence
from the emotion and blink layers. Figure 7 shows the time-
varying weighted masks generated for a guilty sequence.

4. Extraction of Layered Model Parameters

We use actor motion capture and tracks of active appearance
models (AAMs) [MB04] from an actor’s performance as our
data. We use 283 markers to capture facial motion from the
forehead, nose, cheeks, upper jaw and lower jaw, and we
track eye-blinks (18 points) and lip motion (22 points) using
AAMs. We separately align the P3D 3D motion capture and
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P2 2D AAM tracks of the actor input xA to those of the mean
face, xµA using Procrustes analysis. In Equation 4,

R(t) =

[
R3D(t)⊗ IP3D 0

0 R2D(t)⊗ IP2D

]
,

t(t) =

[
t3D(t)⊗ IP2D

t2D(t)⊗ IP2D

]
,

where R3D(t) and R2D(t) are 3D and 2D rotation matrices
obtained from aligning motion capture and AAM tracks re-
spectively, and t3D(t) and t2D(t) are corresponding transla-
tions. R(t) and t(t) are parameters of head motion.

After extracting the head motion parameters R(t) and t(t),
we remove their effect (as well as the mean) from the actor
data:

x̂A(t) = R(t)−1 (xA(t)− t(t))−xµA.

We now need to extract the parameters W(t) and α(t) from
x̂A. This involves performing the following optimization:(

W(t)∗,α(t)∗
)
=

arg min
W(t),α(t)

∥∥∥∥∥x̂A(t)−
3

∑
j=1

m

∑
l=1

w jl(t)MAlBA jα j(t)

∥∥∥∥∥
2

(6)

s.t. ∀l,
3

∑
j=1

w jl(t) = 1, w jl(t)≥ 0,

∀ j,
K j

∑
k=1

α jk(t) = 1, α jk(t)≥ 0.

This optimization is bilinear in W(t) and α(t). For each
frame, we obtain a local minimum using the interior-point
followed by sequential quadratic programming algorithms
for constrained minima. We use the parameters at time t−1
to initialize the optimization for the frame at time t. The co-
efficients at the first frame are initialized randomly. At each
stage, convergence is obtained when the change in function
tolerance falls to below 10−6. Figure 8 shows the root mean
square reconstruction errors for a single sequence of the ac-
tor using the layered model as compared with using just the
emotion, speech, and blink simplices to do reconstruction.
The layered model has a lower reconstruction error for ma-
jority of the sequence, using emotion alone does slightly
worse, followed by speech, and finally blinks have a very
high reconstruction error.

We introduce sensitivity to lip closing (/p/, /b/, or /m/
sounds) as lip closing is perceptually important for convinc-
ing animation. We bias the weights and coefficients for the
mouth mask toward the /m/ viseme (w21(t) = 0, w22(t) = 1,
w23(t) = 0, and α2(t) = αmm) using the distance d between
the center points of the upper and lower lips in the actor

AAM. The bias factor γ is related to d as γ = e−
d2

2σ2 . We also
bias the weights and coefficients in frame t towards those in
frame t−1 to maintain temporal smoothness. The minimiza-
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Figure 8: Comparison of root mean square reconstruction
error for the layered model versus using just the emotion,
speech, and blink simplex bases. The layered model accu-
rately represents facial expression.

tion is augmented to:

(W(t)∗,α(t)∗) =

arg min
W(t),α(t)

∥∥∥∥∥x̂A(t)−
3

∑
j=1

m

∑
l=1

w jl(t)MAlBA jα j(t)

∥∥∥∥∥
2

(7)

+
γ

1− γ


∥∥∥∥∥∥
w21(t)

w22(t)
w23(t)

−
0

1
0

∥∥∥∥∥∥
2

+‖α2(t)−αmm(t)‖2


+

λ

1− γ

(
‖W(t)−W(t−1)‖2

F +‖α(t)−α(t−1)‖2
)

s.t. ∀l,
3

∑
j=1

w jl(t) = 1, w jl(t)≥ 0, , ∀ j,
K j

∑
k=1

α jk(t) = 1, α jk(t)≥ 0.

5. Retargeting of Parameters to the Character

The parameters calculated in Section 4 are applied to our
characters through Equation 5. To simplify the retargeting,
we only apply the rotation and translation obtained from mo-
tion capture to the 3D character mesh. In Equation 5, R(t)
and t(t) are given as:

R(t) = R3D(t)⊗ IP,

t(t) = t3D(t)⊗1P.

The resulting character mesh is rendered in Maya by project-
ing it onto a set of blendshapes created by the artist for the
character.

6. Results

To illustrate our content-based retargeting approach, Fig-
ure 9 shows two frames from an emotional vignette for an
imaginary character Monstergea. This character has an un-
usual number human like facial features arranged around
the surface of a sphere. This character has five eyes, four
mouths, two noses and two ears which can all be posed inde-
pendently. Retargeting to this model using a spatial approach
would be hard to define.

We retarget emotional sentences to four characters with
dissimilar facial structures. Figure 10 shows frames from
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Figure 9: Retargeting to a character with an irregular
number of human-like features arbitrarily arranged over a
sphere. Spatial retargeting would require a difficult to define
and complex one-to-many mapping.

the actor retargeted to the three characters, for a ‘surprised’
sequence. The actor initially expresses surprise by saying
‘Wow’, follows up with ‘I had no idea you were into that!’.
The first three frames show the visemes involved in saying
‘Wow’; these are followed by frames for ‘I’, the ‘o’ of ‘no’,
the ‘i’ and ‘e’ of ‘idea’, the ‘a’ of ‘that’, and an ending smile.
We capture the knotted eyebrows of the interested expres-
sion on the actor’s face as he utters the word ‘idea’. In case
of Radiohead, mouth movement of the actor is mapped to
the motion of the cassette compartment. Radiohead’s entire
chassis curves upwards when happy (last frame in Figure
10), and expands when excited (fourth frame in Figure 10).
Animations of these and other sequences are shown in the
video accompanying this submission. We generate 59 sen-
tences by setting σ = .02 and λ = .2 for all characters except
for Cappellini, where σ = .005 and λ = .05.

7. Discussion

We present a parameter-parallel approach to retarget the con-
tent of an actor’s expression to a variety of characters with
dissimilar facial structures. We transfer coefficients of sim-
plicial bases for emotion, speech, and blink layers, and time-
varying weights of influence of each layer to various regions
of the face. Under the parameter-parallel approach, the re-
sulting animations capture the expressiveness of the actor’s

performance in the distinctive style assigned by the artist to
each character.

The layered model we describe is not a unique decompo-
sition of facial expression. The requirement is to span the
space of facial expression in a semantically meaningful way
that an artist can define for retargeting. Our goal is to pro-
duce animations onto which viewers can plausibly project
the content of an actor’s performance. The simplex provides
a sparse set of coefficients, that capture the most meaningful
simplex vertices towards the emotion, speech, and blink con-
tent of a particular facial expression. By combining a narrow
set of simplex vertices, the simplex helps to generate percep-
tually plausible emotional content in our animations.

There are three principal limitations to our approach.
First, our algorithm operates offline and in batch mode. As
our processes are first order Markovian (i.e., they consider
only the previous frame), we expect that the model will be
amenable to online design. Second, we use Procrustes align-
ment with respect to the L2-norm for rigid bodies to compute
rotation and translation for head motion; excessive non-rigid
motion can dominate the alignment algorithm and provide
an incorrect rigid estimate. Finally, the simplex structure best
captures the motion on its boundary and within its interior.
A limitation of the simplex is that motions outside the sim-
plex extremes are truncated to projections onto the simplex
boundary. We assume that the actor provides natural perfor-
mances as data, and extremes of emotion, speech, and blinks
as the basis.

As future work, we are interested in examining how com-
ponents such as rotation and dynamics of performance can
be retargeted via a parameter-parallel layered approach. For
instance, the natural performance of an actor may need to
be nonlinearly sped up for a squirrel, or slowed down for
a globular character like Jabba the Hutt. Similarly, we cur-
rently transfer rotation and translation parameters of head
rotation directly from the actor to the character. Future work
may address cases where a particular head orientation for the
actor may not directly map to that of the character.
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