
Real-time content-aware texturing for deformable surfaces

Charalampos Koniaris
University of Bath

ck317@bath.ac.uk

Darren Cosker
University of Bath

dpc@cs.bath.ac.uk

Xiaosong Yang
University of Bournemouth

xyang@bournemouth.ac.uk
Kenny Mitchell
Disney Research

kmitchell@disneyresearch.com

Iain Matthews
Disney Research

iainm@disneyresearch.com

ABSTRACT
Animation of models often introduces distortions to their parame-
terisation, as these are typically optimised for a single frame. The
net effect is that under deformation, the mapped features, i.e. UV
texture maps, bump maps or displacement maps, may appear to
stretch or scale in an undesirable way. Ideally, what we would like
is for the appearance of such features to remain feasible given any
underlying deformation.

In this paper we introduce a real-time technique that reduces such
distortions based on a distortion control (rigidity) map. In two ver-
sions of our proposed technique, the parameter space is warped in
either an axis or a non-axis aligned manner based on the minimisa-
tion of a non-linear distortion metric. This in turn is solved using a
highly optimised hybrid CPU-GPU strategy. The result is real-time
dynamic content-aware texturing that reduces distortions in a con-
trolled way. The technique can be applied to reduce distortions in
a variety of scenarios, including reusing a low geometric complex-
ity animated sequence with a multitude of detail maps, dynamic
procedurally defined features mapped on deformable geometry and
animation authoring previews on texture-mapped models.

1. INTRODUCTION
Texture mapping is the process of mapping detail to a surface using
a parameterisation of the surface – the most common case being a
2D parameterisation of a 3D surface [7]. Some surface representa-
tions have natural parameterisations (e.g. NURBS), while others,
such as polygonal meshes, require non-trivial methods to obtain
such parameterisations. In the latter group, parameterisations are
represented in the same way as vertices are: as piecewise-linear
approximations to continuous functions. Naturally, dense discreti-
sations of these functions provide higher-quality approximations.
A metric for the quality of a parameterisation is the distortion in-
troduced by the mapping [14]. Another source of distortion is the
error introduced by the piecewise-linear approximation. Both of
these sources of distortion depend on the parameterisation algo-
rithm used, as well as the 3D surface discretisation.

An additional common source of distortion in the parameterisation
is caused by animating the mesh (figure 2). As the mesh under-
goes a non-Euclidean transform, the parameterisation ceases to be
optimal. This manifests visually as mapped features on the deform-
ing primitives appearing elastic. That can be desired in some cases
(skin, rubber, etc) but not all. If specific parts of the mapped fea-
tures need to appear rigid (as determined artistically or by some
other means), this elastic behaviour can cause suspension of dis-
belief. Typical examples may include horns, armour elements and
scales. To reduce this type of distortion, either the parameterisation
needs to be regenerated, or the mesh needs to be manually edited
(see section 2).

Contributions: We introduce a novel method to reduce distortions
caused by the deformation of a parameterised surface in real-time.
This allows a variety of texture mapped detail to be applied to
an animated model without it undergoing visually undesirable be-
haviours – specified in a simple manner by an initial user input
process.

Distortions are reduced over a pre-specified area in texture space,
and the surface deformation or animation can be arbitrary and does
not need to be known a priori. The distortion minimisation algo-
rithm is guided by a user-supplied distortion control map of the
specified region of interest (ROI). The distortion control map and
region are supplied as a single preprocessing step along with the
authored texture space information. The alternative to supplying
control information in 2D texture space (as we propose here), is to
include additional vertices into the geometry and manually ensure
that their movements behave in an appropriate manner during an-
imation. However, we argue that this approach is more complex
and time consuming than our proposed approach – which is sim-
ply to highlight in 2D (e.g. using a standard paint package) the
rigidity of regions based on brightness value. This and the selec-
tion of the ROI are the only user inputs required by our system
(as well as artistic creation of the mesh and texture space detail).
Multiple non-overlapping ROIs can be independently selected and
re-parameterised.

For a given animation frame, we use our non-linear optimisation
strategy to calculate a piecewise-linear warp that, when applied to
the ROI’s parameterisation, reduces distortions as a function of the
current frame’s surface deformation and the supplied rigidity in-
formation. We provide two variants of the algorithm that trade-off
between performance and quality: an axis-aligned warp (requiring
only a sparse set of lines as user input) that deforms a rectilinear
grid mapped over the ROI along horizontal and vertical offsets, and
a non-axis-aligned warp (requiring only a set of points as user in-

(a) Displacement map (b) Rest pose (c) Deformed pose (d) Deformed pose after re-
parameterisation

(e) Parameterisation distortion

(f) Rigid features

Figure 1: Preserving texture space detail (in this example, spikes) given a coarse animated mesh (in this example, a face). Spikes are modelled
as a displacement map (a) mapped on the rest pose (b). Deforming the face introduces distortion to the parameterisation (e), causing the skin
and spikes to stretch (c). Our algorithm automatically corrects the parameterisation in real-time, so that only the spikes remain rigid (d). The
parameterisation is corrected in regions of interest given distortion control maps, which specify features that need to remain undistorted, and
overlaying and warping rectilinear grids (f).

put), where the grid may be arbitrarily deformed.

Our paper is organised as follows. In the following section (2) we
outline related work and our contributions to the described prob-
lem. We then present an overview of our method (3) and continue
with describing all its parts: user input and grid partitioning (4),
grid optimisation (5) and rendering (6). A variation of the method
that allows for arbitrary grid warping is described next (7), fol-
lowed by a brief description of the hybrid CPU-GPU optimisation
(8). We then present the results, discuss details and issues arising
from the use of the method and finally conclude the paper.

2. RELATED WORK
The majority of existing mesh parameterisation algorithms that min-
imise parameterisation distortions apply such metrics to the whole
domain, thus not taking into account the nature of the data being
mapped [8, 20, 5]. However, there is a variety of relevant work
which we now briefly cover and contrast with our proposed solu-
tion.

Sander et al. [18] minimise a signal-stretch metric that allows re-
duction of distortions of any vector-valued function (the signal) de-
fined over the domain. The metric is non-linear and the process
requires a few minutes per model. While the technique is content-
aware, it does not take into account temporal coherence of the pa-
rameterisation, which is important when considering a deforming
mesh.

Sheffer and De Sturler [19] overlay a 2D uniform Cartesian grid
on the texture parameterisation domain (as a 2D triangle mesh) and
warp the grid so that the warped parameterisation minimises edge
length distortions. While this technique uses an overlaid grid to
warp the parameterisation, it is not content-aware and so ignores
features which should remain rigid or fixed (i.e. non-sliding fea-
tures). Our technique is also approximately three orders of mag-
nitude faster, allowing the parameterisation warping to run in real-
time (see section 9).

Ptex [4], by Burley and Lacewell, eliminates the need for explicit
parameterisation by using the natural one afforded by subdivision
surface quad-faces and providing anisotropic filtering between faces.

While this eliminates many of the explicit parameterisation issues,
such as distortions and seams, animated meshes still pose a prob-
lem, as the individual quads still deform and distortions are reintro-
duced.

If the parameterisation needs to remain constant, mesh deforma-
tion techniques can be employed to calculate a further constrained
deformation, so that parameterisation distortions remain low. Such
techniques [3, 21, 22] focus on editing complex meshes in a phys-
ically plausible and aesthetically pleasing way, while preserving
geometric details. Barycentric coordinates are also used for mesh
deformation, by deforming complex meshes using simple control
cages [11, 10, 13, 2, 9]. While these techniques are generally effi-
cient in calculating a new plausible mesh pose given a few control
transformations, they do not focus on cases where detail in con-
tained in the texture space and animation in a coarser fine mesh
(typical for a e.g. video game or a real time graphics engine). Still,
a number of techniques have been developed that approach mesh
deformation from a content-sensitive point of view and as such, we
briefly discuss them below.

Popa et al. [17] approach content-aware deformation by introduc-
ing local bending and shearing stiffnesses as factors in how a mesh
deforms. Given such material information, and transformations for
a number of anchor triangles, they calculate the deformation of the
mesh as a weighted sum or blend of the anchor transformations.
The material information is user- or data-driven, providing addi-
tional control on how parts of the mesh deform when editing it. As
the anchor transformations are required to be a combination of ro-
tations and uniform scales, the space of supported deformations is
restricted.

Kraevoy et al. [12] focus on protecting vulnerable parts of a com-
plex model under global non-uniform scaling. They define a vul-
nerability map on a volumetric grid that encloses the object, and
transform the grid while respecting this map. While they estimate
vulnerability based on slippage and normal curvature, the map can
be user-driven. The technique focuses only on a very special defor-
mation case (non-uniform scaling transform), so it’s not applicable
to more complex deformations.

Yang et al. [23] simulate skin sliding by remeshing the surface

(a) Rest pose (b) Deformed pose

(c) Zoomed-in rest pose

(d) Zoomed-in deformed pose

Figure 2: Texture space distortion in given animation of a mesh.
Deforming the rest pose (a) introduces parameterisation distortions
as elements of the geometric mesh change size and shape (c,d)
while the texture space mesh remains constant. Deformation of
texture space relative to the chosen rest pose (b) is marked with
blue (u axis), red (v axis) and purple (both axes). Note that such
distortion can be desired if the mapped material needs to behave in
an elastic way (skin, rubber, etc).

based on resampling of the its parameter space. They use the Force
Density Method (FDM) to construct embeddings of original and
deformed patches into their parameter domains. As the technique
deforms the actual geometry and force densities are specified on
edges, so the deformed patch needs to be highly tessellated and the
result is dependent on the triangulation, which reduces the flexibil-
ity and applicability of the method.

Our re-parameterisation method is in the same spirit as content-
aware image retargetting [6, 16] but is generalized to handle arbi-
trary surface deformations in 3D space. Additionally, such tech-
niques do not take into account sliding of features or temporal co-
herence of solutions.

In production and in practice, in order to reduce texture space dis-
tortions in sensitive regions of an animated mesh, artists need to
manually add vertices, tightly bounding the rigid area and mak-
ing sure that it does not distort under deformation. For example,
for rigged models, the regions around joints are the most prone to
distortions, so additional vertices may be placed. When the defor-
mation is known, additional vertices can be placed appropriately so
that deformation is spread to areas that do not contain any salient
rigid features. The problem remains when the deformation is un-
known or varying so much that adding and manually animating ver-
tices becomes impractical. Procedurally generated detail, static or
animated, provides an even greater challenge as the location of the
additional vertices cannot be easily determined.

While previous methods focus on global texture space preservation,
require complex models or focus on preserving details in specific
mesh areas, our method provides distortion control of texture space
deformations in flexible user-specified areas with real time compu-
tation. To the best of our knowledge, we are the first to present
such a flexible method, allowing any detail representable in texture
space (colour, bump/displacement maps, etc.) to be controlled in
terms of its distortion given a lower detail mesh. In addition, our
method requires no pre-training (other than creation of the simple

distortion map) or prior knowledge of the underlying animation.

3. OVERVIEW
Our method is applicable to all parameterised, deformable surfaces,
and takes into account salient, rigid features of a given static or ani-
mated detail map. The overall process (figure 3) can be summarised
by the following steps:

1. User input and grid partitioning. A rectangular region
(mapped to the unit square) is initially selected from the 2D
parameterisation domain; this is the region that the algorithm
will process. The rigidities associated with the ROI are pro-
vided at this stage as a greyscale texture map. We partition
the ROI domain to a rectilinear grid. The grid is created by
focusing grid cells around similar distortion control weights
(section 4).

2. Per-frame grid warping. The rigidities and grid line coor-
dinates are used as an input to our non-linear optimisation
scheme which minimises texture-space deformation energy
(section 5).

3. Per-frame rendering. After the deformed grid is calculated,
we can render the surface using the adjusted parameterisation
(section 6).

3.1 Notation
To aid clarity of exposition in the following sections, we outline our
notation here before describing our technical solution. The ROI is
expressed in 3D object space as O(s, t) (rest pose) and D(s, t) (de-
formed pose), where (s, t) are parametric coordinates on the unit
square. The corresponding region in the 2D parameterisation is
expressed as T (s, t). The distortion control map is expressed as
R(s, t), containing continuous values in the range [0..1] (non-rigid
to rigid). Partial derivatives for any function X(s, t) are written as
X ′s(s, t) and X ′t (s, t). The dimensions of the distortion control map
that we use are W ×H and the dimensions of the rectilinear grid
are M×N (horizontal and vertical lines). Unless noted otherwise
explicitly, we will be using zero-based indexing. The 2D unit do-
main axes are specified as ŝ (horizontal) and t̂ (vertical). The 1D
solutions for each axis are represented as s and t, and have lengths
of M and N respectively, while for the 2D variant, both solutions
have dimensions of M×N each. As the formulas for the calcula-
tion of both axes are in many cases similar, we mainly will present
formulas for a single axis and describe extrapolation to the other
axis.

4. USER INPUT AND RECTILINEAR GRID
PARTITIONING (STEP 1)

User input is provided in the form of a greyscale image map for
distortion control and a ROI in the parameterisation space. As we
remap the parameter space of the ROI, the shape of the region can
be any shape that can be bijectively mapped to a rectangle. In our
examples, we use scaled and rotated rectangles for their simplic-
ity of converting between texture coordinates and (s, t) parametric
coordinates (figure 4).

Optimisation performance for our algorithm depends on the reso-
lution of the grid. Therefore, a grid with fewer lines will result
in higher performance, as demonstrated in our results. Grid lines

Figure 3: Method overview: Step 1: the starting grid is generated as a pre-process, given the distortion control map. The distortion control
map is specified so that the bumps on the plane are preserved. When deforming, the original surface, deformed surface, distortion control
map and starting grid are all used by the non-linear optimiser to calculate a new grid that minimizes a weighted distortion energy functional.
The starting and warped grids are then used to warp the parameterisation function, which is used to sample the mapped surface detail when
rendering.

should be chosen so that the resulting cells enclose as-similar-as-
possible distortion control weights and rigid areas are enclosed in
cells as tightly as possible. For relatively simple cases the grid line
offsets can be automatically calculated with algorithm 1, otherwise
it can be provided by a user.

This can be performed once as a preprocessing step, if the mapped
detail (and thus the distortion control map) remains constant through-
out deformation. Alternatively, if the distortion control map varies
from frame to frame, the grid will either need to regenerate or be
fine enough so that for any map similar values are still clustered
together as tightly as possible.

5. GRID OPTIMISATION (STEP 2)
In this section we describe our approach for updating the texture
space parametersation by minimising distortion energy given un-
derlying mesh changes.

5.1 Energy Formulation
The distortion metric that we use is based on comparing the de-
formed remapped surface to the original in terms of stretch along
the ŝ and t̂ directions. We define the total per-axis distortion energy
as the sum of the individual per-cell, per-axis distortion energies.
The horizontal energy is defined as:

Es =
N−1

∑
i=0

M−1

∑
j=0

Esi j (1)

Data: R, W , H, e
Result: s,t
// Maximum per-column distortion control

weight
for each column j = 0→ (W −1) do

r j = maxi∈[0,H−1] R(i, j);
end
// Calculate s lines
s0← 0;
idx← 1;
for each column j = 0→ (W −1) do

if ‖r j− r j+1‖> e then
if r j > r j+1 then

sidx← j
W−1 ;

else
sidx← j+1

W−1 ;
end
idx← idx+1;

end
end
sidx← 1;
// ...Similarly for t lines
Algorithm 1: Generating the rectilinear grid from a distortion con-
trol map R of size W ×H with values in [0,1] given a threshold e
that separates

(a) Object space (b) Texture space

Figure 4: Four ROIs and starting grids in object space (a) and tex-
ture space (b) enclosing rigid points (shown in white) using the
mesh of figure 1.

where the per-cell energy is defined as:

Esi j =
∫ ti+1

t=ti

∫ si+1

s=si

R(s, t)Fs(s, t)dsdt (2)

where Fs(s, t) calculates stretch at a point (s, t) as the squared weighted
difference of the lengths of the original and deformed/remapped ge-
ometric partial derivative along the ŝ direction at that point:

Fs(s, t) = (| f ′(s)|
∥∥D′s(f (s),g(t))

∥∥
2−
∥∥O′s(s, t)

∥∥
2)

2 (3)

where f , g are the linear functions that remap s and t for the given
cell. Similarly for the vertical energy:

Ft(s, t) = (|g′(t)|
∥∥D′t(f (s),g(t))

∥∥
2−
∥∥O′t(s, t)

∥∥
2)

2 (4)

It can be seen that movement of vertical lines does not result in any
horizontal energy change and vice versa. Derivation of the energy
can be found in appendix A.

5.2 Constraints
We wish to calculate axis-aligned grid lines that minimise the above
distortion energy while satisfying the following requirements: a) no
line fold-overs b) smooth line changes from frame to frame, and c)
allow “seamless” solutions for looping animations. We also pre-
fer local minima in our solution as this results in minimal sliding
of features across texture space. These requirements can be for-
mulated as boundary constraints in our optimisation, as they are
compatible with local solutions – which in turn allows for faster
optimisation than searching for a global solution. Below, we show
constraints for the ŝ axis only, and refer to previous (known) and
current (unknown) solutions as sk and sk+1 respectively.

Fold-over Constraint Fold-over constraints prevent discontinuities

in the remapping and are easily enforced by bounding a line be-
tween the midpoints of the segments between the line and its adja-
cent neighbours:

sk
i−1 + sk

i
2

< sk+1
i <

sk
i+1 + sk

i
2

(5)

Smooth Line Constraint Smooth line changes can simply be en-
forced by restricting the movement of a line in a solution to a max-
imum offset o:

sk
i −o < sk+1

i < sk
i +o (6)

Looping Animation Constraint The above constraints result in
local solutions, so the local minima requirement is satisfied. For
a looping animation consisting of K frames we add the following
constraint for the j-th frame:

d =
K− |2(j+1)−K +1|−1

2
s0

i −do < sk+1
i < s0

i +do

where s0 is the solution for the first (or last) frame. This constraint
effectively shifts the bounds so that the first and last solutions are
matching, and solutions in between vary smoothly.

As the intersection of all these ranges might be /0, we need to define
a behaviour that gives precedence to one constraint over another.
Given constraints of descending priority Ch, Cl , a merged constraint
can be calculated as follows:

F(Ch,Cl) =

Ch, if (Cl ∩Ch = /0) or (Cl ⊇Ch)

Cl , if Cl ⊆Ch

Ch \ (Ch∩Cl), otherwise

Now, given the bound constraints for foldovers (CF), smooth changes
(CS) and looping behaviour (CL) we define the final bounds as
F(CL,F(CF ,CS)) that give priority first to looping, then foldovers
and finally smooth changes (looping is foldover-free).

5.3 Non-Linear Optimisation
Our overall optimisation is based on minimising the horizontal and
vertical cell distortion energy integrals in eq. 2. We optimise this
term using the Levenberg-Marquardt algorithm [15], as this also
allows us to efficiently calculate local minima subject to the pre-
viously described bound constraints. The unknowns vector is the
aggregation of all horizontal and vertical lines except the boundary
ones. The starting point is the calculated solution from the nearest
frame, as we want solutions to be as local as possible to achieve
temporal coherence.

6. RENDERING (STEP 3)
There are two options for applying the new optimised parameter-
isation when rendering the distortion-corrected output. Given the

original and deformed grid lines we may either alter the geome-
try or the texture coordinates. Let Fs(s) = s′ and Ft(t) = t′ be the
piecewise-linear functions that remap the original to the optimised
grid. As both are strictly monotonic, they can be easily inverted
(F−1

s , F−1
t).

To alter the geometry, we use the texture coordinates T (s, t) with
the remapped deformed geometry D(Fs(s),Ft(t)). Similarly, to al-
ter the texture coordinates, we use the deformed geometry D(s, t)
with the inversely remapped texture coordinates T (F−1

s (s),F−1
t (t)).

Such a remapping is very efficient, but there are trade-offs to us-
ing any of the two methods above. If the geometry is altered, the
ROI needs to be densely discretised (or dynamically tessellated in
the GPU) and D(s, t) needs to be known for the entire ROI. If the
texture coordinates are altered, T (s, t) needs to be known for the
entire ROI. As displacement mapping requires the geometry to be
modified, the best overall option is to alter the geometry.

7. NON AXIS-ALIGNED GRID WARPING
We now describe how our proposed solution can be extended to
allow non-axis-aligned grid warping. Given the per-cell bilinear
warping functions Sb(s, t), Tb(s, t) and defining Hs(s, t)=D(Sb(s, t),Tb(s, t)),
equations 3 and 4 become:

Fs(s, t) = (
∥∥H ′s(s, t)

∥∥
2−
∥∥O′s(s, t)

∥∥
2)

2 (7)

Ft(s, t) = (
∥∥H ′t (s, t)

∥∥
2−
∥∥O′t(s, t)

∥∥
2)

2 (8)

where

H ′s(s, t) = S′bs
D′s(Sb(s, t),Tb(s, t))+T ′bs

D′t(Sb(s, t),Tb(s, t))

H ′t (s, t) = S′bt
D′s(Sb(s, t),Tb(s, t))+T ′bt

D′t(Sb(s, t),Tb(s, t))

It is straightforward to modify the boundary constraints to take into
account the increased number of neighbours per point (four instead
of two). The efficiency of the error calculations is reduced, as in-
stead of directly sampling the partial derivative lengths (eq. 3, 4) we
only need to sample the partial derivative vectors, scale them and
calculate their norms (eq. 7, 8). The Jacobian calculation process
is identical, but in this case each per-axis cell energy is affected by
all four adjacent points. An example of non-axis-aligned distortion
correction can be seen in figure 3.

8. HYBRID CPU-GPU OPTIMISATION
We use the CPU implementation of the Levenberg-Marquardt opti-
miser from the ALGLIB library [1] and provide an objective func-
tion that calculates the squared errors and the Jacobian on the GPU.
We now outline how the components of the objective function –
described in section 5.1 – are handled. We give details for the axis-
aligned version of the algorithm, as the non-axis-aligned version is
similar.

The O′s and O′t functions are precalculated and stored in a texture
during the pre-processing stage after the selection of the ROI. At
the start of the optimisation, D′s and D′t are also calculated and
stored in a texture.

The distortion energy integral in the objective function is calculated
using a DirectCompute shader. (M−1)×(N−1) thread groups are
dispatched (one per cell) and in each group a K×L grid of threads

Figure 5: The original mesh is shown minimised in the top-middle.
The deformation introduces creases on the mesh (top, middle and
bottom). Normal texture mapping results in significant stretch of
detail on the bump (top). Our axis-aligned solution reduces the
stretch on features on the bump, but introduces other artifacts (mid-
dle). The optimizer converges to a suboptimal solution where some
features are located on the crease. Also, due to the axis-aligned na-
ture of the process, varying deformation across a strip results in
distortions of features in undeformed areas. This can be observed
here as compression of features outside the bump as a side-effect
of stretch reduction of features on the bump. The non-axis-aligned
version of our algorithm correctly preserves the features (bottom).

is executed (max size 32×32). The thread grid for a cell is used to
calculate the integral: the cell is uniformly split to K×L sub-cells
and the two integrals Esi j and Eti j are evaluated using the midpoint
method. The sub-cell results are summed using a GPU reduction
operator [24] and are read back in the CPU. All required calcu-
lations are two texture fetches, adds and multiplies, so the shader
evaluation is very efficient.

The Jacobian is calculated numerically in the same shader using
finite differences. As the warp is piecewise-linear, the energy for
each cell is affected only by those adjacent to the cell grid lines.
More specifically, Esi j is only affected by changes in s j and s j+1
and similarly Eti j is only affected by changes in ti and ti+1. As a
result, the cost of calculating the Jacobian is only approximately
four times more than a single error calculation, as it requires a little
more than a total of five evaluations of the error function.

In a cell ([s0,s1], [t0, t1]), given a very small offset h the subcell
error is additionally calculated four more times for four modified

cells: ([s0 +h,s1], [t0, t1]), ([s0,s1−h], [t0, t1]), ([s0,s1], [t0 +h, t1]),
([s0,s1], [t0, t1−h]).

The integral calculation can efficiently handle the additional cell
coordinates, as f and g (and their derivatives), being linear in na-
ture, can be analytically adjusted for the new interval.

9. RESULTS
We validated the algorithm on a real dataset as well as procedurally
defined geometry. The real data set consists of face animation data
from motion capture: 615 frames for sequence “face90” and 1373
frames for sequence “face49” – each containing 8,820 vertices and
17,216 triangles (shown in figures 1, 2, 4 and 7). The procedural
examples (figures 3, 5 and 9) contain 100 frames, 16,384 vertices
and 32,258 triangles. For each sequence we manually authored
distortion control maps. The face animation data contains localised
deformation, resulting in more subtle distortion control results as
can be seen from the corresponding figures. In our distortion con-
trol maps we used (bounding) circles to represent areas where we
wished to minimise distortion. However, note that the shape of dis-
tortion control features can be arbitrary (defined by the user), and
is not limited to circles.

The optimisation process is non-linear and the time required for the
calculation of a solution for a given frame depends on the number
of unknowns, the complexity of deformation as well as the opti-
misation parameters (i.e. derivative step size, stopping condition
tolerances, iterations). Optimisation and remapping times for our
test sequences are shown in table 1. These were measured using a
2.66GHz Xeon CPU with 24 GB RAM and an NVIDIA GeForce
GTX 580 with 4GB VRAM. The ALGLIB optimiser settings are
selected for a high quality/low-error solve, i.e. all tolerances are set
to 0 and the maximum iterations are set to 100.

Even though the optimisation algorithm can be used in real-time
on a similar hardware configuration, the results can also be pre-
computed and efficiently stored for use on less powerful hardware.
The storage cost needed for a single ROI is (M+N−4) floats, mul-
tiplied by the number of frames. So, 100 frames of animation for a
moderately partitioned region (e.g. 10×10) would require about 6
KB. Similarly, storage for a non-axis-aligned grid would be 25 KB.
As such, the small storage costs makes the technique ideal for use
in low GPU bandwidth hardware.

10. DISCUSSION
In this section we discuss various issues and capabilities of the pro-
posed algorithm.

10.1 Grid Lines and Filtering
To avoid texture filtering artefacts, when calculating the initial rec-
tilinear grid, we must ensure that when separating a low-rigidity
from a high-rigidity cell, the separating line must move a few pix-
els towards the low-rigidity one, as otherwise texture filtering can
cause stretching of rigid detail. An additional consequence is that
using hardware trilinear filtering can also cause artifacts, as sam-
pling from low resolution mipmaps can result in rigid detail bleed-
ing in a non-rigid (and potentially highly deforming) neighbouring
area.

10.2 Edge Discontinuities

Figure 6: An example of a distortion control map that cannot be
used successfully with the algorithm.

Remapping of axis-aligned lines results in seams on the edges of
the selected ROI, as the parameterisation there will be discontinu-
ous. We alleviate this with the following steps: a) ensure the cells
of the rectilinear grid that are adjacent to the boundary contain non-
rigid data and b) at the boundary cells, linearly blend the original
and optimised parameterisation so that when approaching a vertical
edge the s′ solution blends to s and when approaching a horizontal
edge the t′ solution blends to t.

10.3 ROIs and Chart Boundaries
If a selected ROI contains a texture space region which is unused,
the resulting distortion control weight and partial derivative length
textures will contain the texture initialisation values, which should
be zero. In this case, the calculated energy values (eq. 3 and 4) in
those areas are 0 and do not affect the rest of the process.

10.4 Failure Cases
There are cases where the algorithm fails, such as when distortion
on the deformed surface varies significantly across a horizontal or
vertical strip (figure 6). Additionally, high-frequency deformation
(e.g. by introducing creases on previously smooth areas) will result
in slower convergence or lower quality results, especially for the
axis-aligned version of the algorithm (figure 5).

11. CONCLUSION AND FUTURE WORK
In this paper we presented a technique to re-parameterise regions
in texture space, such that important rigid features mapped on these
regions are preserved when the surface deforms. The proposed al-
gorithm requires minimal user interaction and exhibits fast compu-
tation and runtime evaluation as well as very low storage require-
ments.

The technique can be applied to reduce elastic distortions on a vari-
ety of scenarios where highly detailed rigid features are represented
on a map, abstracted from the underlying low-complexity deform-
ing geometry they are mapped on. In modeling packages, artists
can preview animations with detail mapped in a content-aware way,
without manually altering the model geometry to achieve similar
results. Real-time animated rigid detail on deformable objects also
becomes a possibility, whereas previously it would require a sig-
nificant amount of work from artists. Precomputed re-mappings
for canned animations can enhance visual quality by reducing the
rigid detail distortion on deformable surfaces in low-power hard-
ware. In general, control cages/sparse meshes with static or dy-
namic detail are ideal candidates for use with this method, as the
geometry remains unchanged and as a result it can be shared with
more detail maps, requiring only pre-calculated parameterisation
corrections for ROIs for each detail map.

Example Solver(msec) ObjFunc (msec) Evals (Jac) Unknowns Render(ms)
aa-face90-umouth 9.85 8.49 18(4) 14 1(1.35)
aa-face90-lmouth 10.17 8.93 16(3) 14 1(1.5)

aa-face49-leye 22.26 20.7 23(6) 12 1(1.3)
aa-face49-reye 26.34 24.39 28(8) 12 1(1.3)
aa-face49-all 68.62 62.51 85(21) (14,14,12,12) 1.1(1.8)

aa-saddle 26.97 22.3 25(8) 24 2.8(5)
nonaa-face90-umouth 22.66 13.96 19(6) 48 1(1.35)
nonaa-face90-lmouth 54.84 23.16 20(7) 80 1(1.5)

nonaa-saddle 741.8 108.4 30(13) 288 2.8(5)
aa-worm 8.87 13.41 17(3) 38 3.2(5.2)

nonaa-worm 3078.15 425.170 27(15) 192 3.2(5.2)

Table 1: Per-frame timings using our real and synthetic test data. The example “aa-face49-all” uses combined times for all four ROIs
of the face49 animation sequence. Each distortion control map is associated with a number of unknowns for the non-linear minimizer,
which is M +N − 4 for the axis-aligned version (aa-) and (M− 2)× (N − 2)× 2 for the non-axis-aligned version (nonaa-). The solver
times correspond to the times required for the whole optimisation (CPU-GPU). The ObjFunc times correspond to the times required for
all calculations of the objective function in the GPU, with and without Jacobian calculation, including the transfers to the CPU. The Evals
column shows the average number of objective function evaluations per solved frame, while the number in the parentheses shows the average
number or required Jacobian evaluations per solved frame. The rendering times correspond to close-up views of highly tessellated geometry
using the modified and original parameterisations (numbers inside and outside parentheses respectively). Rendering times for the modified
parameterisation include rendering the parameterisation to a texture and sampling it from the normal shader used for the mesh. It can be seen
that even though the objective function calculation times scale well with the number of the unknowns, the rest of the optimisation does not
(especially for the non-axis-aligned variant) so for larger problem sizes the performance deteriorates quickly. These examples have not been
optimised for performance, as all tolerances are zero.

The piecewise-linear warp is C0-continuous on the grid edges, so
we would like to modify the algorithm so that the remapping is at
least C1-continuous in the domain of the ROI, resulting in a higher-
quality re-parameterisation. We would also like to extend the algo-
rithm to handle any ROI shape and perform content-aware warp of
the volumetric space (thick shell over the surface), so that detail of
any complexity can be preserved under deformation.

12. REFERENCES
[1] ALGLIB. www.alglib.net.
[2] M. Ben-Chen, O. Weber, and C. Gotsman. Variational

harmonic maps for space deformation. In ACM Transactions
on Graphics (TOG), volume 28, page 34. ACM, 2009.

[3] M. Botsch and O. Sorkine. On linear variational surface
deformation methods. Visualization and Computer Graphics,
IEEE Transactions on, 14(1):213–230, 2008.

[4] B. Burley and D. Lacewell. Ptex: Per-face texture mapping
for production rendering. In Computer Graphics Forum,
volume 27, pages 1155–1164. Wiley Online Library, 2008.

[5] M. Floater and K. Hormann. Surface parameterization: a
tutorial and survey. Advances in multiresolution for
geometric modelling, pages 157–186, 2005.

[6] R. Gal, O. Sorkine, and D. Cohen-Or. Feature-aware
texturing. In Proceedings of Eurographics Symposium on
Rendering, pages 297–303, 2006.

[7] P. Heckbert. Survey of texture mapping. Computer Graphics
and Applications, IEEE, 6(11):56–67, 1986.

[8] K. Hormann, B. Lévy, A. Sheffer, et al. Mesh
parameterization: Theory and practice. SIGGRAPH Course
Notes, 2007.

[9] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine. Bounded
biharmonic weights for real-time deformation.
SIGGRAPH’11: ACM SIGGRAPH 2011 Papers, 2011.

[10] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki.
Harmonic coordinates for character articulation. ACM

Transactions on Graphics (TOG), 26(3):71, 2007.
[11] T. Ju, S. Schaefer, and J. Warren. Mean value coordinates for

closed triangular meshes. In ACM Transactions on Graphics
(TOG), volume 24, pages 561–566. ACM, 2005.

[12] V. Kraevoy, A. Sheffer, A. Shamir, and D. Cohen-Or.
Non-homogeneous resizing of complex models. In ACM
Transactions on Graphics (TOG), volume 27, page 111.
ACM, 2008.

[13] Y. Lipman, D. Levin, and D. Cohen-Or. Green coordinates.
In ACM Transactions on Graphics (TOG), volume 27,
page 78. ACM, 2008.

[14] J. Maillot, H. Yahia, and A. Verroust. Interactive texture
mapping. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 27–34.
ACM, 1993.

[15] J. More. The levenberg-marquardt algorithm:
implementation and theory. Numerical analysis, pages
105–116, 1978.

[16] D. Panozzo, O. Weber, and O. Sorkine. Robust image
retargeting via axis-aligned deformation. In Computer
Graphics Forum, volume 31, pages 229–236. Wiley Online
Library, 2012.

[17] T. Popa, D. Julius, and A. Sheffer. Material-aware mesh
deformations. In Shape Modeling and Applications, 2006.
SMI 2006. IEEE International Conference on, pages 22–22.
IEEE, 2006.

[18] P. Sander, S. Gortler, J. Snyder, and H. Hoppe.
Signal-specialized parametrization. In Proceedings of the
13th Eurographics workshop on Rendering, pages 87–98.
Eurographics Association, 2002.

[19] A. Sheffer and E. De Sturler. Smoothing an overlay grid to
minimize linear distortion in texture mapping. ACM
Transactions on Graphics (TOG), 21(4):874–890, 2002.

[20] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization
methods and their applications. Foundations and Trends R© in

Computer Graphics and Vision, 2(2):105–171, 2006.
[21] O. Sorkine. Laplacian mesh processing. In Eurographics

State-of-the-Art Report, pages 53–70, 2005.
[22] W. Xu and K. Zhou. Gradient domain mesh deformation - a

survey. Journal of computer science and technology,
24(1):6–18, 2009.

[23] X. Yang, R. Southern, and J. Zhang. Fast simulation of skin
sliding. Computer Animation and Virtual Worlds,
20(2-3):333–342, 2009.

[24] E. Young. Directcompute optimisations and best practices. In
GPU Technology Conference, 2010.

APPENDIX
A. DERIVATION OF ENERGY FOR AXIS-

ALIGNED DEFORMATION
We want identical lengths for a small segment (s0,s1), where the
geometry function can be considered as piecewise-linear.∥∥D(s′1)−D(s′0)

∥∥= ‖O(s1)−O(s0)‖

Because s′ = f (s) = cs+d, the above can be further rewritten as:

‖D(f (s1))−D(f (s0))‖= ‖O(s1)−O(s0)‖

The function f (s) can be also written as follows:

f (s) = s′0 +
s− s0

s1− s0
(s′1− s′0)

and its derivative in this case is:

f ′(s) =
s′1− s′0
s1− s0

Divide by s1− s0 to be able to convert it to derivatives:

‖D(f (s1))−D(f (s0))‖
s1− s0

=
‖O(s1)−O(s0)‖

s1− s0

Rewriting H(x) = D(f (x)) leads to:

‖H(s1)−H(s0)‖
s1− s0

=
‖O(s1)−O(s0)‖

s1− s0
⇒∥∥H ′(s)

∥∥= ∥∥O′(s)
∥∥ ⇒

| f ′(x)|
∥∥D′(f (x))

∥∥= ∥∥O′(s)
∥∥

| f ′(x)|
∥∥D′(f (x))

∥∥−∥∥O′(s)
∥∥= 0

and this leads to the equations 3 and 4.

(a) Rest pose (b) Deformed pose

(c) Distortion control map features (d) Deformed, remapped pose

Figure 7: Mapped features near the eyes. Rest pose (b) and deformed frame (b). The features stretch under deformation. Our algorithm
calculates a re-parameterisation that reduces distortions near the features (d). The remapped ROI rectangles and the features in the original
and remapped parameterisation are shown in red and green respectively (c).

(a) Rest pose (b) Deformed, using original parame-
terisation

(c) Deformed, re-parameterised using
CGAL’s mean value coordinates

(d) Deformed, using content-aware
re-parameterisation

Figure 8: Plane (a) deformation with mapped displacements. The constant parameterisation (b) stretches the features. Re-parameterising
the mesh using an off-the-shelf method (c) does not preserve the features. Re-parameterising the mesh using our method (d) preserves the
features and spreads the error in non-feature regions.

(a) Rest pose, normal (left) and distortion control map (right) views

(b) Deformed pose (c) Distortion control map features (d) Deformed, remapped pose

Figure 9: Worm example. The worm’s horns are authored in the rest pose and are marked as rigid in the distortion control map (a). The
deformed pose compresses the features near the centre of the worm (b). Using our method, the parameterisation is warped so that the
parameterisation distortion near the features is spread to non-feature areas (d). The areas of interest in the original and content-aware
parameterisation are shown in red and green respectively (c).

