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We	 consider	 decoding	 of	 two‐dimensional	 information	
encoded	with	orbital	angular	momentum	(OAM)	of	light.	
Spiral	phase	plates	and	spatial	light	modulators	are	used	
to	 prepare	 encoding	 and	 decoding	 OAM	 states,	
respectively.	We	 show	 that	 with	 selective	 coding	 OAM	
states,	off‐axis	points	and	spatial	variables	encoded	with	
OAM	are	reproducible.	

OCIS codes: (050.1970) Diffractive optics; (080.4865) Optical vortices; 
(070.6120) Spatial light modulators.  

 

Light	 may	 carry	 spin	 angular	 momentum	 and	 orbital	 angular	
momentum	 (OAM)	 [1].	 Spin	 angular	momentum	 is	 associated	with	
circular	polarization	of	light,	and	OAM	is	a	property	of	light	related	to	
the	phase	distribution	of	 the	optical	wave	 front.	Unlike	spin	angular	
momentum	(i.e.	polarization),	which	has	only	two	orthogonal	modes,	
OAM	has	theoretically	an	infinite	number	of	orthogonal	modes.	
Beams	having	helical	phase	fronts	described	by	eilϕ,	where	l	can	be	

an	 integer	 or	 fraction	 and	߶	is	 the	 angular	 coordinate,	 have	 been	
shown	 to	 possess	 well‐defined	 OAM	 of	l԰	per	 photon	 [2,3].	 The	
theoretically	unbounded	state	space	provided	by	OAM	beams	enables	
enhanced	free‐space	and	fiber	communications	[4‐8].	Methods	ranging	
from	 diffractive	 optics	 [9,10],	 spiral	 phase	 plates	 [11],	 and	 mode	
converters	[2,12],	to	q‐plates	[13,14]	are	used	to	generate	OAM	beams.	
In	general,	bits	of	data	are	either	encoded	as	OAM	states	of	the	beam	
[8]	or	carried	by	the	amplitude	of	the	on‐axis	point	of	the	OAM	beam	
[5],	 then	 decoded	 from	 a	 multiplexed	 beam.	 OAM	 mode‐division	
multiplexing	is	used	in	combination	with	other	multiplexing	schemes	
to	 achieve	 additional	 degrees	 of	 freedom	 [15]	 and	 increase	 channel	
capacity.	While	 coding	 one‐dimensional	 information	 in	OAM	modes	
has	been	demonstrated,	coding	two‐dimensional	information	has	not	
been	studied.	
In	 this	paper,	we	describe	 the	use	of	OAM	beams	 in	 coding	 two‐

dimensional	patterns.	In	an	attempt	to	code	an	image	with	OAM,	we	
decompose	the	image	into	an	on‐axis	point	and	off‐axis	points.	Fig.	1(a)	
sketches	coding	of	an	off‐axis	point	with	OAM.	Assume	x	and	y	are	two	
independent	 variables	 of	 the	 cardinal	 coordinate,	߶	is	 the	 azimuthal	
angle	 in	 the	 polar	 coordinate,	 and	l1	and	l2	represents	 two	 states	 of	
OAM,	we	denote	an	off‐axis	point	with	amplitude	a	and	phase	φ	as	
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As	the	off‐axis	point	is	encoded	and	decoded	with	OAM	states	l1	and	
l2,	respectively,	the	resultant	far	field	is	found	to	be	
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where	fX 	and	fY 	are	 two	 independent	 variables	 of	 the	 cardinal	
coordinate	 after	 the	 Fourier	 transform.	 Working	 together,	 the	
encoding	and	decoding	of	the	OAM	state	modulates	the	point	with	the	
updated	spiral	phase	characterized	by	eilϕሺx,yሻ,	where	l=l1+l2.		
When	l=0,	the	decoding	OAM	state	cancels	the	encoding	OAM	state,	

and	the	far	field	contains	Fourier	information	of	the	original	point	in	
that	
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When	l≠0,	 the	decoding	OAM	state	does	not	match	 the	 encoding	
state.	Following	the	convolution	theorem,	the	far	field	can	be	found	by	
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We	 define	    
0
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l lx tJ t dt Z ,	 where	 the	 function	ܬ௟	is	 the	l	th‐

order	Bessel	function	of	the	first	kind.	The	Fourier	transform	of	spiral	
phase	is	then	given	by	
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where	ሺr,θሻ	is	 the	 polar	 coordinate	 in	 the	൫fX,fY൯	plane,	 and	ߩ଴	is	
radius	 of	 the	 spiral	 phase	 affected.	 Eq.	 (5)	 describes	 a	 kernel	 with	
circular	symmetry,	with	the	amplitude	of	a	circular	central	region	close	
to	0.	Calculated	amplitude	profile	and	radial	intensity	are	sketched	in	
Fig.	1	 (b)	and	 (c),	 respectively.	We	 find	 radius	ݎ଴	of	 the	central	dark	
region	at	1 ݁ଶ⁄ 	of	the	maximum	intensity.	Since	the	spectrum	of	a	delta	
function	 extends	 uniformly	 over	 the	 entire	 frequency	 domain,	
encoding	and	decoding	of	a	single	point	with	unmatched	encoding	and	
decoding	OAM	states	results	in	a	centered	dark	region.	
Contributed	 by	 the	 on‐axis	 point	 and	 all	 the	 off‐axis	 points,	

information	 of	 a	 two‐dimensional	 pattern	 can	 be	 preserved	 by	
encoding	 and	 decoding	 with	 matched	 OAM	 modes.	 For	 patterns	



encoded	and	decoded	using	unmatched	OAM	states,	the	resultant	far	
field	 contains	 a	 hole,	 which	 is	 spatially	 separable	 from	 useful	
information	decoded	with	a	matched	OAM	state.	

	
Fig.	1.	(a)	Sketch	of	an	off‐axis	point	modulated	by	an	OAM	state.	(b)	

Normalized	amplitude	of	Eq.	(3)	when	the	charge	l=3.	The	amplitude	
profile	 is	 calculated	 by	 evaluating	 the	 integral	 in	 terms	 of	weighted	
sums	 of	 Bessel	 functions	 and	 Struve	 functions.	 (c)	 Calculated	 radial	
intensity.	
	
In	 a	 multiplexed	 beam,	 multiple	 two‐dimensional	 patterns	 are	

coded	with	a	series	of	OAM	states	
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Decoded	by	a	spiral	phase	eil0ϕ	corresponding	to	a	selected	OAM	state,	
the	far	field	can	be	expressed	as	
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Due	to	linearity	of	the	Fourier	transform,	the	far	field	after	encoding,	
multiplexing	and	decoding	is	given	by	
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Decoded	by	a	selected	OAM	state	l0,	only	the	pattern	encoded	with	the	
matched	 state	lk=-l0	is	 preserved,	 while	 the	 energy	 of	 the	 other	
unmatched	states	are	shifted	outwards.	Therefore	Fourier	information	
of	A0ሺx,yሻ	is	extracted	after	OAM	modulation.	

	
Fig.	 2.	 Schematic	 overview	 of	 encoding	 and	 decoding	 a	 two‐
dimensional	image	with	OAM,	where	L1	to	L5	are	the	lenses,	AA1	and	
AA2	are	the	adjustable	apertures,	TF	is	the	transparency	film,	SPP	is	
the	spiral	phase	plate,	BS	is	the	beam	splitter,	and	SLM	is	the	spatial	
light	modulator.		
	
We	 experimentally	 demonstrate	 coding	 one	 image	with	 an	 OAM	

state.	A	sketch	of	the	optical	system	is	shown	in	Fig.	2.	Light	emitted	
from	a	632.8	nm	HeNe	laser	is	expanded	by	two	lenses	(L1	and	L2)	
and	illuminated	on	a	removable	transparency	film	(TF)	which	imprints	
a	 two‐dimensional	 image	 onto	 the	 projected	 beam.	 An	 adjustable	
aperture	(AA1)	is	placed	in	front	of	the	transparency	film	to	remove	
the	noisy	outer	portion	of	the	expanded	beam.	A	lens	(L3)	is	inserted	
after	the	transparency	film	to	adjust	projection	distance	of	the	image.	
Information	containing	 the	 image	 is	 incident	on	a	spiral	phase	plate	
(SPP)	with	 an	 	eil0ϕ	phase	 distribution,	 encoding	 the	 transformed	
image	 into	 an	 OAM	mode	l0.	 For	 decoding,	 the	 encoded	 pattern	 is	
relayed	onto	a	phase‐only	LCoS	 spatial	 light	modulator	 (SLM)	using	

two	lenses	(L4	and	L5).	A	second	adjustable	aperture	(AA2)	is	used	to	
filter	out	everything	but	the	first	diffraction	order.	Output	of	the	system	
is	captured	using	a	CCD	camera.	We	use	a	beam	splitter	(BS)	to	ensure	
perpendicular	incidence	on	the	SLM.		
As	derived	above,	the	pattern	at	the	first	diffraction	order	depends	

on	 the	 sum	of	 the	 encoding	 and	 decoding	OAM	 states.	Without	 the	
transparency	film,	we	expect	to	see	either	a	bright	or	a	dark	region	in	
center,	 depending	 on	 whether	 the	 decoding	 OAM	 state	 cancels	 the	
encoding	one	so	that	the	sum	equals	zero.	With	the	transparency	film’s	
image	coded	in	the	beam,	we	expect	to	see	projection	of	the	pattern	on	
the	CCD	camera	when	the	decoding	OAM	state	matches	the	encoding	
OAM	 state.	 For	 unmatched	 encoding	 and	 decoding	 OAM	 states,	 we	
expect	to	obtain	a	convolution	of	the	encoded	pattern	and	the	kernel	
with	a	dark	region	in	center.		
In	our	experiment,	we	generate	the	encoding	OAM	states	by	the	use	

of	spiral	phase	plates.	The	SLM	displays	a	forked	diffraction	grating	(i.e.	
a	spiral	phase	distribution	with	a	blazed	linear	grating)	with	adjustable	
charge	to	create	different	decoding	OAM	states	at	the	first	diffraction	
order.	The	blazed	grating	is	used	to	separate	out	the	zero	order	from	
the	first	order.	
Fig.	3(a)	shows	observed	intensity	profiles	in	the	case	that	no	image	

is	 coded.	When	 the	encoding	 spiral	phase	plate	 is	 removed	and	 the	
SLM	just	displays	a	blazed	grating	(no	spiral	decoding	phase)	,	the	first	
diffraction	 order	 of	 the	 output	 is	 recorded	 as	 a	 reference.	With	 an	
encoding	 spiral	 phase	 plate	 and	 decoding	 SLM	 forked	 diffraction	
grating,	when	the	sum	of	the	OAM	states	equals	0,	a	bright	intensity	
occurs	in	the	center.	Acting	as	an	updated	OAM	state,	a	centered	dark	
region	 occurs	 when	 the	 decoding	 OAM	 state	 does	 not	 cancel	 the	
encoding	OAM	state.	The	radius	increases	with	the	absolute	value	of	
sum	of	the	coding	(encoding	and	decoding)	OAM	states.	
Fig.	 3(b)	 shows	 observed	 intensity	 profiles	 in	 the	 case	 that	 two‐

dimensional	 information	on	a	 transparency	 film	is	coded	with	OAM.	
Without	 encoding	 or	 decoding	OAM	 states,	 the	 reference	 is	 just	 the	
projection	 of	 the	 transparency	 film	 diffracted	 by	 the	 SLM’s	 blazed	
grating.	 We	 then	 encode	 the	 two‐dimensional	 pattern	 on	 the	
transparency	 film	with	OAM	 state	l0=‐4	 prepared	 by	 a	 spiral	 phase	
plate.	 Compared	 to	 the	 reference,	 we	 are	 able	 to	 decode	 the	 two‐
dimensional	image	using	the	SLM	to	display	a	phase	dislocation	with	
charge	lk=+4.	As	the	absolute	value	of	the	sum	of	the	encoding	and	
decoding	 OAM	 states	 increases,	 a	 dark	 region	 gradually	 appears	 in	
center	 of	 the	 image,	 with	 some	 features	 of	 the	 projected	 image	
surrounding	 the	hole.	As	 the	 absolute	 value	 reaches	 a	 large	 enough	
magnitude,	the	central	region	becomes	large	enough	so	that	the	size	of	
the	 dark	 region	 is	 larger	 than	 that	 of	 the	 decoded	 two‐dimensional	
image.	When	the	decoded	image	and	the	circular	pattern	are	mapped	
together,	they	are	spatially	separable,	which	indicates	that	information	
coded	with	unmatched	OAM	states	has	no	impact	on	the	information	
coded	with	matched	OAM	states,	considering	only	the	central	region,	
even	if	they	are	mapped	and	mode‐multiplexed	into	a	beam	bundle.	In	
Fig.	3(b),	we	encoded	a	bold	Arial	character	‘A’	with	a	height	of	5mm.	
The	 size	 of	 dark	 region	 reaches	 sufficiently	 large	 size	 when	 the	
absolute	value	of	the	sum	exceeds	30.		

	



	
Fig.	3	(a)	Observed	intensity	profiles	at	the	first	diffraction	order	when	
no	 image	 is	 coded	 and	 (b)	 observed	 intensity	 profiles	 at	 the	 first	
diffraction	 order	 for	 a	 range	 of	 decoding	 OAM	 states	 when	 a	 two‐
dimensional	pattern	is	coded.	The	encoding	OAM	state	prepared	by	the	
spiral	phase	plate	is	‐4.	
	
In	order	to	show	that	our	setup	can	code	larger	images,	we	create	a	

range	of	encoding	and	decoding	OAM	states	with	specific	beam	waists.	
The	radius	of	the	central	dark	region	of	the	light	encoded	by	the	OAM	
states	l0=‐4	and	decoded	by	a	set	of	sequential	OAM	states	is	studied	
(Fig.	4).	The	trend	of	the	calculated	radii	agrees	well	with	experimental	
results	 in	 that	 the	size	of	 the	dark	region	 increases	with	 the	 sum	of	
encoding	and	decoding	OAM	states,	which	means	a	larger	sum	allows	
coding	 of	 larger	 images	 to	 be	 separated	 from	 unwanted	 rings.	
However,	 generation	 of	 OAM	 beams	 with	 larger	l	values	 is	 more	
problematic	 in	 that	 they	 require	 higher	 resolutions	 of	 spiral	 phase.	
Though	the	state	space	provided	by	OAM	is	theoretically	infinite,	the	
trade‐off	 between	 image	 size	 and	 coding	 states	 would	 set	 limits	 to	
decoding	images	from	multiplexed	OAM	beam.	

	
Fig.	4	Modelled	and	measured	radius	of	the	central	dark	region	with	
respect	to	absolute	value	of	sum	of	the	encoding	and	decoding	OAM	
states.		
	
In	addition	to	the	radius	of	dark	regions	provided	by	different	OAM	

states,	we	characterise	the	energy	distribution	of	outside	rings	present	
using	different	beam	waists	of	the	incident	light.	Intensity	of	part	of	a	
generated	ring	is	summed	along	one	axis	and	derivative	of	energy	with	
respect	 to	 the	 axis	 is	 calculated.	 Fig.	 5	 indicates	 that	 the	 energy	
distribution	of	an	outside	ring	is	symmetrical	with	respect	to	the	radial	
direction.	Moreover,	 the	 derivative	 of	 energy	 reaches	 highest	 at	 the	
same	 position	 for	 all	 beam	 waists,	 which	 confirms	 that	 the	 radial	
positions	 of	 highest	 intensity	 of	 the	 rings	 are	 stationary.	 After	 the	
derivatives	are	maximal,	they	decrease	proportionally	with	the	radial	
distance,	which	indicates	that	the	radius	of	dark	regions	for	different	
beam	 waists	 can	 be	 found	 at	 the	 same	 radial	 positions,	 as	 well.	
Therefore,	selection	of	the	coding	OAM	states	is	less	relevant	with	the	
exact	patterns	to	be	coded.	

	
Fig.	5	Derivative	of	energy	with	respect	to	two	directions.	
	
Thickness	of	the	phase‐only	LCoS	SLM	used	to	create	the	decoding	

mode	varies	across	the	surface	(Fig.	6(a)),	which	contributes	to	phase	
departure	of	the	decoding	spiral	phase.	In	the	central	5mm	area	where	

the	light	is	incident	on,	thickness	varies	from	2.644	to	2.2538	microns.	
In	order	to	investigate	its	effect,	the	distortion	introduced	by	thickness	
variation	 of	 the	 LCoS	 device	 across	 the	 surface	 is	 calculated.	 For	
calibration	of	the	LCoS,	the	beam	without	OAM	modulation	and	coding	
images	is	 incident	in	centre	of	the	surface,	where	a	binary	grating	is	
displayed.	 Within	 the	 area	 of	 the	 calibration	 beam,	 dependency	 of	
phase	modulation	of	the	LCoS	on	loaded	grey	scale	pattern	is	averaged.	
However,	 in	 practice	 the	positions	where	 the	 thickness	 of	 the	 LCoS	
surface	 is	 thicker	than	average	modulate	phase	more	than	intended,	
and	 the	 thinner	 positions	 modulate	 less.	 The	 phase	 departure	
considering	thickness	variation	is	calculated.	From	Fig.	6(b)	we	can	see	

that	0.2π phase	departure	results	in	unevenness	and	also	blur	edges	of	
the	 image.	 This	 may	 explain	 one	 of	 the	 reasons	 leading	 to	
imperfections	of	the	regenerated	image	shown	in	Fig.	3	(b).	

	
Fig.	6	(a)	Thickness	distribution	of	the	LCoS	SLM.	(b)	Ideal	amplitude	
and	calculated	distorted	amplitude	due	to	phase	departure	introduced	
by	thickness	variation	of	the	LCoS	SLM.	
	
In	 conclusion,	 we	 present	 the	 concept	 of	 coding	 two‐dimensional	
images	 with	 OAM,	 and	 we	 demonstrate	 that	 it	 works	 by	 spatially	
separating	 the	 reconstructed	 image	 and	 unwanted	 rings.	 We	 also	
analyze	 ring	 size	 of	 over	 50	 updated	 OAM	 states	 and	 indicate	 that	
larger	patterns	can	be	coded.	We	believe	that	this	principle	can	be	used	
in	 high‐dimension	 optical	 communication	 and	 imaging	 techniques	
based	on	OAM	states.	
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