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Abstract
Real-world AI systems have been recently deployed
which can automatically analyze the plan and tactics
of tennis players. As the game-state is updated reg-
ularly at short intervals (i.e. point-level), a library of
successful and unsuccessful plans of a player can be
learnt over time. Given the relative strengths and weak-
nesses of a player’s plans, a set of proven plans or tac-
tics from the library that characterize a player can be
identified. For low-scoring, continuous team sports like
soccer, such analysis for multi-agent teams does not
exist as the game is not segmented into “discretized”
plays (i.e. plans), making it difficult to obtain a library
that characterizes a team’s behavior. Additionally, as
player tracking data is costly and difficult to obtain, we
only have partial team tracings in the form of ball ac-
tions which makes this problem even more difficult. In
this paper, we propose a method to overcome these is-
sues by representing team behavior via play-segments,
which are spatio-temporal descriptions of ball move-
ment over fixed windows of time. Using these repre-
sentations we can characterize team behavior from en-
tropy maps, which give a measure of predictability of
team behaviors across the field. We show the efficacy
and applicability of our method on the 2010-2011 En-
glish Premier League soccer data.

Introduction
The use of AI systems in sport has graduated from the virtual
to the real-world. This is due in part to the popularity of live-
sport, the amount of live-sport being broadcasted, the prolif-
eration of mobile devices, the rise of second-screen viewing,
the amount of data/statistics being generated for sports, and
demand for in-depth reporting and analysis of sport. Sys-
tems which use match statistics to automatically generate
narratives have already been deployed (Allen et al. 2010;
Statsheet 2012). Although impressive, these solutions just
give a low-level description of match statistics and notable
individual performances without giving any tactical analy-
sis about factors which contributed to the result. In tennis
however, IBM has created Slamtracker (IBM SlamTracker
2012) which can provide player analysis by finding patterns
and styles of play that characterize a player from an enor-
mous amount of data.
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Figure 1: A multi-agent plan recognition (MAPR) frame-
work can be used to analyze team tactics of a sporting match.
Given a sequence of team behaviors, we can map these to
a plan within a library. A set of these common plans can
then describe the underlying tactics employed. For continu-
ous and low-scoring sports, such as soccer, segmenting agent
behaviors into a series of plans is difficult. In this paper, we
show a method of circumventing this issue.

Multi-agent plan recognition (MAPR) constitutes a
method to provide this type of analysis for team sports in
the future. Given a sequence of observed team behaviors or
activities, MAPR seeks to map these behaviors to one dis-
tinct plan within a library of plans. A set of these recognized
plans can then be used to infer the tactics employed by an
agent team in adversarial domains (see Figure 1(a)). As the
match is segmented into distinct plan segments, this type
of approach has started to be applied for team sports such
as American Football (Intille and Bobick 1999; Hess, Fern,
and Mortensen 2007; Siddiquie, Yacoob, and Davis 2009;
Li and Chellappa 2010; Stracuzzi et al. 2011) and basket-
ball (Perse et al. 2008). But due to the difficulty of tracking
players and the ball in confined spaces, as well as labeling
the complex actions and interactions between players and
their teammates and adversaries, the large amount of tracing
data which is required to do find characteristic patterns is not
available. As such, most of the work has been dedicated to
doing team activity detection on small amounts of data.

For continuous and low-scoring team sports such as soc-
cer, it has the additional headache of the game not being seg-
mented into “discretized” plays (i.e. plans) - therefore mak-
ing automatic analysis even more difficult. However, due to

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1387



the explosion in interest in analyzing soccer, there has been
a massive demand for real-time statistics and visualizations.
Due to the difficulty associated with tracking players and
the ball, most of the data collected is via an army of human
annotators who label all actions that occur around the ball
- which they call ball actions. Although only giving partial
team tracing information, the sheer volume of data available
makes automatic analysis of team behavior an interesting
and possible research endeavor.

In this paper, we propose a method to characterize team
behaviors for soccer using partial team tracings. As we do
not have a library of labeled plans, we do this by repre-
senting team behavior as play-segments, which are spatio-
temporal descriptions of ball movement over fixed windows
of time. This differs from current approaches which use la-
beled plan libraries and full team tracings (see Figure 1).
The ball movements were inferred from the hand annotated
ball action dataset which is currently used for visualizations
in sports production (Opta 2012). Using our play-segment
representations we can characterize team behavior from en-
tropy maps, which give a measure of predictability of team
behaviors across the field. We show the efficacy and appli-
cability of our method on the 2010-2011 English Premier
League soccer data.

Related Work
MAPR aims to describe the activity sequence of a set of
agents by identifying team structures and behaviors learnt
from a library of team plans (Banerjee, Kraemer, and Lyle
2010). Due to the host of military, surveillance and sport ap-
plications that it can be utilized in, research into this area
has dramatically increased recently. Outside of the sport
realm, most of this work has focussed on dynamic teams (i.e.
where individual agents can leave and join teams over the
period of the observations). An initial approach to MAPR
was to use a library of single agent plans to recognize team
plans (Avrahami-Zilberbrand et al. 2010). Sukthankar and
Sycara used a library of team plans but pruned the size
of the library by using temporal ordering constraints and
agent resource dependencies (Sukthankar and Sycara 2008;
2012). Banerjee et al.’s work was somewhere in between
as they “decompressed” the single agent plan library as
they found that it was NP-complete for the multi-agent case
(Banerjee, Kraemer, and Lyle 2010). Sadilek and Kautz
(Sadilek and Kautz 2008) used GPS locations of multiple
agents in a “capture the flag” game to recognize low-level
activities such as approaching and being at the same loca-
tion. All of these works assume that team traces and plans
are fully observed, but Zhuo and Li (Laviers et al. 2011) pro-
posed a MAX-SAT solver which can do MAPR with partial
team tracings and team plans.

Sport related MAPR research mostly centers on low-level
activity detection and with the majority centered on Ameri-
can Football. In the seminal work by Intille and Bobick (In-
tille and Bobick 1999), they recognized a single football
play pCurl51, using a Bayesian network to model the inter-
actions between the players trajectories. Li et al. (Li, Chel-
lappa, and Zhou 2009), modeled and classified five offen-
sive football plays (e.g. dropback, combo dropback, middle

run, left run, right run). Siddiquie et al. (Siddiquie, Yacoob,
and Davis 2009), performed automated experiments to clas-
sify seven offensive football plays using a shape (HoG) and
motion (HoF) based spatio-temporal feature. Instead of rec-
ognizing football plays, Li and Chellapa (Li and Chellappa
2010) used a spatio-temporal driving force model to segment
the two groups/teams using their trajectories. Researchers at
Oregon State University have also done substantial research
in the football space (Hess, Fern, and Mortensen 2007;
Hess and Fern 2009; Stracuzzi et al. 2011) with the goal
of automatically detecting offensive plays from a raw video
source and transfer this knowledge to a simulator. For soc-
cer, Kim et al. (Kim et al. 2010) used the global motion of
all players in a soccer match to predict where the play will
evolve in the short-term. Beetz et al. (Beetz et al. 2009) de-
veloped the automated sport game models (ASPOGAMO)
system which can automatically track player and ball posi-
tions via a vision system. Using soccer as an example, the
system was used to gain a heat-map of player positions (i.e.
which area of the field did a player mostly spend time in)
and also has the capability of clustering passes into low-level
classes (i.e. long, short etc.), although no thorough analysis
was conducted due to a lack of data. In basketball, Perse et
al. (Perse et al. 2008) used trajectories of player movement
to recognize three types of team offensive patterns. Hervieu
et al. (Hervieu and Bouthemy 2010) also used player trajec-
tories to recognize low-level team activities using a hierar-
chical parallel semi-Markov model.

Apart from the IBM Slamtracker (IBM SlamTracker
2012), no tactical team behavior analysis systems for real-
world sports seem to exist. However, this is not the case
with the Robocup domain, especially for the Coach Agent
competition (Riley and Veloso 2002). “Rush 2008” is a sim-
ulation of American Football and was developed as a plat-
form for evaluating game-playing agents (Molineaux 2008).
Using this simulation, researchers have started to study the
problem of learning strategies by observation (Li et al. 2009)
as well as opponent modeling (Laviers et al. 2009).

While similar in spirit, our work differs from these works
mentioned above as we aim to recognize and characterize
team behaviors for real-world sports, while having no plan
library, or labels to form a plan library from partial team
tracing data.

Problem Formulation
We define a team as a set of agents having a shared objec-
tive and a shared mental state (Cohen and Levesque 1990).
As we are dealing with soccer, each agent is permanently
fixed to one team. Unless an agent has been dismissed from
the match, each team always has the same number of agents
(11). We refer to team behaviors, as short, observable seg-
ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B). These behaviors
are observed from partial spatio-temporal tracings, which
in this case refers to ball movement inferred from hand-
annotated ball-action data (see next section).

A plan can be defined as an ordered sequence of team
behaviors describing a recipe used by a team to achieve a
goal (Sukthankar and Sycara 2012). A team performing a
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Figure 2: (a) A modified example of the Opta F24 feed be-
tween Arsenal and Liverpool. (b) From this we can infer the
ball position and possession at every time step (solid lines
and dots are annotated, dotted lines are inferred).

group of these plans to achieve a major goal (e.g. winning
a match), can be said to be employing tactics. However,
as soccer is low-scoring, continuous and complex due to
the various multi-agent interactions, labeling and segment-
ing the game into a series of plans is extremely difficult.
Hence recognizing team tactics using the MAPR frame-
work we described previously is impossible without these
labelled plans. To overcome this issue, we quantize a match
into equal temporal chunks which we use to describe team
behavior. As these segments do not describe a method of
achieving a specific goal, we do not call them plans, but
play-segments. We use these play-segments to form a library
or playbook of play-segments, P = {p1, p2, p3, . . . , pm},
where m is the number of unique play-segments within the
playbook.

The open questions to address with respect to the play-
segments are:
• How to represent these play-segments given partial team

tracings? Also, what are the optimal parameters of this
representation?

• What tactical insights can we gain from having a play-
book of play-segments? Can we devise a visualization or
quantitative analysis to back up the analysis?

• How discriminative are our representations? That is, do
teams have unique styles of play? And if so, can we detect
when they deviate from this style?

Using ball action data as our partial tracing data (see next
section), the rest of the paper is dedicated to answering these
questions.

Ranking Team Name Ranking Team Name
1 Man Utd 11 West Brom
2 Chelsea 12 Newcastle
3 Man City 13 Stoke City
4 Arsenal 14 Bolton
5 Tottenham 15 Blackburn
6 Liverpool 16 Wigan
7 Everton 17 Wolves
8 Fulham 18 Birmingham
9 Aston Villa 19 Blackpool
10 Sunderland 20 West Ham

Table 1: Table showing the team name and ranking for the
2010-2011 English Premier League season.

Partial Team Tracing from Ball Action Data
Due to the difficulty associated with tracking players and the
ball, data containing this information is still scarce. Most of
the data collected is via an army of human annotators who
label all actions that occur around the ball - which they call
ball actions. The F24 soccer data feed collected for the En-
glish Premier League (EPL) by Opta (Opta 2012) is a good
example of this. The F24 data is a time coded feed that lists
all player action events within the game with a player, team,
event type, minute and second for each action. Each event
has a series of qualifiers describing it. An example of the
data feed is given in Figure 2(a). This type of data is cur-
rently used for the real-time online visualizations of events,
as well as post-analysis for prominent television and news-
paper entities (e.g. ESPN, The Guardian). Even though this
data has been widely used, there are no systems which use
this data or data like this for automatic tactical analysis.

For our work we used the 2010-2011 EPL season F24
Opta feed, which consists of 380 games and more than
760,000 events. Each team plays 38 games each, which
corresponds with each team playing each other team twice
(once home and once away). The team names and ranking
for the 2010-2011 EPL data is given in Table 1. In our ap-
proach, to analyze the tactics of a team we are required to
know the position of the ball and which team has posses-
sion of it at every time step (i.e. every second). To do this,
we infer the ball location from the data feed. We describe
our method via Figure 2. In (a) we can see at t0 = 114
Arsenal successfully passed the ball from (20.2, 64.0) to
(35.6, 87.3). As no time is given for the arrival time of the
pass, we assume that the pass took one second, so t1 = 115.
The next action labeled is that an Arsenal player took on
a Liverpool player at (51.2, 84.1), while the Liverpool de-
fender unsuccessfully tried to tackle the Arsenal player at
(48.8, 15.9) at t4 = 118. As nothing occurred between the
time 115 to 118, we infer that an Arsenal player dribbled
the ball from (35.6, 87.3) to (51.2, 84.1). From these two
points, we assume that the ball was dribbled in a straight
line and at a uniform speed. Based on these assumptions, we
can infer the ball location at t2 = 116 and t3 = 117 and that
Arsenal still had possession as the next annotated ball action
involved Arsenal having the ball. It is worth noting here that
all data is normalized onto a field of size 100 × 100, with
all positions given for teams attacking left to right. So in this
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Figure 3: Given a possession string, we break it up into N
equal chunks and use the quantized ball position values as
our play-segment representation, s.

example, even though the take on and tackle occurred at the
same position, the position relative to each team differs. Us-
ing the same procedure, we can estimate the ball position
and team possession for the remaining times.

Characterizing Team Behavior via Entropy
Maps

Play-Segment Representation
Given the observed partial spatio-temporal tracings in a
game, O = {A,B}, we partition the tracings for each team
into possession strings (i.e. continuous movement of the
ball for a single team without turnover or stoppage), where
A = {a0, . . . ,aI−1} and B = {b0, . . . ,bJ−1} refer to the
possession strings associated with each team and I − 1 and
J − 1 are the number of possessions. We then quantize the
field into a grid of size l × w and vectorize the field via the
columns. As the possession strings vary in length, we apply
a sliding window of length T to quantize or chunk the pos-
sessions into play-segments S = {s0, . . . , sN−1} of equal
length, where N is the total number of play-segments for a
possession, and M is the total number of play-segments for
a team over a match. Given that a team’s possession string is
of length T1, the resulting number of play-segments for each
possession is therefore: N = (T1−T )+1. If the possession
string is smaller in duration than T , we discard it. To repre-
sent each play-segment p = {p0, . . . , pT−1}, the quantized
ball position at each time step is then used to populate each
entry.

A description of this process is given in Figure 3. Given
the possession string a = {a0, . . . , a13} shown, we first
break the field up into a grid of 4 × 5 and then vectorize it
to give quantized ball positions. At each time step, the quan-
tized ball position is used to populate a. Using T = 10, we

Figure 4: For a set of play-segments which start at a quan-
tized field position Si, we can form a probability distribu-
tion, p(Si) based on where the ball travels to from this ini-
tial position. Using this probability distribution, we can de-
termine the entropy of each area which together forms an
entropy map.

then chunk a into N = (14 − 10 + 1) = 5 play-segments
resulting in five play-segments {s0, . . . , s4} shown. Using
this process, we can get play-segments from all the posses-
sion strings to represent a team’s behavior. We used this ap-
proach as it allows us to analyze the short-term behavior of
a team over a particular region, which maybe lost otherwise.

Entropy Maps

The entropy or information content of a random dis-
crete variable, X with a probability distribution p(X) =
(p0, . . . , pn−1) was defined by Shannon (Shannon 1948) as:

H(X) = −
n−1∑
i=0

p(i) log p(i) (1)

where 0 log∞ = 0 and the base of the logarithm determines
the unit, (e.g. if base 2 the measure is in bits). Entropy can
be viewed as a measure of uncertainty or how predictable or
unpredictable a team’s patterns of play is for different areas
on the field. For soccer, this means that for each region on
the field we can work out how predictable a team is (e.g. at a
particular region, do teams do the same thing or do they vary
their behavior?). High entropy refers to uncertainty in the
input signal - we need more bits to transfer this information.
Low entropy means that the signal is highly predictable -
meaning that this information can be transferred by fewer
bits.

Using our play-segment representation, we can deter-
mine an entropy map to quantify and visualize the pre-
dictability of team behavior. We do this as follows: Given
the observations of a team, we determine the set of play-
segments S = {s0, . . . , sN−1}. From these representations,
we know where the ball started from and where it travelled
over the duration of the play-segment. For each quantized
area on the field we have a set of play-segments, where
S = {S1, . . . ,Sl×w} and the indices refer to the quantized
field areas. For each set of play-segments we can then form
a probability distribution based on the occupancy for all the
play-segments which started in that quantized area. From
this probability distribution we can calculate the entropy for
that area. An example of this procedure is given in Figure 4.
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(a) (b) (c) (d) (e)

Figure 5: Entropy maps which show the characteristic ball movement for (a) Manchester United, (b) Tottenham, (c) Stoke
City, (d) Blackburn and (e) Wigan using the entire 38 games for the EPL 2010-2011 season. Note that these maps have been
normalized for teams attacking from left to right.
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Figure 6: Plot of the mean team entropies for different play-
segment windows, T . The order of the curves relating to
team id (see Table 1) are given by the legend on the top of
the plot (top 10 teams are on the first row, bottom 10 teams
are on the bottom).

Characterizing Teams Using Entropy Maps
Using entropy maps, we can gain both a quantitative as well
as a visual method of seeing how predictable a team is from
an area of the field (e.g. are they more dangerous at one area
over another?). For this analysis, we use the entire season
of data to build a characteristic map of each team. The first
question we wanted to answer was “does entropy relate to
team ranking?” and “does this vary depending on T ?”. To
do this we quantized the field into 20 × 16 bins and used
different time window lengths to find the entropy map for
each team. The results are shown in Figure 6. As can be
seen from this plot, the top five teams have the highest mean
entropies for varying play-segment window lengths. Other
than the top five teams, team ranking does not correspond
with entropy. It is also worth noting that the maximum en-
tropy occurs around 4 to 5 seconds for all teams, which is
important to note as this also means that this window of time
maximizes the amount of information available. It might be
tempting however to use a longer window as there is greater
separation in the curves, but this also relates to a drop off in
information which reduces the discriminative power of the
signal.

In Figure 5, we show the characteristic entropy maps
of five teams, (a) Manchester United (rank 1), (b) Totten-
ham (rank 5), Stoke City (rank 13), Blackburn (rank15) and
Wigan (rank 16). As T = 5 yields the most information,

we used this time window for the rest of experiments (i.e.
heuristically, we found this to be the case as well). Gener-
ally, it can be seen that the the entropy around goal area in
the attacking end is low due to the amount of players that are
around these areas trying to protect the goal as well as the
corners which makes sense as there are relatively little op-
tions from these positions. More specifically, in (a) and (b),
the heavy redness throughout the maps is evident, especially
through the centers which signifies both Manchester United
and Tottenham are passing teams who move the ball around
quite well. The heavy red for Manchester United is more
pronounced on the right-side of the field (relative to each
team attacking left-to-right on the page), while for Totten-
ham it is on the left. These trends make sense as Manchester
United have Luis Nani who is a dynamic winger who tends
to spend a lot of time in these areas, and Tottenham have
Gareth Bale who has similar traits on the left-hand side. In
next two maps (c) and (d), it is apparent that both these teams
do not play such an expansive passing game, which makes
sense as both Stoke City and Blackburn play a predicable di-
rect style (i.e. from the back they kick the ball long to their
forwards to minimize the amount of error in their defensive
half). In the last map (e), we see that despite finishing in
16th position, Wigan played a similar style to the top teams,
although it can be seen that they do not utilize the width as
much.

Identifying Team Behavior Variation
In terms of tactical analysis at the match level, it is important
to be able to determine what type of style a team is play-
ing. Additionally, it is important to see if they are playing
as expected or they have employed a new style of play. To
do this, we conducted some team identification experiments.
Not only do these experiments allow us to determine these
things, we also get to see how discriminative our represen-
tations are, as well as seeing if individual teams have unique
styles of play. The team identification task we posed was,
given we have the play-segment playbooks for a home and
away team, could we correctly identify the home team? For
these experiments, we used the entire 380 games of the sea-
son and used a leave-one-match-out cross validation strat-
egy to maximize training and testing data. To show how dis-
criminative our entropy map approach was, we compared
it to twenty-three match statistics currently used in analysis
(e.g. passes, shots, tackles, fouls, aerials, possession, time-
in-play etc.), as well as a combination of the entropy map
and match statistics. For classification, we used a k-Nearest
Neighbor approach. All experiments were conducted using
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Figure 7: Confusion matrices for the team identification experiments using: (a) match statistics (accuracy = 19%), (b) entropy
maps (accuracy = 30%), (c) concatenation of match statistics and entropy map (accuracy = 47%). The actual team identity is
given on the vertical axis, while the predicted/recognized identity is given on the horizontal axis. Also, notice that in (c) the
team that got ranked (1) got confused as the last placed team for a game (red circle in the top right corner).

a play-segments size of 10 × 8 over a window of T = 5 as
we heuristically we found this to yield optimal results. All
feature sets were also scaled and underwent a step of LDA
(linear discriminant analysis) to gain a compact, class pre-
serving representation. The confusion matrices for the three
different feature sets are given in Figure 7.

As can be seen from the first confusion matrix (a),
very little discriminative information about the team ex-
ists with accuracy of about 19% obtained (chance is 5%).
The entropy maps reached 30% accuracy, with the diago-
nal clearly visible. Combining both information sources to-
gether greatly improves the classification accuracy again,
with 47% achieved, which is very good when you consider
we only have the ball movement data. It also shows that
teams do have unique styles of play which can be picked
up from using our approach. It is also worth noting that the
teams that tend to get confused with each other play similar
styles. An example of this is teams 13, 14, 15 (Stoke, Bolton
and Blackburn). As mentioned previously, these teams tend
to play a very similar simple and predicable direct style. This
plot shows that they do not vary this style much during the
season, which also reinforces why their entropy levels were
the lowest out of all the teams (see Figure 6. These also
seems to be a trend for the top teams, where they often get
confused with each other which means they also play similar
styles. But this begs the question, when they play each other
do they play the same style or do they play another style? To
answer this, we can use this team identification result shown
in the top corner of Figure 6(c).

When looking at the result, the top team Manchester
United got confused with the bottom team West Ham
United. Their opponent on this occasion was Arsenal who
finished fourth and play a very expansive passing game,
which is highlighted by the fact that they have the highest
entropy value. When we compare the mean entropy map
of Manchester United to their entropy map of the game in
Figure 8 (a) and (b) we can see the difference. When you
compare this to the West Ham mean entropy map, you can
see why it got confused. What is interesting to note though,

(a) (b) (c)

Figure 8: Entropy maps for (a) Average Man Utd perfor-
mance, (b) Man Utd performance vs Arsenal, (c) Average
West Ham performance. Our analysis shows that for this
game, Man Utd’s style changed to a more counter-attacking
West Ham style.

is that on this occasion Manchester United actually won 2-
0 by playing a counter attacking game (e.g. be defensively
compact and break quickly). Due to a relative lack of talent,
West Ham played this style too but probably did not have the
offensive weapons to pull this off. A tactical analysis of this
game is given by zonalmarking.net (Zonalmarking 2011).

Summary and Future Work
In this paper, we proposed a method to characterize team
behavior for soccer by representing team behavior via play-
segments, which are spatio-temporal descriptions of ball
movement over fixed windows of time. Using these rep-
resentations we characterized team behavior from entropy
maps, which gives a measure of predictability of team be-
haviors across the field. As soccer is low-scoring and con-
tinuous, analyzing team patterns of play is difficult as there
is no library of labeled plan or full team tracings, which dif-
fers from current MAPR approaches which use labeled plan
libraries and full team tracings. We illustrated the benefit of
our approach on the 2010-2011 English Premier League soc-
cer data by characterizing teams via entropy maps, as well as
showing how our approach can be used to detect team style
variation through team identification experiments. In the fu-
ture we endeavor to use this type of approach to characterize
team behaviors in goal-scoring scenarios. Also, seeing that
we can do this type of analysis using partial team tracings
we plan to develop this tool on a tablet device, such as an
iPad which would make it accessible in amateur and semi-
professional sporting domains.
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