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Abstract— This paper presents a control framework for a
biped robot to maintain balance and walk on a rolling ball.
The control framework consists of two primary components:
a balance controller and a footstep planner. The balance
controller is responsible for the balance of the whole system
and combines a state-feedback controller designed by pole
assignment with an observer to estimate the system’s current
state. A wheeled linear inverted pendulum is used as a simplified
model of the robot in the controller design. Taking the output
of the balance controller, namely the ideal center of pressure
of the biped robot on the ball, as the input, the footstep
planner computes the foot placements for the robot to track
the ideal center of pressure and avoid a fall from the rolling
ball. Simulation results show that the proposed controller can
enable a biped robot to stably walk on balls of different sizes
and rotate a ball to desired positions at desired speeds.

I. INTRODUCTION

Nowadays, we can see many humanoid robots that suc-
cessfully walk on various terrains, such as slopes, stairs, and
even rough terrains. Most often, however, these environments
are stationary and unchanged during the motion of a robot.
Up to now, the study of humanoid locomotion in dynamic
environments is still limited. Kuroki et al. [1], [2], Hyon [3],
and Anderson and Hodgins [4] developed motion or force
control systems such that a biped robot can maintain balance
on a moving platform or under external forces. In this paper,
we focus on a more challenging case of biped locomotion in
non-stationary environments, i.e., biped walking on a rolling
ball. Differently from the previous work [1]–[4], not only the
balance controller but also the stepping strategy on the ball
need to be considered in our case. We propose a control
framework for this motion (Fig. 1), which consists of a
balance controller and a footstep planner.

The balance controller is responsible for maintaining bal-
ance of the whole system and produces the ideal center of
pressure (CoP) for the robot on the ball. It combines a state-
feedback controller designed by pole assignment with an
observer to estimate the current state of the robot. A wheeled
linear inverted pendulum is adopted as a simplified dynamics
model of the robot, for which a stable balance controller can
be easily designed.

Taking the ideal CoP generated by the balance controller
as an input, the footstep planner computes the foot placement
of the biped robot on the ball. The actual CoP may be
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Fig. 1. Overview of the controller (dashed line box).

different from the ideal CoP because the CoP must be in
the contact region. Therefore, the time to lift up or touch
down a foot and the velocity of a swing foot are elaborately
chosen such that the actual CoP can track the ideal CoP as
much as possible.

We demonstrate our controller with many illustrative
simulations. Various reference state inputs are applied to
the balance controller and the controller is able to make a
rolling ball reach different desired positions or speeds. All
simulations are carried out on balls of various sizes to verify
the applicability of our controller to different cases.

This paper is organized as follows. Section II summarizes
related work. Sections III and IV introduce the balance
controller and its application to the velocity control of the
rolling ball, respectively. Section V explains our footstep
planner. Simulation results and discussions are given in
Section VI. Section VII concludes with future work.

II. RELATED WORK

A. Biped Locomotion Generation and Footstep Planning

In generating the walking pattern for a biped robot, it is
often assumed that the footsteps are given, and the problem
becomes how to compute the joint angles such that the
resulting motion satisfies the balance condition and the
given footsteps. Based on the given footsteps, one may first
determine a CoP trajectory and then a physically consistent
trajectory of the center of mass (CoM) of the robot using a
simplified model, such as an inverted pendulum [5], [6]. Thus
the joint angles of the robot can be computed using inverse
kinematics according to the CoM trajectory and the footsteps.
This technique has been successfully used to generate biped
walking pattern in a stationary environment [7], [8]. In an
environment with known obstacles, several algorithms have
been proposed to compute footsteps and a collision-free path
for a biped robot [9]–[11], such that the walking pattern can
be generated later in this way. The stepping motion can also
be predefined in motion capture data when a robot is required
to track a captured motion [12]. However, the method based
on predefined footsteps may not be suitable for generating
motions in a non-stationary environment, such as on a rolling
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ball, because footsteps usually cannot be predetermined in
that situation.

Humanoid locomotion can also be generated in a reverse
way. One may first have a reference or desired body motion
for a biped robot, such as captured motions from humans
or other characters, and command the robot to realize that
motion [13]. In this case, the required CoP trajectory can
be computed from the reference body motion based on
a simplified robot model. Then, appropriate footsteps that
satisfy the computed CoP trajectory need to be determined
such that the joint angles can be calculated likewise using
inverse kinematics. Unfortunately, there is not much work
on this kind of approaches [14].

Footstep planning is also considered in humanoid push
recovery [15]–[18]. Undergoing a high magnitude push, a
robot might lose balance and need to take several steps to
recover. Those footsteps must be carefully determined in or-
der for the robot to avoid a fall. Nevertheless, a push applies
only an instantaneous disturbance to the robot. Differently
from this situation, a robot walking on a rolling ball has to
sustain continuous dynamic interaction with the ball.

B. Robot Control in a Non-stationary Environment

So far, the study of robot motion control in non-stationary
environments is still limited. Kuroki et al. [1], [2] proposed
a motion control system to maintain balance of a small
biped robot on a moving platform or under external forces.
For the same purpose, Hyon [3] presented a contact force
control framework for the balance control of a human-size
robot on rough terrain under external forces, while Anderson
and Hodgins [4] developed methods for adapting models of
humanoid robots performing dynamic tasks. In those cases,
however, the robot’s feet keep stationary contact with the
platform or ground and no stepping motion is involved.

Besides humanoid robots, some other robots may work in
a non-stationary environment, such as multi-wheeled robots
balancing on and driving a ball [19]–[21]. In that case,
the wheels always make three or four symmetric contacts
with the ball, which greatly benefits the balance control
of the robot. However, the feet of a biped robot can only
make one or two contacts with the ball, which are usually
asymmetrical about the top of the ball. Furthermore, because
of the limited foot size and support region, the ideal CoP,
which is continuously changing on the rolling ball, may go
beyond the support region. Hence, we have to not only design
controllers to maintain system’s balance but also combine
them with footstep planning to provide the robot with timely
support on a rolling ball.

III. BALANCE CONTROLLER

Referring to the balance controller presented in [13], we
design the balance controller for biped walking on a rolling
ball (see Fig. 2). Similarly to [13], our balance controller
comprises a state-feedback controller and an observer. The
state-feedback controller is designed by pole assignment for
a simplified model of the robot and determines the input to
the model to maintain its balance. The observer estimates the

Fig. 2. Overview of the balance controller.

Fig. 3. A biped robot simplified as a wheeled inverted pendulum.

current state based on the estimated and measured output of
the model. In this section, we start with the introduction of
the simplified dynamics model, followed by the details of
the balance controller.

A. Simplified Dynamics Model

We use a linear inverted pendulum with a massless wheel
as the simplified dynamics model of a biped robot on a ball,
as illustrated in Fig. 3. Let r0, m0, and I0 denote the radius,
the mass, and the inertia of the ball, respectively, r1 the
radius of the wheel, m1 and I1 the mass and the inertia of
the inverted pendulum, respectively, and L0 the distance from
the wheel center to the mass center of the inverted pendulum.
The angle θ1 indicated in Fig. 3 is the roll angle of the ball,
θ2 and θ3 represent the relative position and rotation of the
wheel on the ball and satisfy the condition θ3 = r0θ2/r1 to
avoid relative slippage at the contact, and θ4 indicates the
swing of the inverted pendulum relative to the wheel. Thus,
the model has three free variables, namely θ1, θ2, and θ4.
The positive direction of angles is taken to be clockwise.

The motion equation of the model is written as

Mθ̈ +Gθ = τ (1)

where θ = [θ1 θ2 θ4]T , τ = [0 τ2 0]T , τ2 is the joint
torque corresponding to θ2, and

M =

m0r
2
0 +m1L

2
1 + I m1L1L2 + kI1 m1L0L1 + I1

m1L1L2 + kI1 m1L
2
2 + k2I1 m1L0L2 + kI1

m1L0L1 + I1 m1L0L2 + kI1 m1L
2
0 + I1


G = −

m1g(L0 + L3) m1gL2 m1gL0

m1gL2 m1g(k2L0 + L3) m1gkL0

m1gL0 m1gkL0 m1gL0


L1 = 2r0 + r1 + L0, L2 = r0 + r1 + kL0

L3 = r0 + r1, I = I0 + I1, k = 1 + r0/r1.
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B. Details of the Controller

The motion equation (1) can be rewritten as the following
state-space differential equation:

ẋ = Ax+Bu (2)
y = Cx (3)

where x = [θT θ̇
T

]T is the state, u = τ2 is the input, y = θ
is the output of the simplified model, and the matrices A,
B, and C are given by

A =

[
03×3 I3×3
−M−1G 03×3

]
, B =

[
03×1
M−1b

]
C =

[
I3×3 03×3

]
, b =

[
0 1 0

]T
.

We also design a state-feedback controller as

u = K(x∗ − x) (4)

where K ∈ R1×6 is the feedback gain and x∗ is the target
state. In this paper, x∗ is computed from a target roll angle θ∗1
of the ball by x∗ = T θ∗1 , where T = [1 −1 r0/r1 0 0 0]T

maps the target roll angle θ∗1 to the corresponding equilibrium
state where Ax∗ = 0. Also, the feedback gain K is chosen
so that A − BK is stable; i.e., all of its eigenvalues have
negative real parts. By doing this, the ball rolls and stops at
any given desired roll angle θ∗1 .

Because we do not have access to the real state, we replace
the state x in (2) and (4) with its estimate x̂ and design an
observer that compares the estimated and actual outputs to
update the estimated state x̂ as

˙̂x = Ax̂+Bu+ F (y − ŷ) (5)

where F ∈ R6×3 is the observer gain, ŷ = Cx̂ is the
estimated output, and y is the measured output.

Combining (2)–(5), we obtain the following system of the
estimated state and new input uc = [yT θ∗1 ]T :

˙̂x = Acx̂+Bcuc (6)
ŷ = Ccx̂ (7)

where

Ac = A−BK − FC, Bc =
[
F BKT

]
, Cc = C.

The sum of the angles θ̂1 and θ̂2 generated by the balance
controller indicates the contact location between the wheel
and the ball, which will be used as the ideal CoP of the robot
on the ball and an input to the footstep planner.

IV. CONSTANT VELOCITY CONTROL

In this section, we address a specific formulation of the
target roll angle θ∗1 , which enables the controller to generate
the motion of a ball with a desired constant (average) veloc-
ity. To simplify the notations, herein we omit the observer in
the controller and assume that the actual state x and output
y in (6) are equal to their estimates x̂ and ŷ, respectively.

We begin with the definition of notations. Let K and T
be partitioned respectively into two subvectors with three
components as

K =
[
KT

1 KT
2

]
, T =

[
T T1 0T3×1

]T
.

Note that the matrices A, K, and T have the properties
AT = 06×1 and KT = KT

1 T 1. Also we define

T ′ =
[
0T3×1 T T1

]T
.

Note that AT ′ = T and KT ′ = KT
2 T 1.

Now we consider a reference trajectory for θ1 with a
constant velocity θ̇r1. Without loss of generality, we can write
the reference θ1 as θr1 = θ̇r1t. We expect θ = T 1θ

r
1 so that

θ̇ = T 1θ̇
r
1 and θ̈ = 0, and particularly θ̇1 = θ̇r1 and θ̈1 = 0.

From (6) without the observer, we obtain

Mθ̈ = bKT
1 T 1θ

∗
1 −Gθ − b(K

T
1 θ +KT

2 θ̇). (8)

If θ = T 1θ
r
1, then θ̈ = 0 and Gθ = 0. Substituting them

into (8) yields

θ∗1 = θr1 +
KT

2 T 1

KT
1 T 1

θ̇r1 = θr1 +
KT ′

KT
θ̇r1. (9)

We shall prove that by using the input given by (9), θ will
converge to T 1θ

r
1 and θ̇ to T 1θ̇

r
1. To do this, let us consider

the error between T θr1 + T ′θ̇r1 and x; i.e.,

e = T θr1 + T ′θ̇r1 − x. (10)

From (6), (9), and (10) we have

ė = T θ̇r1 − ẋ
= T θ̇r1 −BKT θ∗1 − (A−BK)x

= −BKT θr1 + (T −BKT ′)θ̇r1 − (A−BK)x.

By adding AT θr1(= 06×1) to the above equation and
replacing T in the second term with AT ′, we can derive

ė = (A−BK)e. (11)

Because K is chosen so that the real parts of all eigenvalues
of A−BK are negative, e converges to 0 asymptotically.
Moreover, from (10) it follows that

e =

[
T 1θ

r
1 − θ

T 1θ̇
r
1 − θ̇

]
. (12)

Therefore, θ and θ̇ converge to T 1θ
r
1 and T 1θ̇

r
1, respectively,

and particularly θ̇1 converges to θ̇r1. As a consequence, we
may take θ̇r1 to be a desired rolling velocity of the ball and
apply the input θ∗1 given by (9) to the balance controller to
achieve that velocity.

V. FOOTSTEP PLANNER

A. Motion of the Supporting Foot

Assume that each robot’s foot has a flat sole and can rotate
on the ball without slippage. As shown in Fig. 4(a), we use an
angle θc to express the location of the center of a foot relative
to the ball and another angle θd to express the rotation of a
foot from its center. Due to the limited foot length, the foot
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Fig. 4. Side view of feet on a ball. θ1 is the roll angle of the ball. θc
indicates the center of the foot relative to the ball, while θc + θd indicates
the contact position between the foot and the ball. (a) The contact point is
the actual CoP (solid dot) in the single support phase. (b) The CoP (solid
dot) can lie between the contacts (white dots) of two feet with the ball
during double support.

rotation on the ball is also limited and θd must be within the
domain [−l/r0, l/r0], where l is the half foot length. Each
foot is associated with such a couple of angles θc and θd,
by which the position and orientation of the foot on the ball
is uniquely determined. After a foot comes into contact with
the ball, θc for the foot is determined and unchanged until
next time the foot shifts to a new location (how to determine
the value of θc will be addressed in the next subsection),
while θd for the foot starts to change along with the value
θ̂2 produced by the balance controller as

θd =

{
θ̂2−θc if |θ̂2−θc|≤l/r0

sign(θ̂2−θc)l/r0 otherwise
. (13)

The sum θc+θd indicates the contact location between the
foot and the ball, which we call the actual CoP. From the
controller we obtain the angle θ̂2, which specifies the ideal
CoP. In the single support phase, θc + θd for the supporting
foot gives the actual CoP and the actual θ2. We expect θc+θd
to be equal to θ̂2 with |θd| ≤ l/r0, or equivalently θ̂2 to be
within the domain [θc − l/r0, θc + l/r0], which is called
the single support domain. This implies that the actual θ2
can reach its ideal value θ̂2 and the supporting foot can
reach the ideal CoP, as depicted in Fig. 4(a). Fig. 5(a) shows
the domain of the CoP that can be achieved by the single
supporting foot.

In the double support phase, the actual CoP can lie in
the domain between the contacts of two feet with the ball,
as shown in Fig. 4(b). Accordingly, the feasible domain of
the actual θ2 can be [θsc − l/r0, θ

b
c + l/r0] and called the

double support domain, where θsc and θbc are the smaller and
bigger θc of the feet, as indicated in Fig. 4(b). In practice,
however, we shrink the contact domain on each foot during
double support to [θc−λl/r0, θc +λl/r0], where λ ∈ [0, 1).
Then the allowable double support domain for the actual θ2
is reduced to [θsc − λl/r0, θ

b
c + λl/r0], and the allowable

domain for the CoP is also reduced, as illustrated in Fig.
5(b). Once the actual θ2 exceeds this reduced domain, one
foot starts to lift up and swing to a new contact position,
but the actual θ2 can still be maintained within the single
support domain of the remaining supporting foot and track

Fig. 5. Foot motion on a rolling ball. The solid and white dots represent the
CoP and the contact between a foot and the ball, respectively. (a),(b) Single
and double support domains. A reduced contact area is used to determine
the double support domain. The allowable domain of the CoP is marked
in pink. (c),(d) θ2 goes beyond the double support domain, so the foot on
the right or left side starts to swing. (e),(f) The CoP lies in the allowable
domain and there is no need to move a foot.

the ideal value θ̂2 given by the balance controller. Also, the
actual CoP can follow the ideal CoP. Therefore, we have the
following condition for determining the time to swing a foot:

Swing condition: If θd < −λl/r0 for both supporting feet,
then the foot with bigger θc starts to swing, as depicted in
Fig. 5(c). If θd > λl/r0 for them, then the foot with smaller
θc starts to swing, as shown in Fig. 5(d).

If the angles θd for both supporting feet decrease to values
smaller than −λl/r0 [Fig. 5(c)], this implies that the actual
θ2 is decreasing, and thus the foot with θc = θbc should move
to reduce its θc. In this case, the relation θsc + θsd = θ2 ≤
θbc + θbd holds, since the ideal CoP is still reached by the
other supporting foot, for which θc = θsc . Similarly, in the
case where both θd become bigger than λl/r0 [Fig. 5(d)],
the actual θ2 is increasing, and θsc + θsd ≤ θ2 = θbc + θbd.
Hence, the foot with smaller θc should move to increase it.
When none of the two situations occurs, the actual θ2 must
be within the double support domain and no foot needs to
move, as depicted in Fig. 5(e) and (f).

B. Motion of the Swing Foot

We tried various ways to determine the motion of a swing
foot and its next location on the ball, such as setting a fixed
step length or swing speed or always landing the swing foot
on the top of the ball, in order to make the actual CoP track
the ideal CoP as much as possible. Herein we introduce a
simple and effective approach, by which we achieved very
stable walking behaviors of a biped on balls of different sizes.

The general idea is to change the angle θc of the swing
foot ahead of the variation of θ̂2. Before θ̂2 exceeds the single
support domain, the swing foot needs to make a new contact
with the ball such that θ̂2 can be kept within the new double
support domain. We express the instantaneous velocity of
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the swing foot relative to the ball by θ̇c. First, intuitively, θ̇c
should be proportional to ˙̂

θ2, which enables the swing foot
to track the variation of θ̂2. Secondly, from Fig. 3 we see
that θ1 + θ2 gives the position of the CoP relative to the top
of the ball. When θ2 = −θ1, the CoP is on the top of the
ball. Thus − ˙̂

θ1 indicates the motion direction for the swing
foot to reach the top of the ball. From these arguments, we
set the instantaneous swing velocity as

θ̇c =

{
−k1 ˙̂

θ1+k2
˙̂
θ2 if |−k1 ˙̂

θ1+k2
˙̂
θ2|≤θ̇Uc

sign(−k1 ˙̂
θ1+k2

˙̂
θ2)θ̇

U
c otherwise

(14)

where k1 and k2 are nonnegative scalars and θ̇Uc is the upper
bound of θ̇c. The coefficients −k1 and k2 scale the velocities
˙̂
θ1 and ˙̂

θ2, which enables the swing foot to remain close to
the top of the ball and track the ideal CoP. Because of the
mechanical limitation of a robot, the swing velocity of a foot
cannot be arbitrarily large and must have an upper bound.
With the velocity given by (14), the angle θc for the swing
foot is simply updated by

θc = θc + θ̇c∆t (15)

where ∆t is the time step.
The time to land a swing foot on the ball depends on

several factors. We use a hybrid condition as below:

Landing condition: A swing foot touches down if (a) the
swing time exceeds a given time interval ts or the angle
|θ̂1 + θc| for either the swing or supporting foot exceeds a
given limit α and (b) (θ̂2−θ2c )(θ1c−θ2c ) > k3(θ̂2−θ2c )2, where
θ1c and θ2c are the angles θc of the swing and supporting feet,
respectively, and k3 is a nonnegative scalar.

First, we usually do not wish a swing foot to touch down
too quickly and thus set a time threshold ts. Second, for the
sake of limited friction and the purpose of safety, we expect
both feet not to move far away from the top of the ball.
Hence, in condition (a) we also restrict the angle |θ̂1 + θc|,
which indicates the position of a foot relative to the top of the
ball. Condition (b) compares the distance between the swing
and supporting feet, which is measured by θ1c − θ2c , with the
deviation of the ideal CoP from the center of the supporting
foot, which is measured by θ̂2 − θ2c . It helps to ensure that
θ̂2 lies in the new double support domain and the ideal CoP
is between two feet after the swing foot touches down. If
both conditions (a) and (b) are satisfied, then the swing foot
touches down; otherwise it can continue swinging. Once the
swing foot touches down, its angle θd is computed by (13).

VI. SIMULATION RESULTS AND DISCUSSIONS

A. Simulator

The footstep planner attempts to compute a footstep se-
quence so that the contact region includes the ideal CoP as
much as possible. However, it may exceed the boundary of
the supporting foot before the swing foot touches down, in
which case, the actual CoP deviates from the ideal CoP. In
order to test the capability of the footstep planner to track
the ideal CoP and the influence of the CoP difference on

balance control, we design a simulator based on the same
simplified model as used in the balance controller. The only
difference is that the input here is θ̈2 because τ2 does not
exist in the biped model.

We obtain θ̈2 by differentiating the actual θ2 that can be
computed from the actual CoP. In single support phase, the
actual CoP is the unique contact point between the supporting
foot and the ball. In double support phase, if the ideal CoP
is out of the contact region, we assume that the actual CoP
is the contact point closer to the ideal CoP. If the ideal CoP
is in the contact region, on the other hand, we assume that
the ideal CoP can be realized by adjusting the joint torques.

By left multiplying both sides of (1) with M−1 and some
matrix manipulation, we obtain

θ̈2 +m2Gθ = m22τ2 (16)

where m2 and m22 are the 2-nd row and the (2,2)-th entry
of M−1, respectively. From (16) it follows that τ2 for the
simplified model in the simulator is

τ2 =
1

m22
(θ̈2 +m2Gθ). (17)

Substituting (17) into (1), we have the following state-
space differential equation to describe the motion of the
simplified model in the simulator:

ẋ = Asx+Bsus (18)
y = Csx. (19)

where us = θ̈2 and

As =

[
03×3 I3×3

−M−1G+ 1
m22

mT
2m2 03×3

]
, Bs =

[
03×1
1
m22

mT
2

]
Cs =

[
I3×3 03×3

]
.

Here, x and y have the same components and initial values
as those in the balance controller. The value y from (19)
is the measured output, which is a part of the input to the
balance controller (see Figs. 1 and 2).

B. Simulation Setup

The simplified models in the balance controller and the
simulator have the same parameters: m0 = 40 kg, I0 =
0.5 kg ·m2, m1 = 65 kg, I1 = 0.5 kg ·m2, r1 =
0.1 m, and L0 = 0.8 m. The ball in the simulation may
have four sizes: r0 = 0.25, 0.5, 0.75, and 1.0 m. It has
been verified that both the controllability matrix and the
observability matrix have full rank, which implies that the
system is controllable and observable.

The pole values for determining the state-feedback con-
troller gain K in (4) and the observer gain F in (5) are
[−24.9 − 25 − 4.55 − 4.5 − 1.05 − 1] and
[−49.8 −50 −4.55 −4.5 −1.05 −1], respectively. The
pole values for the state-feedback controller are elaborately
chosen such that the ball rolls at a reasonable speed and the
biped robot on the ball can follow that speed.

The parameters of the robot’s feet used in the footstep
planner are l = 0.1 m and λ = 0.2. The scales k1 and k2
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(a) (b)

(c) (d)

Fig. 6. The initial pose of the robot on the ball. The target position of the
ball is marked in magenta.

in (14) to determine the swing velocity are both taken to be
0.2. The minimum swing time ts is taken to be 0.2 s. Then
the upper bound θ̇U2 of θ̇2 in (14) is chosen as 0.5l/r0ts,
2l/r0ts, 4l/r0ts, and 8l/r0ts rad/s for r0 = 0.25, 0.5, 0.75,
and 1.0, respectively. On a bigger ball, we allow the robot
to swing feet faster because the instantaneous velocity at the
top of a bigger ball is larger than of a smaller ball when the
balls roll at the same angular velocity or have the same θ̇1.

C. Simulation with a Constant Input

We start the simulation with a simple case in which a
single constant input, namely the desired roll angle θ∗1 of
the ball, is applied to the controller. Fig. 6 shows the initial
and desired positions of different balls. The resulting motion
is exhibited with snapshots in Fig. 7 and the accompanying
video. It can be seen that the robot can walk stably on the
balls and move them to the desired positions. Fig. 8 plots the
measured output of the simplified model from the simulator
and the planned footsteps.

We also test our controller in the case where the input
suddenly changes at certain time frames when the robot
is still walking, as depicted in Fig. 9. Likewise, this test
is conducted on balls of different sizes. The accompanying
video shows that the balance controller well maintains the
robot’s balance and the footstep planner computes the proper
footsteps after the input changes, which together enable the
robot to successfully walk on the rolling balls.

D. Simulation with Constant Velocity Control

Now we try the specific input given by (9) for the constant
velocity control. The desired rolling velocity θ̇r1 = 0.4 rad/s.

(a) (b)

(c) (d)

Fig. 7. Snapshots of the resulting motions.

(a) (b)

(c) (d)

Fig. 8. Measured output of the simplified model in the simulator. The green
line shows the foot swing, where the zero y-coordinate means the double
support and different nonzero y-coordinates represent different feet.

It should be noted that the difference between the target roll
angle θ∗1 from (9) and the state value θ1 in the controller
is increasing at the beginning of motion, since θ̇1 < θ̇r1.
This could result in a very large acceleration θ̈1 during the
initial period and cause θ̇1 to exceed the desired velocity θ̇r1.
A large overshoot of velocity may incur the failure of the
footstep planning because the robot’s feet cannot move faster
to follow the rolling of the ball. In order to avoid a large
overshoot and have a gentle increase in the rolling velocity,
we arbitrarily set several intermediate reference velocities
θ̇r1 = 0.2, 0.3, 0.35, and 0.375 rad/s. Once θ̇1 reaches θ̇r1− ε,
θ̇r1 changes to the next intermediate value, where ε is the
tolerance and taken to be 0.01 here. We conduct the test on
balls of radius 0.5 m and 1.0 m, respectively.

Fig. 10 displays the snapshots of the resulting motions.
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(a) (b) (c)

Fig. 9. Changing the desired θ∗1 from (a) to (b) and later to (c) at certain
time frames while the robot is walking.

(a)

(b)

Fig. 10. Snapshots of the resulting motions to achieve the desired rolling
speed θ̇r1 = 0.4 rad/s. (a) The actual rolling speed of the ball of radius
0.5 m increases from 0 → 0.2469 → 0.3194 → 0.3600 → 0.3694 →
0.4045 rad/s. (b) The actual rolling speed of the unit ball increases from
0 → 0.2318 → 0.2943 → 0.3414 → 0.3685 → 0.3983 rad/s.

The snapshots are taken at a constant time interval. Thus it
can be seen that the ball and the biped robot accelerate during
the initial period and move at a constant speed afterwards.
This result is also confirmed by the accompanying video as
well as Fig. 11, which plots the measured θ1 over the whole
motion period.

Fig. 12 exhibits the instantaneous velocity θ̇1 of the rolling
ball over time. It is worth noticing that θ̇1 of the ball of
radius 0.5 m keeps stably close to the desired value θ̇r1 = 0.4
rad/s, while θ̇1 of the unit ball oscillates around θ̇r1. This is
because the actual CoP from the footstep planner on the unit
ball cyclically deviates from the ideal CoP generated by the
balance controller, as revealed in Fig. 13.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a control framework that enables
a humanoid robot to walk on a rolling ball. It comprises a
balance controller and a footstep planner. A wheeled linear
inverted pendulum is used as a simplified model of the robot,
for which a robust balance controller has been designed. The
balance controller generates the ideal CoP as the input to
the footstep planner, which computes the foot placements of
the biped robot on the ball such that the actual CoP tracks
the ideal CoP. Simulation results show that biped walking

(a)

(b)

Fig. 11. Measured output of the simplified model. The desired rolling speed
θ̇r1 = 0.4 rad/s. (a) The rolling speed of the ball of radius 0.5 m increases
from 0, through 0.2469, 0.3194, 0.3600, 0.3694, finally to 0.4045 rad/s. (b)
The rolling speed of the unit ball increases from 0, through 0.2318, 0.2943,
0.3414, 0.3685, finally to 0.3983 rad/s.

(a)

(b)

Fig. 12. Instantaneous rolling velocity θ̇1 of the ball. (a) θ̇1 of the ball of
radius 0.5 m stabilizes at the desired value. (b) θ̇1 of the unit ball oscillates
around the desired value due to the cyclic deviation of the actual CoP from
the ideal CoP.

on balls of various sizes at different rolling speeds can be
achieved by our method.

This work is just a beginning of the research on humanoid
locomotion in non-stationary environments. There remain
many possible directions to extend the work. First, we
will design the controller for the frontal plane motion and
generate motions in 3-D space. Second, we will explore
better stepping strategies and more robust controllers and
eventually realize this dynamic motion on a humanoid robot.

In hardware experiments, we need to consider how to
measure the actual state on a real robot. One possible way
is applying sufficient sensors to the system. Through the
gyro sensor attached to the ball, we can detect the actual
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(a)

(b)

Fig. 13. Difference between the value of θ2 from the balance controller and
that from the footstep planner, which reflects the CoP deviation. (a) On the
ball of radius 0.5 m, the actual CoP closely matches the ideal CoP. (b) On
the unit ball, the actual CoP cyclically deviates from the ideal CoP. The
deviation is shown in the enlarged view.

value of θ1. Then the force-torque sensors at the ankles can
provide us with the information to compute the actual CoP
and θ2. Finally the gyro sensor on the robot can help us
determine the actual θ4. We also need to consider sensor
errors, which is why we have included an observer in our
control framework. Even in the simulation, some of the
angles may be discontinuous due to the discrete footsteps
and simply taking their time derivatives would result in large
velocities. The observer can act as a filter to prevent the
system from overreacting to the discontinuous state variables.

REFERENCES

[1] Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, and J. Yamaguchi, “A
small biped entertainment robot exploring attractive applications,” in
Proc. IEEE Int. Conf. Robot. Automat., Taipei, Taiwan, Sept. 2003,
pp. 471–476.

[2] Y. Kuroki, K. Kato, K. Nagasaka, A. Miyamoto, K. Ueno, and J.
Yamaguchi, “Motion evaluating system for a small biped entertainment
robot,” in Proc. IEEE Int. Conf. Robot. Automat., New Orieans, LA,
Apr. 2004, pp. 3809–3814.

[3] S.-H. Hyon, “Compliant terrain adaptation for biped humanoids with-
out measuring ground surface and contact forces,” IEEE Trans. Robot.
Automat., vol. 25, no. 1, pp. 171–178, 2009.

[4] S. O. Anderson and J. K. Hodgins, “Methods for identifying and
adapting models of humanoid robots performing dynamic tasks,” in
Proc. IEEE-RAS Int. Conf. Humanoid Robots, Nashville, TN, Dec.
2010, pp. 511–517.

[5] S. Kajita and K. Tani, “Experimental study of biped dynamic walking
in the linear inverted pendulum mode,” in Proc. IEEE Int. Conf. Robot.
Automat., Nagoya, May 1995, pp. 2885–2891.

[6] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa,
“The 3D linear inverted pendulum mode: a simple modeling for a
biped walking pattern generation,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Maui, Hawaii, Oct. 2001, pp. 239–246.

[7] T. Sugihara, Y. Nakamura, and H. Inoue, “Realtime humanoid motion
generation through ZMP manipulation based on inverted pendulum
control,” in Proc. IEEE Int. Conf. Robot. Automat., Washington, DC,
May 2002, pp. 1404–1409.

[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K.
Yokoi, and H. Hirukawa, “Biped walking pattern generation by using
preview control of zero-moment point,” in Proc. IEEE Int. Conf. Robot.
Automat., Taipei, Taiwan, Sept. 2003, pp. 1620–1626.

[9] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Foot-
step planning among obstacles for biped robots,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Sys., Maui, HI, Oct. 2001, pp. 500–505.

[10] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T.
Kanade, “Footstep Planning for the Honda Asimo Humanoid,” in Proc.
IEEE Int. Conf. Robot. Automat., Barcelona, Spain, Apr. 2005, pp.
629–634.

[11] Y. Ayaz, T. Owa, T. Tsujita, A. Konno, K. Munawar, and M.
Uchiyama, “Footstep planning for humanoid robots among obstacles
of various types,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots,
Paris, France, Dec. 2009, pp. 361–366.

[12] K. Yamane and J. Hodgins, “Control-aware mappping of human
motion data with stepping for humanoid robots,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Taipei, Taiwan, Oct. 2010, pp. 726–733.

[13] K. Yamane and J. Hodgins, “Simultaneous tracking and balancing of
humanoid robots for imitating human motion capture data,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., St. Louis, Oct. 2009, pp.
2510–2517.

[14] T. Sugihara, “Simulated regulator to synthesize ZMP manipulation and
foot location for autonomous control of biped robots,” in Proc. IEEE
Int. Conf. Robot. Automat., Pasadena, CA, May 2008, pp. 1264–1269.

[15] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: a
step toward humanoid push recovery,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Paris, France, Dec. 2006, pp. 200–207.

[16] S. Kudoh, T. Komura, and K. Ikeuchi, “Stepping motion for a human-
like character to maintain balance against large peturbations,” in Proc.
IEEE Int. Conf. Robot. Automat., Orlando, Florida, May 2006, pp.
2661–2666.

[17] B. Stephens, “Humanoid push recovery,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Pittsburgh, PA, Dec. 2007, pp. 589–595.

[18] W. Mao, J.-J. Kim, and J.-J. Lee, “ Continuous steps toward humanoid
push recovery,” in Proc. IEEE Int. Conf. Automat. Logistics, Shenyang,
China, Aug. 2009, pp. 7–12.

[19] T. Endo and Y. Nakamura, “An omnidirectional vehicle on a basket-
ball,” in Proc. Int. Conf. Advanced Robot., Seattle, WA, May 2005,
pp.573–578.

[20] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable
single-wheeled mobile robot with inverse mouse-ball drive,” in Proc.
IEEE Int. Conf. Robot. Automat., Orlando, Florida, May. 2006, pp.
2884–2889.

[21] M. Kumagai and T. Ochiai, “Development of a robot balancing on a
ball – Application of passive motion to transport,” in Proc. IEEE Int.
Conf. Robot. Automat., Kobe, Japan, May 2009, pp. 4106–4111.

2028


