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Abstract

Autonomous cameras allow live events, such as lectures
and sports matches, to be broadcast to larger audiences. In
this work, we review autonomous camera systems developed
over the past twenty years. Quite often, these systems were
demonstrated on scripted stage productions (typically cook-
ing shows), lectures, or team sports. We organize the discus-
sion in terms of three core tasks: (1) planning where the cam-
eras should look, (2) controlling the cameras as they tran-
sition from one parameter configuration to another, and (3)
selecting which camera to put “on-air” in multi-camera sys-
tems. We conclude by discussing a trend towards more data-
driven approaches fueled by continuous improvements in un-
derlying sensing and signal processing technology.

Introduction
Autonomous camera systems are able to generate content of
specific events that would otherwise not see the light of day
because the immediate audience is not large enough to jus-
tify the cost of a human production crew. Using sensory data,
the systems must comprehend what is taking place within
the environment, and then configure one or more cameras to
capture the actions from best possible vantage points (Pin-
hanez and Pentland 1995). Generally, these systems must
autonomously solve three simultaneous problems:

1. Planning: Where should cameras look?
2. Controlling: How should cameras move?
3. Selecting: Which camera should be “on air”?

In this survey, we have highlighted key works in autonomous
camera systems over the last twenty years. For clarity, we
have organized the discussion along these three key tasks.

In general, the term “camera” may refer to a real cam-
era (that captures light using an image sensor) or a virtual
camera (that renders images using geometric and photomet-
ric information). Similarly, an environment may be real or
virtual. Real cameras are restricted to real environments, but
virtual cameras may be used in both virtual and real envi-
ronments. This survey covers camera systems in real envi-
ronments. However, before proceeding, we briefly describe
similarities with respect to virtual environments.
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Operating virtual cameras within virtual environments
falls under the domain of computer graphics, and we refer
reader to the excellent survey by Christie et al. (2008). In
virtual environments, the planning, controlling and select-
ing algorithms typically have access to reliable high-level
semantic information (compared to noisy sensor data gen-
erated in real environments). As a result, most algorithms
devised for virtual environments are not directly applica-
ble to real environments. However, there is still significant
commonality. For example, virtual production systems do
not have to contend with real world complications like la-
tency and inertia, but must typically simulate these effects
in order to synthesize aesthetic results. As a result, charac-
terizing how cameras move in the real world is critical for
generating video of virtual environments.

In real environments, virtual cameras synthesize new im-
ages by resampling data captured from real cameras. This
“re-cinematography” technique (Gleicher and Masanz 2000;
Gleicher and Liu 2007) can be used for a variety of purposes,
such as format conversion and video stabilization. In this
survey, we have covered both real and virtual cameras when
applied to real environments. Although the planning and se-
lection problems do not depend on the type of the camera,
controlling real and virtual cameras is quite different: real
cameras require feedback loops, while virtual cameras often
employ filtering to approximate the intrinsic smoothing of
inertia. As a result, we discuss ‘planning’ and ‘selecting’ in
terms of generic cameras, and split the discussion of ‘con-
trolling’ into separate sections for real and virtual cameras.

1. Planning
Planning addresses the problem of “where should cameras
look?”, and in real environments is solved by analyzing sen-
sor data. Most real cameras are stationary robotic pan-tilt-
zoom cameras, so the planning algorithm must output a de-
sired pan angle, tilt angle, and zoom factor. Virtual cameras,
on the other hand, are not constrained to stationary positions,
and are instead often parametrized by a subregion of a real
video frame to resample.

One of the earliest autonomous camera systems (Pin-
hanez and Pentland 1995) was demonstrated for a scripted
cooking show. The system used the contextual information
of the script to select the necessary computer vision algo-
rithms to search for the expected events unfolding in the
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scene. Human-defined rules were then used to generate the
appropriate virtual camera subregion based on the position
of detected objects. More recently, Bayer et al. (2004) de-
veloped a robot photographer to take photographs at social
events, such as wedding and conference receptions. The sys-
tem used face detection to locate potential subjects in the
scene. The robot then navigated based on a variety of factors
such as the distance to the the subject, occlusion, and reach-
ability. Finally, the system determined the optimal framing
using established composition techniques, such as the rule
of thirds.

Several autonomous video production systems have been
deployed for recording lectures (Yokoi and Fujiyoshi 2005;
Mavlankar et al. 2010; Pang et al. 2010) . The majority of
these systems used a fixed camera to detect and track the
lecturer, and employed raw tracking data to plan where the
broadcast camera should look. Yokoi and Fujiyoshi (2005)
employed a virtual camera to generate the final output by
cropping the appropriate subregion of the fixed camera.
Mavlankar et al. (2010) tracked the position of the lecturer in
a fixed camera, and used a bimodal planning algorithm that
could switch between preset camera configurations, and a
dynamic one which followed the lecturer. Pang et al. (2010)
trained an SVM classifier using features such as the esti-
mated center-of-attention and distance between the center-
of-attention and the center of the nearest chalkboard to pre-
dict when a camera should pan.

Camera planning has also been applied to more complex
scenarios such as team sports. Ariki et al. (2006) tracked the
locations of soccer players and the ball using fixed cameras.
Additionally, they defined rule-based classifiers to recognize
game situations, such as ‘penalty kick’ and ‘free kick’ based
on the movement of the ball over a temporal window. These
events were used to determine the zoom setting of the virtual
camera, such as using a wide shot for a ‘free kick’. Chen et
al. (2010) tracked basketball players and the ball using fixed
cameras. The subregion for synthesizing a virtual camera
was determined by a user-defined weighted sum of atten-
tional interests (such as following a ‘star’ player). They also
used rules such as the proximity of a visible salient object to
the image center. Carr et al. (2013) tracked basketball play-
ers using fixed cameras, and determined the pan angle for
a robotic camera by computing the centroid of the players’
locations.

Most planning algorithms are based on tracked salient ob-
jects, such as faces or people. Occasionally, additional fea-
tures such as audience gaze direction (Daigo and Ozawa
2004) and visual saliency (Pang et al. 2010) have been incor-
porated. In almost all cases, the planning algorithm follows
the tracked object; often in conjunction with a set of hand
crafted heuristics (Lino 2013). However, when multiple ob-
jects are within the scene, more complex planning may be
required. Kim et al. (2012) tracked individual sports players
in a calibrated broadcast view using particle filters, and ex-
trapolated the player tracking data to a global motion vector
field on the ground plane using Gaussian process regression.
The authors showed how regions of convergence in the vec-
tor field correlated with actual broadcast camera movements.
Alternatively, data-driven methods, such as SVM (Pang et

al. 2010), neural networks (Okuda, Inoue, and Fujii 2009)
and k-nearest neighbors (Dearden, Demiris, and Grau 2007);
have been investigated to produced more complex camera
planning without explicitly modeling the underlying pro-
cess.

2. Controlling
Camera controlling pertains to transitioning a camera from
its current parameter state to the desired configuration gen-
erated by the planning algorithm. In almost all applications,
this task is a regulating process: the camera must move
smoothly between fixation points in order to output aesthetic
video, but also move fast enough to follow its planned state
space sequence.

Kato et al. (1997) analyzed how cameramen operated
their cameras in cooking shows and sports programs in or-
der to figure out the exact characteristics of smooth cam-
era motion — i.e. determining the speed at which panning
is no longer aesthetic. The results showed an asymmetry
in panning speed limits: acceleration can be higher when
easing into a motion versus deceleration when easing out.
In a subsequent study (Kato, Katsuura, and Koyama 2000),
they found these characteristics only worked well in simple
scenes: smoothly following a target with erratic movements
was a substantially more difficult task.

Now that we have addressed how aesthetic camera mo-
tion has been characterized through the actions of real cam-
era operators, we turn our attention to how these models are
applied to virtual and real cameras.

Virtual Cameras Because virtual cameras resample
recorded video, control algorithms for virtual cameras can
be devised in an offline fashion — i.e. determining a smooth
approximation to the planned signal can use information
about both previous and future planned states. When Yokoi
et al. (2005) used a virtual camera to follow a lecturer, the
control algorithm smoothed the trajectory of the tracked
subregion using temporal differencing and bilateral filter-
ing. When the camera was undergoing a panning motion,
they applied the learned parameters of (Kato et al. 1997) to
regulate the position of the subregion. Chen et al. (2010)
used a Gaussian Markov Random Field (MRF) to gener-
ate a smooth state-space trajectory of each virtual camera.
Nieuwenhuisen et al. (2004) used a probabilistic roadmap to
generate an initial estimate of linear segments which linked
the current camera state to the desired future camera state.
The path was refined by fitting circular arcs between seg-
ments and computing a smooth velocity plan which de-
pended on path curvature limits. Grundmann et al. (2011)
tracked KLT interest points within a recorded video to es-
timate the state space trajectory of the real camera. They
then refined the estimated trajectory using a linear program
to generate an equivalent smooth trajectory preferring con-
stant position or constant velocity segments when prudent.

Real Cameras The task of moving a physical camera to
keep an object of interest within the field of view is re-
ferred as visual servoing in robotics literature. Typically,
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this process involves a feedback loop examining the dif-
ference between where the camera was instructed to look,
and where it actually looked. Stanciu et al. (2002) employed
a proportion-only feedback control algorithm to adjust the
pan-tilt angle of a camera mounted on the end of a human
operated boom to keep a target object in the center of the
camera image. Farag et al. (2005) used a proportion-only
controller to position the centroid of detected image features
near the center of the images of a stereo camera pair. Gans et
al. (2009) used a task-priority kinematic controller to keep
a set of interest points within the camera field of view. They
showed how the mean and variance of the point cloud are
independent objectives: pan-tilt values are modified to keep
the mean near the center of the image, and zoom is regulated
to keep the standard deviation within the image boundary.
Carr et al. (2013) used a proportion-only controller to drive
a robotic camera, but included delayed feedback from a vir-
tual camera which resampled the raw video to generate a
more stable output.

3. Selecting
If multiple cameras are deployed, the final step of an auto-
mated production system is to decide which camera should
be “on air” at any given moment. Switching between cam-
eras allows the system to output the best view for conveying
a particular desired interpretation by the viewer, and also
makes the output video more compelling. A shot must be
maintained for a minimum duration, so all selection algo-
rithms include some form of hysteresis filtering.

The majority of existing camera systems use a set of
human-defined rules based on low-level tracking data to
compute the shot quality of each vantage point. For exam-
ple, Liu et al. (2001) interviewed five professional video pro-
ducers and used their knowledge to create rules such as (a)
do not make jump cuts, and (b) each shot should be shorter
than a maximum duration. To implement these rules, they
used a finite state machine to switch between three cameras
(speaker’s view, audience’s view and overview). Doubek et
al. (2004) used a network of fixed cameras to observe a sub-
ject moving through an office environment. A set of rules
based on low-level tracking data were derived from cine-
matography conventions, such as using a ‘long’ shot to fol-
low a moving target, and switching to a ‘medium’ shot when
the subject came to rest. A viewpoint score was computed
for each camera at each frame, and a ‘resistance’ factor was
used to ensure a cut to any new vantage point only happened
when there was a significant change in viewpoint score rel-
ative to the current “on-air” camera. Alternatively, Wang et
al. (2008) used a Hidden Markov Model (HMM) based on
camera motion features to choose the best virtual camera
to show in a soccer video production system. Chen et al.
(2010) also used an HMM to select the best virtual camera
for basketball production, but incorporated the size and vis-
ibility of user selected ‘salient objects’ in the decision mak-
ing process as well. Daniyal et al. (2011) proposed a multi-
camera scheduling method based on view quality: the num-
ber of objects weighted by size and location. Larger sizes
and locations within the area of interest had larger weights.
They used a Partially Observable Markov Devision Process

(POMDP) to minimize the number of inter-camera switches.
Recently, Chen et al. (2013) explored a purely data-driven

approach by training a random forest classifier on field
hockey tracking data to successfully recommend the best
view to a human director. They used low-level features such
as ball visibility, player locations and camera pan-tilt-zoom
settings. Previous broadcasts were analyzed to extract suffi-
cient training and testing data. In addition, the authors were
able to show how the random forest could be trained for dif-
ferent directorial styles.

4. Summary
With the proliferation of affordable cameras, automated pro-
duction is quickly becoming a viable method for record-
ing events. Prototypes have been demonstrated with lectures
and team sports1. The majority of these systems use com-
puter vision algorithms to sense the environment, although
other sensing modalities have been used in conjunction with
vision-based techniques. All systems employ some form of
object detection and tracking to plan camera movements for
following salient objects. Occasionally, additional features
such as saliency are used as well.

Systems employing virtual cameras are quite popular be-
cause, in this paradigm, none of the planning, controlling
or selecting algorithms need to work within a realtime con-
straint. Furthermore, the algorithms can also operate in an
offline fashion and incorporate information not only from
current and previous events, but also future events. However,
offline approaches are not viable for all applications.

In semi-controlled environments like cooking shows and
lectures, the sensory data is usually less noisy and less com-
plex compared to team sports (e.g. it is much easier to track a
single lecturer in an indoor environment than multiple sports
players in an outdoor setting). As a result, human-crafted
rule-based methods for planning, controlling and selecting
cameras have been quite effective in these settings.

In addition to low-level tracking data, most rule-based
methods incorporate mid-level details as well, such as ac-
tion recognition or game state information. In early work
(Pinhanez and Pentland 1995), this context information was
reliable human annotation. However, as technology has im-
proved, machine learning techniques such as support vec-
tor machines, random forests and k-nearest-neighbour clas-
sifiers have been used to generate mid-level features from
computer vision data. With state-of-the-art computer vi-
sion algorithms now able to estimate gaze and pose, new
sets of mid-level features may soon be available for plan-
ning and selecting algorithm. Furthermore, data-driven algo-
rithms may continue to replace rule-based methods. Using a
data-driven approach, Chen et al. (2013) were able to mimic
the cutting styles of different directors. Because the under-
lying process is not explicitly modeled, purely data-driven
approaches have tremendous application flexibility. How-
ever, when prudent, it is often more efficient to code rule-
based decisions manually, instead of learning them from
large amounts of data.

1http://www.keemotion.com
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Finally, as sensing technology improves, such as the in-
troduction of 4K cameras, in tandem with more powerful
signal processing algorithms and computing resources, au-
tonomous systems will have more thorough and more reli-
able understandings of the world. As a result, future gener-
ation autonomous camera systems may have more algorith-
mic similarity in how they tackle the planning, controlling
and selecting problems when compared to their virtual en-
vironment counterparts. In fact, as data-driven methods be-
come more prevalent in real world autonomous camera sys-
tems, the characterization of these tasks may transfer to al-
gorithms for virtual environments.
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