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Abstract— We designed an augmented reality interface for
dialog that enables the control of multimodal behaviors in
telepresence robot applications. This interface, when paired
with a telepresence robot, enables a single operator to accu-
rately control and coordinate the robot’s verbal and nonverbal
behaviors. Depending on the complexity of the desired inter-
action, however, some applications might benefit from having
multiple operators control different interaction modalities. As
such, our interface can be used by either a single operator or
pair of operators. In the paired-operator system, one operator
controls verbal behaviors while the other controls nonverbal
behaviors. A within-subjects user study was conducted to
assess the usefulness and validity of our interface in both
single and paired-operator setups. When faced with hard tasks,
coordination between verbal and nonverbal behavior improves
in the single-operator condition. Despite single operators being
slower to produce verbal responses, verbal error rates were
unaffected by our conditions. Finally, significantly improved
presence measures such as mental immersion, sensory engage-
ment, ability to view and understand the dialog partner, and
degree of emotion occur for single operators that control both
the verbal and nonverbal behaviors of the robot.

I. INTRODUCTION

Recent advances in Virtual Reality (VR) and Augmented
Reality (AR) technology have significantly improved user
experience in a variety of devices and applications. In this
work, we explore the use of this technology to improve telep-
resence robotic interfaces. More specifically, we designed
and implemented an AR interface that, when paired with a
telepresence platform, enables a single operator to control the
language, gaze, and body movements of a robot without the
need for pre-programmed sets of nonverbal behaviors. Such
interfaces are important for the domain of robot telepresence,
to control robots in Wizard of Oz (WoZ) experiments or
entertainment venues (e.g., theme parks), and to collect
training data.

In a prior user study, the same telepresence platform
required two operators to control the robot’s behavior [1].
One operator wore a VR headset and controlled the robot’s
nonverbal behavior (gaze and gestures) while the other was
responsible for the verbal behavior of the robot (text-to-
speech output). On the one hand, this kind of setup causes
coordination issues because the operator responsible for the
robot’s nonverbal behavior is not aware of the exact timing of
the verbal output controlled by the second operator. On the
other hand, a single operator controlling all modalities might
experience higher cognitive load, which can result in slower
response times or mistakes. To assess the advantages of both
setups, our AR interface allows the teleoperation of a robot
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Fig. 1: A single operator (top) and two operators (bottom).

by a single operator or by a pair of operators (Figure 1). Solo
operators control the verbal behaviors by wearing a VR head-
set that overlays the video feed from the robot’s perspective
with our AR interface. Joysticks attached to the arms of our
telepresence robot enable interface control and leave users’
hands in the optimal locations to perform gestures by moving
the robot’s arms. By freely moving their heads, users can also
control the robot’s gaze behaviors. When two operators are
involved in the interaction, one wears the VR headset and is
solely responsible for controlling the nonverbal behavior. A
second operator looks at a monitor that displays the same AR
interface and manipulates it by using a game controller. The
shared AR interface allows for a beneficial feedback loop
between operators.

We conducted a within-subjects study in which we invited
pairs of people to operate the robot individually and together.
The role of the participants was to control a believable
and responsive robotic fast-food waiter that could interpret
and react to complex and unexpected situations delivered
by an actor. We recorded the performance of the robot
as it conversed with the actor and analyzed the data to
assess the number of errors, response times, and coordination
offsets. Presence questionnaires were administered after each
condition and at the end of the experiment. Our proposed AR
dialog interface and the results obtained in this study have
relevant implications for the future design of interfaces for
teleoperated robot systems.



II. RELATED WORK

Commercially available VR devices have increased the
appearance of virtual and augmented reality applications
in several domains [2], [3]. In Human-Robot Interaction
(HRI), the most common use case for the technology has
been remote, first-person robot teleoperation. One of the first
instances was proposed by Martins and Ventura [4], who
implemented a head-tracking system using a head-mounted
display for controlling a search-and-rescue mobile robot.
Similar to our telepresence platform, their system enables a
person to control the robot’s stereo vision module such that
the cameras mounted in the robot follow the controller’s head
movements. Several authors have explored the use of head-
mounted displays for controlling navigation versus naviga-
tion by game controllers, particularly for Unmanned Aerial
Vehicles (UAV) [5]. For example, Pittman and LaViola [6]
compared multiple head-tracking techniques with traditional
game controllers in a UAV navigation task. Despite an overall
preference for the game controllers, participants considered
head rotation a fun and responsive technique for controlling
the robot.

To improve the user’s sense of immersion, Kratz et al.
[7] investigated the effect of stereo versus non-stereo vision
and low versus high camera placement for improving the
video feed of a head-mounted display in a mobile robot
telepresence scenario. The results of a pilot study suggest
that users preferred the non-stereo vision, regardless of
the camera placement. More recently, Fritsche et al. [8]
presented the first teleoperation system to enable first-person
control of a humanoid robot using a head-mounted display,
skeleton tracking, and a glove that provides haptic feedback
to the operator. They report that a human operator could use
their system to successfully complete imitation and pick-and-
place tasks via an iCub robot.

With the exception of the work by Fritsche [8], the other
VR systems presented here allowed the control of a single
modality. In HRI applications, however, experimenters often
need to control multiple robots [9] or different modalities
in parallel. A recent survey showed that more than half of
the papers published in the HRI conference reported studies
where a human controlled at least one of the robot’s functions
[10]. In an earlier review, Riek [11] found that the most
common tasks performed by a human controlling a robot in
WoZ settings were natural language processing and nonver-
bal behavior. Despite the prominence of WoZ studies in HRI,
most tools are created ad hoc for a particular experiment
or robot. However, a few authors have proposed generic,
configurable WoZ interfaces. Some examples are Polonius
[12], a modular interface for the ROS-Framework; DOMER
[13], a tool for controlling a Nao robot in therapeutic settings;
and OpenWoZ [14], a web-based architecture.

The contributions of the current work are twofold. First,
we extend prior research by proposing an AR interface that
enables a single operator to control the language, gaze and
body movements of a robot. Second, we compare measures
of task performance and presence for one vs. two operators.

III. HARDWARE SETUP

We use Jimmy, a hybrid hydrostatic transmission and
human-safe haptic telepresence robotic platform [15]. The
platform contains two upper body torsos with four degrees of
freedom (DOF) in each arm. The four DOF allow operators
both to feel haptic feedback and to freely move the operator’s
side of the platform’s arms while the movement is fully
replicated on the opposite side. The viewer’s side of the
platform contains two cameras mounted on a 2-DOF neck
controlled by robotic servos. The cameras are used to stream
real-time video to an operator’s headset that also maps the
head orientation of the operator to the neck servos of the
robot. A pair of speakers is used for the output of Jimmy’s
text-to-speech. Using this platform and a curtain between the
human operator and the viewer, the operator can experience
the interaction and environment from the robot’s perspective
while the viewer experiences believable, noiseless, and fluid
nonverbal behaviors on the other side. Figure 1 shows both
the Solo and Pair setups. The Solo setup is composed of
Jimmy, a VR headset, and two analog 2-axis thumb joysticks
located at the extremities of Jimmy’s “arms”. Using this
system, the operator can control the verbal overlay interface
described in the next subsection while simultaneously direct-
ing the robot’s nonverbal behaviors. In the Pair setup, two
human operators control different aspects of the robot; one
controls gaze and gesture movements (Nonverbal Operator),
while the second controls Jimmy’s speech (Verbal Operator).
In the Pair configuration, the joysticks on Jimmy’s arms
are deactivated and their function replaced with a game
controller with two analog joysticks of similar size. The
Verbal Operator looks at a computer monitor that mirrors
the image displayed in the headset and uses the controller to
manipulate the dialog interface.

Additionally, two high-definition video cameras were used
to record the interactions. One of the cameras was placed
from the actor’s perspective (i.e., viewing the robot and
restaurant menu face-to-face as shown in Figure 3) and
another captures a side view (i.e., viewing the operator(s)
as well as the robot and actor, as shown in Figure 1). The
restaurant menu for the actor and the robot to share was
placed on the table immediately in front of the robot.

IV. AUGMENTED REALITY INTERFACE

To engage in task dialog, we designed an interface that
overlays the real image captured by the robot’s camera(s)
with contextually-determined dialog choices (Figure 2). This
creates an augmented reality environment that allows one
or two operators to control a robot’s verbal and nonverbal
behavior. The camera input is integrated into the Unity3D
game engine, and we use its GUI design capabilities to draw
the interface. Steam’s OpenVR SDK then transfers camera
frames into the headset. In the Pair conditions, a full-screen
copy of the interface is displayed on a desktop monitor.
To facilitate conversational grounding [16] and create a fair
comparison of operators’ performances, we keep the user
interface constant across Solo and Pair conditions.



Fig. 2: The verbal overlay interface.

The interface has two distinct areas with multiple options
each. The Right Hand Menu (RHM) gives the operator
a limited number of options for direct language initiative,
mainly in the service of conversational repair. For our task,
the RHM does not change and contains “No”, “OK”, “Say
that again”, and “Sorry” (Figure 2, right). The Left Hand
Menu (LHM) allows the operator to perform the robot’s
language-understanding function by mapping the customer’s
behavior into the small set of context changes or utterance
categories expected by the operator at each point in the
ordering process (Figure 2, left). When the operator selects
an LHM option that describes the user’s current behavior, the
contents of the LHM change automatically according to the
predefined dialog model. Note that one position in the LHM
in the figure is labeled “more,” giving the operator access
to additional possible mappings in a sub-menu. Because the
LHM presents the operator with options that are relevant in
the current moment, external communication from different
sensors and inputs could be used to automate the choices in
this part of the interface further.

In physical terms, the operator selects from either menu
by using the corresponding joystick (left or right) to touch
a crosshair icon to the option for a fixed period. Initially,
operators had to move the joystick and click to select,
but participants in pilot testing found that hovering for a
fixed period seemed to reduce errors and be more intuitive.
When the crosshair touches an option, it highlights that
option and gives visual feedback to the operator(s) that
the choice is about to be selected. This kind of feedback
is of particular importance in providing opportunities for
nonverbal coordination when two operators are controlling
the robot; the nonverbal operator can use it to predict which
option is going to be picked up by the verbal operator. Single
operators also can use this information to coordinate the
robot’s nonverbal behaviors while the robot uses its text-
to-speech engine to communicate verbally. Note additionally
that when the operator makes a selection in the LHM that
is tied to an output utterance in the dialog model, a subtitle
label immediately appears in the display to give the operator
information about what the robot will say.

Given this interface and control method, we could, in
theory, present up to eight options for each hand in 45-degree
increments around the center point of the joystick, with four
options in the vertical and horizontal extremities and four
in the diagonal positions. However, we decided to use only
four options in each area for this experiment to force the use
of sub-menus, which could lead to errors and coordination
issues during the interaction. Although not strictly necessary
for our task, multi-level menus would typically be necessary
for scenarios with more complex dialog and longer time
periods available for training.

V. EVALUATION

In the user study, we measured participants’ performance
and subjective personal experiences when controlling each
of the two versions of the robot teleoperation we described
earlier.

A. Participants

We recruited 16 pairs of adult participants: 9 female, 23
male, ages 21-37 years, with mean(stdev) age = 28.8(4.2).
We verified that all pairs consisted of two friends so that
the level of comfort with the other operator in a pair
would not present confounds. Participants were recruited via
email lists and word of mouth. We verified that they had
normal or corrected-to-normal hearing and vision and no
mobility problems that would affect their performance in the
experiment. Our Institutional Review Board approved this
research and participants were paid for their time.

B. Scenario

Interactions consisted of scenarios in which a customer
(played by an actor) enters a build-your-meal restaurant,
Jimmy’s Mexican Eatery, and the teleoperated robot serves
him. The customer had a restaurant menu with various types
of items from which to choose at each phase (i.e., meal type,
protein options, carbohydrate options, toppings, and special
additions). The robot operator(s) must greet the customer,
obtain the order, tap each selected item, and bid farewell to
the customer at the end of the interaction. Figure 3 shows
the view from the actor’s perspective.

During the ordering process, the robot repeats back each
individual item selected. Repetition encourages accuracy by
providing feedback that makes any error in the selection pro-
cess more perceptible. Additionally, to present coordination
challenges, participants were also instructed that the robot
should tap the items on Jimmy’s restaurant menu to record
the order. These two reactions added verisimilitude to the
interaction, as they often happen in restaurants to ensure that
the server has heard the customer correctly and is choosing
the appropriate items.

1) Scripts: Three sets of testing scripts defined the inter-
actions between the actor and the robot. Each set contained
both an Easy and a Hard script. Easy scripts contained 11
instances of turn-taking (e.g., see Table I), matched for the
customer language phenomena (ordering items at Level 1 of
the LHM, ordering Level 2 items, a turn that necessitates



Fig. 3: Our robotic server and restaurant menu.

TABLE I: Sample dialogue from an Easy script. Red text
inside square brackets contains the interface selections that
the operator should perform at that moment.

Actor Hi.
Operator [Hi]

Jimmy Welcome to Jimmy’s. How can I get you started?

Actor Let’s see. I’m going to have a burrito.
Operator [Burrito], [Done]

Jimmy Burrito! Okay, and what meat would you like?

Actor Steak, please.
Operator [Steak], [Done]

Jimmy Steak! Sure. Rice or beans or veggies?

Actor [silence]
Operator [silence]

Jimmy Maybe some rice?
Actor Sure, rice is fine.

Operator [Yes]
Jimmy Something else?
Actor Not from there.

Operator [No]
Jimmy Okay, what about some toppings?

Actor Do you have jalapeños?
Operator [RHM No]

Jimmy No.
Actor Okay, hot salsa then.

Operator [More], [Hot Salsa], [Done]
Jimmy Hot salsa! Anything else?
Actor No, that’s it.

Operator [No]
Jimmy How about sour cream or guacamole to finish?

Actor Yeah, I’ll have both
Operator [Yes], [Both]

Jimmy Great. Here you go. Thanks for visiting Jimmy’s.

Actor Bye!
Operator [Bye]

Jimmy Bye-bye.

the use of the RHM, and silence). We define Level 2 items
as items that require accessing an interface sub-menu to
complete the order and Level 1 as those that do not. Hard
scripts included 15 turns and were matched for all of the
previously mentioned customer phenomena as well as four
additional types (pointing gestures, multiple selections within
the turn, a request for extra or double of an item, and a
self-correction that might involve backing up in the menu).
The Training script contained one instance of each type of
customer behavior so that participants would have practice
with a similar interaction.

C. Questionnaires

After participating in each condition, participants an-
swered questions from The Temple Presence Inventory [17]
and the Presence Questionnaire [18], giving ratings about
the extent of mental immersion, the engagement of all of
their senses, their ability to observe the customer’s verbal
and nonverbal behavior, the amount that the visual display
quality interfered with or distracted from task performance,
the degree to which the control devices interfered with task
performance, and the degree to which the experience was
emotional versus unemotional. After completion of the entire
experiment, they answered an additional questionnaire asking
which role they preferred, which roles they found easiest for
nonverbal and verbal control, and how difficult they found it
to coordinate their behaviors alone and in the pair.

D. Procedure

Upon arrival at the lab, participants completed consent
forms and a demographic survey before receiving instruc-
tions about their roles during the study. Next, the experi-
menter described the purpose of the study and introduced
the telepresence robot. Then participants were familiarized
with the controllers and VR headset, and they learned how
to use the AR interface. Finally, they were introduced to
the restaurant scenario and task-specific instructions were
given. Participants were asked to try to commit the fewest
possible ordering/verbal selection mistakes and to coordinate
their speech and gestures to the best of their abilities. To
encourage the coordination of behaviors in every session, we
highlighted the importance of tapping ingredients at the same
time that speech was produced. Participants used the training
script to practice in each of the four configurations until they
achieved proficiency. We defined proficiency as performing
the training script with no more than one verbal error and no
more than one missed ingredient tap. In the training stage, we
defined a maximum time of three seconds for the tap/verbal
coordination to occur. When participants were training in the
single operator condition, the other participant was asked
to observe the robot from the customer’s perspective to
assess the importance of coordinating verbal and nonverbal
behaviors.

The experimenter acted as the customer during the training
stage but was replaced by a professional actor for the testing
phase to reduce habituation and to ensure that the scripts
were always performed in the same manner.



Each participant was assigned either the A or B role
to determine his/her individual task order. Each session
included four phases of training and testing: two single
operator phases (Solo-A followed by Solo-B) and two paired
phases (Pair Nonverbal A (PNV-A) and Pair Verbal B (PV-B)
followed by PNV-B and PV-A). All training phases occurred
before any of the testing phases. We counterbalanced the
order in which the participants performed the single operator
phase and paired-operator phases such that half of the
participants used the single operator system first and the other
half used the paired-operator system first. In single operator
interactions, the actor used one Easy and one Hard script to
test one participant’s performance while the other participant
waited outside of the room. In paired-operator interactions,
the actor used the four remaining scripts to perform one Easy
and one Hard script per pair condition. The experimenter
instructed participants to immediately complete the 6-item
presence questionnaires between each testing session.

E. Verbal and Nonverbal Analyses

In addition to the questionnaires, we used a set of six
verbal and nonverbal performance metrics. These metrics,
analyzed in different parts of the interaction, give us an
objective insight into participants’ performance.

1) Verbal Errors: Log files from the dialog system were
compared to the scripts to identify selection errors in the
LHM and calculate a Verbal error rate (the number of errors
divided by the number of turns).

2) Overall Selection Response Time: Overall verbal re-
sponse time calculations were performed by comparing the
timestamp for the end of the customer’s speech to the
timestamp of the first subsequent menu selection, which
includes any LHM or RHM choice. In some situations, the
response occurred during one of the actor’s lines. In these
cases, the response time is calculated as zero. In all other
cases, the difference between the end of the customer’s
vocalizations and the next menu choice is computed. An
average value for all response times per session was used
in analysis.

3) Ingredient Selection Response Time: We calculated the
ingredient selection response time by extracting individual
statistics specifically for ingredient selection (as opposed
to the overall response time measures which include any
selection on the interface). This measure includes ingredients
at each level of menu and sub-menu. Those that need to
be accessed using sub-menus may take significantly longer
times to select.

4) Number of RHM Selections: Every script included a
turn where participants were forced to use the RHM to
continue the interaction. Additional usage of this menu was
not necessary, but participants were free to use it at will for
naturalness. This metric counts the number of times that the
RHM was used excluding the forced point in the interaction.

5) Coordination Offset: The videos recorded from the
actor’s perspective were manually annotated to identify when
the robot tapped a particular ingredient and which ingredient
was selected. In addition to manual annotations of when

and where taps occurred, automatic annotations were per-
formed to extract the start and end times of each ingredient
vocalization by the robot. For each ingredient selection
annotation, if a tap occurred within the duration of the robot’s
vocalization, no offset was added to the session. If the tap
occurred between the beginning and up to three seconds
before the vocalization occurred, or between the end and
up to three seconds after, we calculated a coordination offset
that represented the absolute value of the time difference.
We repeated this process for each ingredient in each session
and calculated the coordination offset average.

6) Nonverbal Errors: If a verbalized ingredient was not
matched with any tap within the three-second negative or
positive interval described above, we counted it as a nonver-
bal error.

VI. RESULTS

This section reports the results of three Restricted Max-
imum Likelihood (REML) [19] analyses. We examine the
measures of verbal behavioral performance, explore nonver-
bal performance, and finish by presenting the evaluations
from the questionnaires.

A. Verbal Performance

We performed an REML analysis to examine the effects
of the manipulations on verbal errors, ingredient selection
response times, overall selection response times across the
various conditions, and use of the RHM (see Table II).
Our independent variables are coded as follows: Solo and
Pair denote whether the participant was performing the task
alone or with a partner while controlling the verbal interface;
Difficulty is whether the script being used by the actor was
Easy or Hard; and Order signifies whether a participant did
the task Solo or in a Pair first. In these analyses, only Pair
Verbal data are considered of the Pair conditions.

1) Verbal Errors: We examined the error rate for all
verbal output and found no significant effects of Solo/Pair,
Difficulty, or the interactions between Order and Solo/Pair or
Solo/Pair and Difficulty. There was a significant interaction
between Order and Difficulty (F = 6.259, p = 0.014), and
pairwise comparisons (alpha = 0.05) revealed significant
differences between performing the Solo First and Hard
combination of conditions relative to Solo First and Easy,
Pair First and Easy, and Pair First and Hard. The combination
of Solo First and Hard produced the most verbal errors.
Additionally, there was a trend for Order (F = 3.379, p =
0.077) such that doing Solo First had a slightly higher error
rate than doing Pair First.

2) Overall Selection Response Time: Across all trials,
we found a main effect on overall verbal response time of
Solo/Pair (Solo = 1.474, Pair = 1.186, F = 26.450, p <
0.0001) such that the verbal response time was slower in
the Solo condition than in the Pair condition. Additionally,
there was a main effect of Difficulty (Easy = 1.467, Hard
= 1.193, F = 21.960, p < 0.0001), with Hard scripts having
shorter average response times than Easy scripts.



TABLE II: Behavioral Performance–Verbal measures. Errors
= Error rate, RT = Response Time, RHM = Right-hand menu
usage.

Errors Overall RT Ingred. RT RHM
Solo Easy 0.08 1.58 2.77 0.20
Solo Hard 0.11 1.37 4.79 0.73
Pair Easy 0.07 1.36 2.08 0.23
Pair Hard 0.07 1.11 3.51 0.27

3) Ingredient Selection Response Time: For selecting in-
gredients specifically, we identified a significant effect of
Solo/Pair (Solo = 3.772, Pair = 2.795, F = 60.061, p <
0.0001) such that the time for Solo performance was much
longer than for Pair performance. There was also a significant
effect of Difficulty (Easy = 2.413, Hard = 4.156, F =
188.992, p < 0.0001) wherein the verbal response time
was longer for the Hard scripts than for the Easy scripts.
There was a significant interaction between Solo/Pair and
Difficulty (F = 6.353, p = 0.014) such that Solo Hard
was significantly slower than Solo Easy or Pair Hard, which
were in turn slower than Pair Easy. There were no significant
effects of Order or other interactions.

To determine whether complexity affected verbal response
time, we analyzed subsets of these data based on the number
of menu levels through which the participant had to navigate
to complete the turn. For the simple Level 1 selections (i.e.,
those that did not require changing menu levels), there were
still significant effects of Solo/Pair (Solo = 2.534, Pair =
2.188, F = 7.763, p = 0.007) and Difficulty (Easy = 1.869,
Hard = 2.858, F = 56.970, p < 0.0001), with no significant
effects of order or interactions. For the multi-level (Level
2) selections, we found a similar pattern in which Solo/Pair
(Solo = 4.806, Pair = 3.460, F = 40.983, p < 0.0001) and
Difficulty (Easy = 3.584, Hard = 4.682, F = 28.340, p <
0.0001) had significant effects, but there were no effects of
order or the interactions.

4) RHM Usage: In total, there were 28 Solo and 15 Pair
usages of our interface’s RHM when it was not directly
required by the script. There was a significant main effect of
Difficulty such that this menu was used more during Hard
scripts (Easy = 0.223, Hard = 0.511, F = 5.850, p = 0.018)
and a trend towards an effect of Solo/Pair such that the RHM
was used more during the Solo condition (Solo = 0.480,
Pair = 0.254, F = 3.586, p = 0.062). The interaction
between Difficulty and Solo/Pair was also significant (F =
4.812, p = 0.031), with pairwise comparisons indicating that
participants used the RHM significantly more in the Solo
Hard condition relative to all other conditions.

B. Nonverbal Coordination

To assess nonverbal coordination, we contextualized non-
verbal behaviors with the verbal output as described in the
evaluation section. We performed REML analysis to examine
the effects of our manipulations on coordination offsets
and nonverbal errors, this time considering Solo and Pair
Nonverbal data. (See Table III.)

TABLE III: Behavioral Performance–Nonverbal measures.
CT = Coordination time, CE = Coordination Errors, S =
Simple, M = Multi, A = Average.

CT-S CT-M CT-A CE-S CE-M CE-A
Solo Easy 0.30 0.30 0.35 0.10 0.10 0.20
Solo Hard 0.30 0.34 0.32 0.03 0.57 0.60
Pair Easy 0.32 0.42 0.35 0.03 0.10 0.13
Pair Hard 0.38 0.52 0.48 0.03 0.37 0.40

1) Coordination Offsets: For the coordination offsets
across all trials, there was a trend towards a main effect
of Solo/Pair (Solo = 0.330, Pair = 0.414, F = 3.162, p =
0.079). There were no significant effects of Solo/Pair, Dif-
ficulty, or Order on the the simple (Level 1) selection
coordination time. For the multi-level (Level 2) selection
coordination time, there was a significant effect of Solo/Pair
where Pair offsets were larger (Solo = 0.318, Pair = 0.472,
F = 4.649, p = 0.034).

2) Nonverbal Errors: The number of coordination errors
for simple (Level 1) selections was unaffected by Solo/Pair,
Difficulty, and Order manipulations. However, there was a
significant main effect of Difficulty for multi-level (Level 2)
selections (Easy = 0.100, Hard = 0.467, F = 13.032, p =
0.0005) and total coordination errors across both selection
types (Easy = 0.167, Hard = 0.500, F = 7.375, p = 0.008).

C. Questionnaires

We performed REML analysis on the six questions that
participants answered after performing the task in each
condition to examine the effects of condition and order (see
Figure 4). We found a significant effect of condition on the
extent of mental immersion (F = 16.879, p < 0.0001),
and pairwise comparisons revealed that the responses for the
Solo and Pair-Nonverbal Operator (PNV) conditions were
significantly higher than for the Pair-Verbal Operator (PV)
condition. There was no effect of order. We found a similar
pattern of effects for ratings of how completely all senses
were engaged (F = 35.647, p < 0.0001, Solo > PV, PNV >
PV), how high the participant rated his/her ability to observe
the actor’s verbal and nonverbal behaviors (F = 6.191,
p = 0.004, Solo > PV, PNV > PV), and how emotional
the participants rated the experience (F = 6.560, p = 0.003,
Solo > PV, PNV > PV). Again, there were no effects of
order. Additionally, we found no significant condition or
order effect for ratings of how much the visual display
quality interfered with or distracted from task performance.
Finally, we found a significant effect of condition for how
much the control devices interfered with task performance
(F = 6.057, p = 0.004, Solo > PNV, PV > PNV) such that
PNV had the lowest interference ratings. There was also an
effect of order on this question in which performing the Solo
conditions first resulted in higher ratings than performing the
Pair conditions first (F = 6.413, p = 0.017, Solo > Pair).

For the final questionnaire, we performed Chi Squared
tests to analyze participant preferences. There was a signifi-
cant difference in the answers to “Which was your favorite
role?” (χ2 = 9.437, p = 0.009) such that the highest number



Fig. 4: Presence Questionnaire Responses. Ratings were provided on a 7-point scale.

TABLE IV: Preference Results

Question Solo PNV PV Prob.
Prefer 17 12 3 0.009

Easiest NV 10 22 N/A 0.034
Easiest V 14 N/A 18 0.480

of participants prefered the Solo condition, followed by the
PNV and PV conditions. (See Table IV.) There was also
a significant difference in responses to “In which role did
you find it easiest to control the robot?” (χ2 = 4.500, p =
0.034) such that participants found PNV easier than Solo.
Finally, there was no significant difference in responses to
the question, “In which role did you prefer to control the
verbal interface?” (χ2 = 0.500, p = 0.480), such that PV
was similar to Solo.

VII. DISCUSSION

As expected, Hard scripts elicited more verbal errors
than Easy ones. However, contrary to our expectations, the
results showed no significant effects on verbal error rates
of performing the task alone or as a pair. The results also
showed a trend for an effect of order. Participants that first
interacted in the Solo condition performed about 71% of
the total Solo verbal errors. These results can be explained
by the added difficulty of learning while simultaneously
controlling the two different modalities in contrast to learning
to use one subcomponent of the system at a time. After
a steeper learning curve in the Solo condition, error rate
performance seemed to stabilize. To further explore this
finding, we examined verbal response times. Both overall
and ingredient response times are significantly higher in
the Solo condition. It seems that to maintain a low error
rate, some participants take their time to respond when
interacting in the Solo condition. The higher response times
can be attributed to the higher cognitive load introduced by
simultaneously controlling the nonverbal modality, to the less
ergonomic joysticks placed on the robot’s arms, or both.

Participants that interacted first in the Solo condition also
took longer than those who started as a pair. These results
again suggest a deeper learning curve for the Solo condition
or a preferable training order. The ingredient response time
for the Hard scripts (> 3.5 seconds) shows the difficulty of
navigating our menus to make complex patterns of selections.
The delay increases more than 1.2 seconds when comparing
ingredient response time in Solo Hard versus Pair Hard.
Focused analyses confirmed that menu navigation affects
response time by showing that having to use a Level 2 menu
results in longer times than using a Level 1 menu.

Although there were no significant effects of the various
manipulations on the coordination time on average or for
the simple (Level 1) selections alone, there was a significant
effect of Solo/Pair for the multi-level (Level 2) selections.
Pairs of operators had larger coordination offsets than single
operators for these complex selections, indicating that it is
harder to coordinate across two operators than act alone
when navigating menus becomes more difficult. Nonverbal
errors where the operator did not tap the ingredient were
not common given the emphasis the experimenter put on
this behavior in the training sessions. However, some errors
still occurred, and those few errors were particularly likely to
occur when navigating a multi-level menu selection in a hard
interaction. Anecdotal observations from the experimenters
suggest that other performance features such as gazing at the
participant at the right time when speaking or complementing
an RHM option, such as a “No”, with the shake of the head
were more common and coordinated in the Solo condition.
However, some post-experiment comments suggest that pair
communication protocols established over time could help
to alleviate these effects. Future work is needed to examine
these issues further.

Responses to presence items on the questionnaire are not
significantly different when we compare solo operators with
nonverbal operators in a pair, but both are rated significantly
higher when compared with verbal operators in a pair. We



found that controlling the robot’s nonverbal behaviors either
alone or as a member of a pair elicited higher ratings of
mental immersion, sensory engagement, ability to observe
the conversation partner, and amount of emotion relative to
controlling verbal behaviors in a pair. The added sense of
presence in the solo interaction is arguably more important
because it might guide the operator to make better choices
and use the interface differently given the improved ability
to observe the conversation partner. If the operator is solely
controlling the nonverbal modality and not the verbal in-
terface, he or she can’t use the improved engagement and
immersion in the environment to react to important cues.
We observe this behavior in our data as differences in the
usage of the RHM. This difference is due to the increased
utilization that Solo participants make of options like “OK”
to reply to the actor’s requests and “Sorry” when they commit
a mistake. These behaviors were not necessary and not
rehearsed during the training session, and we speculate that
their frequency increase is due to the higher sense of presence
in the environment.

VIII. CONCLUSION

We have presented and evaluated an AR dialog interface
that enables multimodal teleoperation of robots. According
to the insights gathered from a user study, opting to use two
operators instead of one may make sense in scenarios where
fast response times are required and/or in situations where the
operators have little need to coordinate verbal and nonverbal
behavior. However, there remains the inherent problem of the
increased cost of having to train and maintain two different
operators and manage problems that arise from the shared
communication that has to be established and followed. By
using AR/VR tracking technology, a manipulable input de-
vice and an interface designed to reduce cognitive load while
the operator is performing, we can successfully eliminate
the need for a second operator without sacrificing accuracy
of task performance. Most of the negative outcomes found
in the Solo condition suggest an order effect that could be
resolved with a part-whole training design or more extended
training phase. Our results also suggest that using our system
to control the robot results in an increased sense of presence
and, non-trivially, the single-operator setup was preferred by
our participants.

Presence is defined as the subjective experience of being
in one place or environment, even when physically situated
in another [18]. In our context, an added sense of presence
is important because it leads to a better ability to observe
and understand the other members of the interaction. We
argue that being able to control the gaze, gestures, and verbal
behaviors of a robot while benefiting from an increased
sense of presence is a powerful tool to control telepresence
robots, to collect verbal interaction data to train multimodal
autonomous systems and to conduct WoZ interactions. The
AR interface presented here is useful in any scenario where
an operator has to use full body motions to control a robot’s
gestures and gaze while at the same time verbally interact
with users without being able to use his or her own voice.
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