
Supplementary Material For
Approximate Algorithms for Learning Bayesian Neural Networks

1 Rectified Linear Units
In the forward pass, we need to compute E [zil] and E

[
z2il
]
.

Here we derive the expression in Equation 8 of the main text.
We know that zil = max(0, uil). The expectation can be

computed as follows,

E [zil] =

∫ +∞

−∞
max(0, uil)N (uil | µil, τil)duil

=

∫ ∞
0

uilN (uil | µil, τil)duil

(1)

Dropping the subscripts and substituting m =
u− µ
τ1/2

we
have,

E [zil] =

∫ ∞
−µ√

τ

(µ+ τ1/2m)
exp(−m2/2)√

2π
dm

= µ

∫ ∞
−µ√

τ

exp(−m2/2)√
2π

dm+
√
τ

∫ ∞
−µ√

τ

m
exp(−m2/2)√

2π
dm

= µΦ

(
µ√
τ

)
+ τN (µ | 0, τ)

(2)
Next, we show how to compute the second moment.

E
[
z2il
]

=

∫ ∞
0

u2ilN (uil | µil, τil)duil (3)

Again dropping the subscripts and substituting m =
u− µ
τ1/2

we have,

E
[
z2il
]

=

∫ ∞
−µ√

τ

(µ+ τ1/2m)2
exp(−m2/2)√

2π
dm

= µ2Φ

(
µ√
τ

)
+

2µ
√
τ√

2π
exp(−µ2/2τ) + τ

∫ ∞
−µ√

τ

m2 e
−m2/2

√
2π

dm

= µ2Φ

(
µ√
τ

)
+

2µ
√
τ√

2π
exp(−µ2/2τ)−

√
τµ√
2π
exp(−µ2/2τ) + τΦ

(
µ√
τ

)
(4)
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Rearranging terms we have,

E
[
z2il
]

= (µ2 + τ)Φ

(
µ√
τ

)
+ µτN (µ | 0, τ) (5)

2 Multiclass posterior predictive distribution
The posterior predictive distribution for a new feature x∗ can
be calculated through a Monte Carlo approximation.

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,W)p(W, λ | y,x)dWdλ

≈
∫
p(y∗ | x∗,W)q(W, λ | y,x)dWdλ

=

∫
p(y∗ | x∗,W)q(W | ϑ)dW

≈
∫
σ(zL)N (zL | νL,ΨL)dzL

≈ 1

S

∑
s

zsL, zsL ∼ N (zL | νL,ΨL)

(6)

Our experiments used S = 100 samples.

3 Continuous regression and Binary
classification experiments

Descriptions of datasets
We used ten UCI regression datasets for comparing PBP
against rectified linear EBP. Table 1 summarizes the charac-
teristics of the different datasets. The order of the presented
datasets correspond to the labeling 1 through 10 used in the
main paper For binary classification, we used text classifica-
tion datasets summarized in Table 2.

Test log likelihoods
In Figure 1 we present the per dataset test log-likelihoods
achieved by PBP and EBP on continuous regression and
binary classification. Notice that on a large majority PBP
achieves higher predictive log-likelihoods.

Multi layer experiments
We also compared the performance of EBP and PBP on mul-
tilayer architectures. Table 3 we summarize results from 2
and 5 layer networks on regression datasets.
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Figure 1: Test log likelihoods on regression (left) and classification datasets(right)

Dataset RMSE EBP 2layer RMSE PBP 2layer RMSE EBP 5layer RMSE PBP 5layer
1 Boston 3.14± 0.93 2.79± 0.16 9.33± 1.0 3.08± 0.15
2 Concrete 5.30± 0.77 5.24± 0.11 6.33± 0.91 5.96± 0.16
3 Energy Efficiency 1.38± 0.17 0.90± 0.04 3.54± 3.03 1.18± 0.06
4 Kin8nm 0.07± 0.22 0.07± 0.00 0.18± 0.09 0.08± 0.00
5 Naval Propulsion 0.007± 0.00 0.003± 0.00 0.007± 0.00 0.004± 0.00
6 Power Plant 4.21± 0.23 4.03± 0.03 4.56± 0.25 4.08± 0.04
7 Protein Structure 2.14± 0.17 4.25± 0.02 2.04± 0.15 3.97± 0.04
8 Wine 0.71± 0.06 0.64± 0.00 0.82± 0.04 0.64± 0.01
9 Yacht 1.14± 0.45 0.85± 0.05 5.58± 5.77 1.71± 0.23

10 Year Prediction 9.21 8.21 NA 8.93

Table 3: RMSE test error rates for EBP and PBP using 2 layer and 5 layer architectures.

4 Multiclass Experiments
Here we present additional results for the multiclass experi-
ments.

Log bound vs Stochastic approximation
We evaluated the differences between log bound and
stochastic approximations by measuring their performance
on three multi class datasets – MNIST, UCI HAR, a six class
human activity recognition dataset and Sensorless Drive Di-
agnosis Data Set, a 11 class dataset for detecting malfunc-
tioning components. On each dataset we trained a network
with 2 hidden layers of 400 units each and trained for a 100
epochs using both PBP and EBP. Figure 2 summarizes the
performance of the two approximations, averaged over all
datasets and the two algorithms (EBP and PBP). This clearly
demonstrates the superior performance of the stochastic ap-
proximation. For this experiment, we used 100 samples, but

a similar trend holds even with a single sample.

Stochastic approximation quality
Figure 3 displays the variance of the training log likelihood
for 1, 10 and 100 sample stochastic approximations, for
datasets containing 10 and 100 classes. We see that the vari-
ance decreases with increasing number of samples.These re-
sults are for PBP, EBP performs similarly.
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Figure 3: Training log likelihood variance on synthetic data, with 10 (left) and 100 (right) classes.

Dataset N d
1 Boston 506 13
2 Concrete Compression Strength 1030 8
3 Energy Efficiency 768 8
4 Kin8nm 8192 8
5 Naval Propulsion 11,934 16
6 Combined Cycle Power Plant 9568 4
7 Protein Structure 9568 4
8 Wine Quality Red 1599 11
9 Yacht Hydrodynamics 308 6
10 Year Prediction MSD 515,345 90

Table 1: Continuous regression datasets

Dataset N d
1 20News group comp vs HW 1943 29409
2 20News group elec vs med 1971 38699
3 Spam or ham d0 2500 26580
4 Spam or ham d1 2500 27523
5 Reuters news I8 2000 12167
6 Reuters news I6 2000 11463

Table 2: Binary classification datasets
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Figure 2: Performance of Log bound vs Stochastic approx-
imations, averaged over algorithms (EBP and PBP) and
datasets.


