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Abstract— Robots are ever more present in human en-
vironments and effective physical human-robot interactions
are essential to many applications. But to a person, these
interactions rarely feel biological or equivalent to a human-
human interactions. It is our goal to make robots feel more
human-like, in the hopes of allowing more natural human-robot
interactions. In this paper, we examine a novel biologically-
inspired control method, emulating antagonistic muscle pairs
based on a nonlinear Hill model. The controller captures the
muscle properties and dynamics and is driven solely by muscle
activation levels. A human-robot experiment compares this
approach to PD and PID controllers with equivalent impedances
as well as to direct human-human interactions. The results show
the promise of driving motors like muscles and allowing users
to experience robots much like humans.

I. INTRODUCTION
Robots are increasingly being used in human environments

for applications ranging from entertainment to assistance.
Physical human-robot interactions become part of the normal
tasks and often have to replace traditional human-human in-
teractions [1], [2]. In addition, cognitive interactions depend
on and are influenced by physical interactions. People are
more likely to accept and work well with robot partners
if they appear human-like [3]. We therefore strive to make
physical human-robot interactions truly feel akin to human-
human interactions.

We believe this is best achieved by a control scheme that
directly emulates muscles. Biological muscles exhibit nu-
merous properties from auto-stiffening to limited activation
speeds that combine into significant nonlinear dynamics. We
utilize a detailed model of antagonistic muscles presented
by Winters and Stark [4], in turn based on a nonlinear Hill
model. Both flexor and extensor muscle contain nonlinear
series elastic, active, and viscous elements. The resultant
controller is commanded only by the two muscle activation
levels.

To explore a user’s physical experience of this con-
troller, we conduct a human-subjects experiment comparing
against traditional PD and PID controllers with equivalent
impedances. We also compare against direct manual interac-
tions. To focus on the basic haptic interaction, we target a
simplified stationary task. Depicted in Fig. 1, the performer
(controlled robot or human) is commanded to hold their
position while the test’s subject is allowed to perturb and
interact with the performer. We see this as a precursor to
handshaking, without the need of implicit communication or
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Fig. 1: The performer (robot or human) holds their arm out
with elbow bent and eyes closed. They are charged to main-
tain this posture regardless of external disturbances. The
tester injects stimuli and observes the response haptically
and visually.

negotiation that occur during the handshake. The Turing-like
test seeks to answer whether the experience appears human-
like. Results expose limitations, but also confirm that muscle-
based control has the potential to convincingly convey a
human-like feel.

II. RELATED WORK

A. Human Arm Impedance and Muscle Models

There have been many studies focusing on identifying
human arm impedance characteristics such as stiffness [5],
[6], damping [7], and mass [8]. There have also been many
studies on the modeling of human arm muscles [9], [10].
Winters and Stark [4] identified a non-linear eighth order
agonist-antagonist muscle model using engineering analysis
and obtained parameter values for human arm muscle con-
stitutive equations.

B. Impedance Control and Human-Robot Interactions

Robotics has long known that antagonistic muscles set the
interaction impedance in humans [11]. And it has embraced
Stiffness Control [12] and Impedance Control [13], which
specify and maintain impedance over precise position or
force tracking. Most recently, actuators are even being devel-
oped that can directly and physically vary their impedance
[14].

Taking inspiration from biology, impedance variations
have been learned [15]. Ganesh et. al. [16] developed a
human-like automatic motor behavior which adapts torque



Fig. 2: Passive Joint Torque.

in response to slow disturbances but increases stiffness for
high-frequency disturbances.

Inspiration has also been found in handshaking. Gi-
annopoulos et. al. [17] compared real and virtual handshakes.
They found human handshakes were consistently rated above
robot handshakes, even with their more advanced controller.
Avraham et. al. [18] performed Turing-like tests to compare
three virtual handshake models.

III. ANTAGONISTIC MUSCLE BASED CONTROL

We control the robot by emulating a pair of antagonistic
muscles to drive each joint. The robot, acting akin to the
human skeleton, is driven by the muscle torque. The activa-
tion levels are set, possibly with some delay, by a highlevel
behavior.

We follow the muscle model developed by Winters and
Starks [4] and illustrated in Fig. 3. Each joint is driven
by an extensor and flexor muscle as well as passive joint
mechanics. We define the joint angle q as positive when
flexed, and negative when extended. The muscle elongations
φ are positive when lengthened, negative when contracted,
and measured relative to their nominal length.

φflex = −q, φext = +q (1)

We assume each muscle independently generates a positive
contracting torque T (φ) > 0, so the total joint torque τ is

τ = T flex(φflex)− T ext(φext)− τp (2)

The passive joint torque τp stems from a nonlinear expo-
nential stiffening spring [4], computed as

τp = kpq +


Mpflex

(
e
q/θpflex − 1

)
if q ≥ 0

−Mpext

(
e
q/θpext − 1

)
if q < 0

(3)

where kp is the spring constant, Mp and θp are torque and
angle parameters. We obtain parameter values summarized

TABLE I: Muscle Model Parameters for a Typical Human
Elbow obtained from [4].

Muscle Component Parameter Flexor Extensor
kp 1.5 Nm/rad

Passive Joint Torque Mpflex 0.0074 Nm
Mpext 0.0023 Nm
θpflex 0.1745 rad
θpext 0.1484 rad
Ms 3.6486 Nm 4.5359 Nm

Series Element θs 0.1122 rad 0.2327 rad
Mmax 60 Nm 50 Nm
θo 0 rad −0.6981 rad

Active Element θsh 1.7 rad 1.6 rad
cs −0.01 1/rad 0.2 1/rad

vmax 22 rad/s 28 rad/s
Viscous Element cv 0.34 0.4

in Table I, for a typical human elbow from [4] and show the
passive torque in Fig. 2.

IV. NONLINEAR MUSCLE IMPEDANCE
Inspired by Hill [9], each antagonistic muscle combines an

active and viscous element in parallel, connected to the joint
via a series elastic element. The total elongation can thus be
separated into the deflection of the active/viscous elements
φa and the series element φs

φ = φa + φs (4)

The torques must balance such that

T (φ) = Ts (φs) = Ta (φa) + Tv

(
φ̇a

)
(5)

A. Series Element
The series element consists of a nonlinear spring, modulat-

ing how quickly and with what impedance the active/viscous
torques are transmitted to joint. The series element torque Ts
is

Ts =

{
Ms

(
e
φs
θs − 1

)
ifφs ≥ 0

0 ifφs < 0
(6)

where Ms and θs are torque and deflection constants.
Fig. 4 shows the torque for flexor and extensor muscles.

B. Active Element
The active element produces torque proportional to a

normalized activation level A (0 ≤ A ≤ 1). We assume that
the activation level of each muscle is independent. The active
torque

Ta = AMmaxS (φa) (7)

is further shaped by the elongation according to

S (φa) = e−((φa−θo)/θsh)2 + csφa (8)

where θo, θsh and cs are angle and slope parameters. As
shown in Fig. 5, full torque can only be produced in the
center of the muscle’s range. Near its limits, the muscle
becomes weaker.



Fig. 3: An antagonistic muscle model where each muscle is
modeled using non-linear high-order model.

Fig. 4: Series Element Torque.

Fig. 5: Active Element Torque at full activation.

Fig. 6: Viscous Component Torque. The flexor and extensor
activation levels are fixed at 1.0 and vm = vmax.

C. Viscous Element

The viscous element produces the torque

Tv = Ta



(−1) if φ̇a = −vm(
−|φ̇a|+cv|φ̇a||φ̇a|+cvvm

)
if − vm ≤ φ̇a ≤ 0

η

(
|φ̇a|+0.5cv|φ̇a|
|φ̇a|+0.5cvηvm

)
if0 ≤ φ̇a ≤ ηvm

η ifηvm ≤ φ̇a
(9)

where,

vm = vmax (0.5 + 0.5 A S (φa))S (φa) (10)

specifies a maximum contracting velocity. We note Tv
is proportional to and effectively modulates Ta. From (5)
we see −Ta ≤ Tv ≤ ηTa implies 0 ≤ T ≤ (1 + η)Ta.
Typically, η = 0.3 [4], so the total muscle torque is non-
negative and limited to 130% of the active torque.

The four cases alter the behavior according to the elonga-
tion speed. First, if the muscle is externally forced to contract
beyond its maximum speed, the series element completely
collapses to Ts = 0, the viscous element cancels all active
torque, and the active element contracts with φ̇a = −vm.
Only when the active element catches up, will any output
torque be restored. Second, in normal contraction, the vis-
cous element reduces the total torque T < Ta. Third, in
normal lengthening, the viscous element resists and increases
the output torque T > Ta. Fourth, if the muscle is externally
lengthened faster than ηvm, the active element lengthens
equally to maintain the series element deflection and torque
at T = (1 + η)Ta. Figure 6 shows the viscous torque at
normal elongation speeds for A = 1 and S (φa) = 1. Please
note that because the viscous torque is proportional to the
active torque, the effective damping will drop to zero with
no activation.



D. Implementation

Combining a nonlinear stiffness, a shaped active element,
and a nonlinear viscosity, each muscle presents its own
internal dynamics. Computationally, we use the active ele-
ment’s elongation φa as the muscle’s state. Using the torque
balance (5), series and active elements (6), (7), we can invert
the viscous element (9) to determine the state derivative
φ̇a, mindful of the current case. However, we note that
the damping gain may drop to zero making the dynamics
infinitely fast. As such, a discretized implementation needs
to compute the steady state solution of φa to the current
inputs, eg. using the Newton-Raphson method. Knowing the
steady state solution, we can ensure that the discretized state
does not overshoot and the implementation remains stable,
reaching steady state in a single time step if appropriate.

V. EXPERIMENTS
A. Activation Functions

Emulating muscle pairs on a zero-friction skeleton, the
system now has appropriate ’intrinsic’ dynamics. It is stable
and well damped with steady state location and torque levels
as well as stiffness determined by the extensor and flexor
activation levels. Of course, humans constantly vary their
muscle activations. As such, we also seek to vary activation
levels to make our system appear more life-like.

Based on observed human behaviors from preliminary
tests, we believe humans tends to build up force when held
away from a goal position, similar to integral action. Also,
humans show stiffening and relaxing actions.

To create an equivalent behavior, we dynamically vary
the activation levels within the allowable region shown in
Fig. 7. Away from boundaries, we modify the activations
differentially based on a measured error. This effectively
raises or lowers the joint torque in an integral fashion and is
depicted as direction ’1’. The error is a linear combination
of position, velocity, and force errors.

At a boundary, we raise the activation levels together
to increase torque and stiffness. The changes are scaled to
produce the same differential action as before and shown as
direction ’2’. When the error changes sign and the torque
wants to be updated in the reverse direction, the differential
action pulls the activations into the allowable region, marked
’3’. And finally, when no external torque is observed, the
activations drop with a time constant of 4s to relax the
system.

B. Experimental Design

Our experiment was designed similar to a Turing test.
Human subjects were asked to interact with the robot which
was trying to maintain a fixed position. Unbeknownst to
the subjects, the robot was controlled either by a muscle-
based controller with an automatically varying activation, or
by a traditional PD or PID controller, or manually. In the
last case, a human operator would disconnect the motor and
manually hold the robot arm. As such, the experiment was
designed to evaluate how muscle-based control compares
to traditional controllers and truly biological regulation. To

Fig. 7: The flexor and extensor activation signals are limited
to the green region. The arrows indicate directions of change
for (1) torque increase, (2) torque and stiffness increase, (3)
torque decrease, and (4) relaxing.

minimize variation, the robot was always held in a bent-
elbow configuration and the task involved only the elbow
joint control. For the PD and PID controllers, the position
gain was 30 Nm/rad, derivative gain was 3 Nm-s/rad, and
the integral gain, if present, was 200 Nm/rad-s.

Our experimental setup is shown in Fig. 8. We used one of
the 3 degrees of freedom and locked the wrist and shoulder
joint to obtain the posture as shown in the middle of Fig. 8.
We attached a stick at the end-effector of the robot-arm to
provide an interface with which a human can interact. The
joints of the robot-arm are powered by Maxon motors with
100:1 gear-ratio, capable of producing 19.8Nm of torque and
sufficient to achieve most required muscle torques. Elmo
servo drives provide current control and measure the joint
position. They are controlled via a CAN bus at 500 Hz with
the control code executing in MATLAB Realtime Workshop.
The robot is also equipped with a 6-axis ATI Mini-45 F/T
sensor at the end-effector to measure environment forces.

For experiments, the robot was placed behind a curtain.
It was setup such that the human subject cannot visually
ascertain whether the robot is automatically controlled or
whether its manually controlled. Only the stick attached to
the end effector would be visible to human subjects. The
human subjects would then push on the stick with one finger.
For some interactions, a human will be manually controlling
the robot-arm whereas for others it will be controlled using
the muscle-based behavior / PD / PID behavior.

The experiment presented the four behaviors to each
subject three times. The order of the twelve trials was
randomized. Also, since the motor decoupling / coupling
procedure took around 30 seconds time, a uniform break
of 30 seconds was given in between all the trials so that
the subject could not guess the behaviors just based on the
time-gap between the trials.

Subjects were instructed to compare a particular interac-
tion behavior to a human-held stick using a seven point Likert



TABLE II: Programmed Behaviors and Quantitative Behavior Trends.
Behavior Controlled Behavior Average Minimum Maximum
Number by Type Likert Score Likert Score Likert Score
1 Muscle-based Behavior 4.17 1 7
2 Robot PID Control 3.57 1 7
3 PD Control 2.57 1 6
4 Human Human Behavior 4.87 1 7

TABLE III: Average Likert Scores.
Behavior Subject Subject Subject Subject Subject Subject Subject Subject Subject Subject
Number 1 2 3 4 5 6 7 8 9 10
1 4.67 3 5 4 3.33 3.33 5.67 3.67 3.33 5.67
2 4.33 4.33 3.33 5.67 3.33 1.33 4 3.67 2.33 3.33
3 5 1.33 4.33 1.33 1.33 1.0 2.67 3.33 3 2.33
4 5.67 7 4.67 6 4.33 3.67 1.33 3 6.67 6.33

Fig. 8: Experimental setup showing the robot-arm and a
human-subject physically interacting with it.

scale. As reference, before any trial, subjects were shown the
PD and the manual behavior. They were granted sufficient
time to familiarize themselves with the interactions.

For each trial, the subjects wore headphones and white
noise was played to cancel any auditory cues from the
motors. Also, for each trial, they were instructed to interact
with the stick using a finger as shown in Fig. 8 for around
10 seconds in anyway they wanted. They could push or pull
it in any direction or hold it in any position.

C. Data Collection

We collected experimental data for 10 human subjects.
First, the subjects answered a ’Pre-Task Background Ques-
tionnaire’. This questionnaire collected general data about
the subjects’ age, gender, their background / experience in
robotics and haptics, engineering / programming experience,
and identified their dominant hand. After each trial subjects
were asked How close was this interaction compared to a
human-held stick?. The subjects were asked to answer using
a 7-point Likert scale where ’1’ was Robot-Held and ’7’ was
Human-Held. At the end of the last trial, we asked them
some open-ended questions to understand their methodology
to judge the performance of the system. The questions were:
1. What approach did you use to test the interaction? 2. What
criteria did you use to distinguish a human-held stick from
a robot-held stick?, and 3. Other Comments / Suggestions ?.

Fig. 9: Histograms of responses to all the 4 behaviors.

VI. RESULTS AND DISCUSSION

We performed experiments with 10 human subjects. 5 of
them were male, and 5 were female. The average age of the
participants was approx. 30 years. 5 out of the 10 participants
had interacted with a robot / haptic device previously, 4
of them were from non-engineering backgrounds, and 1
participant noted his/her left hand as the dominant hand.

Table III shows the results, averaging each subject’s
response over the three repetitions of each behavior. A
summary is also included in Table II. We see that 3 of the
10 subjects found the muscle-based behavior more human-
like than the manual behavior. In general, however, the likert
scores were quite varied. The histograms collected in Fig. 9
show the distributions.

We notice that subjects consistently scored behavior 3,
traditional PD control, lowest and very different from human
behavior. Note that Behavior 3 does not include integral
control. This supports our belief that integral action is
important.

We also observe that the human behavior got very low
scores once in a while. We are very pleased that on numerous
occasions, muscle-based control received the highest score,
supporting the value of muscle controllers.

To select appropriate significance tests, we first performed
Shapiro-Wilk test to check the normality of the data. As
we might suspect from Fig. 9, the data is not normally



distributed.
We used the Mann-Whitney test to compare the muscle-

based behavior to all other behaviors. Considering a 95%
confidence-interval, we found significant difference from
behavior 3 (p − value = 0.0008). If we consider a 90%
confidence-interval, we also find difference with behavior
2 (p − value = 0.086). However, interestingly, we could
not find any significant difference between the muscle-based
behavior and the human behavior. It would seem that using
muscles, we can approach the illusion of interacting with a
human-arm.

In addition to the quantitative results discussed above, it
is interesting to note some of the open-ended responses of
the human-subjects. Most participants used a combination
of force and visual techniques to identify the behaviors.
The force techniques included pushing / pulling with varied
amounts of force repeatedly, impulse response, holding the
stick with increasing strength, and watching for subtle robot
related vibrations. The visual techniques included watching
for overshoot response.

VII. CONCLUSIONS

In this paper, we utilized a novel bio-inspired control
methodology suitable for physical interactions. To evaluate
the system we programmed a basic activation behavior and
created a haptic Turing-like test on a simple stationary task.
We compared muscle-based control to tradition PD and PID
control, as well as to manual interactions.

We are delighted that muscle-based control performed well
and was at times able to create the illusion of a biological
interaction. We feel the intrinsic dynamics and properties will
be invaluable in achieving natural human-robot interactions.
In future work, we hope to explore the sensitivity of individ-
ual parameters and aspects of the muscle model, potentially
to simplify the necessary complexity. Furthermore, we hope
to extend the illusion beyond reflexive to voluntary and
rhythmic movements, in particular in combination with high-
level strategies, so that we may achieve a truly convincing
hand-shake. Ultimately, we hope this will allow robots to
function better in human contact.
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