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Figure 1: A complex narrative authored using our framework. (a) Our protganist, Tom walks into a busy marketplace. (b) He haggles with
some vendors to buy some fruit. (c) Meanwhile, a businessman loses his wallet. (d) Fortunately, Tom retrieves the wallet and returns it to
him. (e) Tom and his friend engage in a conversation and enjoy the view while seated on a bench. (f) Elsewhere, two suspicious men scheme
to steal from the businessman while Tom looks on. (g) One of the men distracts the crowd, (h) while the other steals the wallet from the
distracted businessman. (i) Fortunately Tom spots the thief, and (j) catches him before he gets away.

Abstract

We present a graphical authoring tool for creating complex nar-
ratives in large, populated areas with crowds of virtual humans.
With an intuitive drag-and-drop interface, our system enables an
untrained author to assemble story arcs in terms of narrative events
that seamlessly control either principal characters or choreographed
heterogeneous crowds within the same conceptual structure. Smart
Crowds allow groups of characters to be dynamically assembled
and scheduled with ambient activities, while also permitting indi-
vidual characters to be selected from the crowd and featured more
prominently as an individual in a story with more sophisticated be-
havior. Our system runs in real-time at interactive rates with no
pause or costly pre-computation step between creating a story and
simulating it, making this approach ideal for storyboarding or pre-
visualization of narrative sequences.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

The process of simulating vibrant, living virtual environments is
dependent on producing and managing the behavior of autonomous
virtual characters in fully-realized 3D worlds. Stories told and
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shown in busy spaces, such as those of a populous city or busy
shopping area, are dependent on an active backdrop of human char-
acters performing a level of ambient activity to give life to the en-
vironment. These characters must exhibit intelligence not only in
their individual routine, but in their interactions with one another
and with the environment itself in order to present a realistic repre-
sentation of expected human behavior.

We are interested in creating narratives in highly authorable envi-
ronments full of active and involved virtual humans. Just as in life,
where stories worth telling can occur at any time and involve any
number of actors, our goal is to give story authors complete flexi-
bility when conducting the behavior of a virtual populace – freely
deciding where a narrative takes place and who it involves. At
the same time, however, we are limited in computational capac-
ity and cannot afford to fully simulate every character always at
the highest fidelity in real-time. Even regardless of computational
cost, the sheer complexity of individual behavior authoring grows
intractably from a conceptual standpoint; as the number of virtual
characters increases beyond even just a few dozen, those actors be-
come more difficult to design, diversify, and debug.

Numerous approaches exist for creating stories and controlling
crowds of actors, but few systems combine the two techniques into a
single solution. Individual behavior authoring or centralized drama
managers can be an effective tool for building stories from the de-
cision processes of virtual actors, but such systems are tradition-
ally limited to conducting a small number of richly-simulated char-
acters at a time. Conversely, crowd simulation techniques allow
the production and management of potentially thousands of vir-
tual humans, but the characters in these systems typically do not
survive close individual scrutiny when trying to preserve a user’s
sense of realism and engagement. In stories, large crowds can be
instructed to respond to stimuli by broadcasting homogeneous com-
mands (like making every individual gaze at a nearby explosion),
but these actions lack diversity and nuance and provide no individ-
ualized control to an author. More often, if crowds appear at all,
they serve as decoration in the backdrop of a story focusing on an
immutable set of principal, high-fidelity main characters.
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Many technical and communication challenges exist in trying to
break the divide between crowds and principal characters for use in
authored stories. Our work examines three primary questions:

• How do we represent complex worlds with many actors and
objects using accessible metaphors to an untrained author?
That is, how do we mitigate the complexity of controlling over
100 characters and objects in a virtual world and present the user
with a manageable set of meaningful and interesting choices to
make when crafting a story? More broadly, how do we decouple
authoring complexity from simulation scale?

• How do we promote actors from being part of a crowd to
principal characters that drive the story forward, and vice-
versa? Since our stories could feasibly involve any character,
all of our actors must be able to exhibit high-quality behaviors
on demand. However, for both computation and conceptual ef-
ficiency, it becomes necessary to create grouped crowds that act
according to more centralized decision-making.

• How do we make crowds themselves an accessible and useful
part of the stories our authors want to create? Being that our
virtual worlds consist of large numbers of virtual humans and
objects, how do we encapsulate our crowds to make them avail-
able to an author for meaningful inclusion in a story? How do
we design our crowd system so as to be more than an animated
backdrop to the stories we mean to tell?

Our work tackles not only computational challenges, but the prob-
lem of exposing the power of story authoring and virtual character
intelligence at scale to untrained authors.

Where typical crowd or narrative simulations focus either on large
homogeneous crowds or small numbers (2-15) of expensively simu-
lated virtual characters, our system achieves both breadth and depth
on a flexible basis. We do this using a hierarchy of distributed and
centralized behavior controllers that provide both computational
simplicity and accessible metaphors for explaining the world and
the activity of its populous to an untrained author. Our approach
has two main aspects.

First, we provide an authoring tool that allows a storyteller to de-
sign plots based on atoms of narratively significant character in-
teractions. We use event-centric behavior, a semi-centralized sys-
tem where interactions (“events”) temporarily co-opt the behavior
of their participants, guide them through an interaction, and then
release them when finished. Events offer a story-centric paradigm
in contrast to traditional behavior authoring processes which either
focus on authoring individual decision processes for each actor, or
wholly centralized directors that continuously dispatch commands
to every actor in the scene. Stories in our system are naturally
formed from sequences of events containing all the behavior neces-
sary for their participants to carry out the plot in simulation.

Second, we have developed a system for allowing virtual characters
to smoothly transition from being simulated individually, to per-
forming as members of a singular Smart Crowd entity. Numerous
such crowds can exist in the environment, each with their own col-
lective behavior and purpose, and individual characters can join and
leave these crowds freely. Our crowds are not simply ambient scene
decoration. Rather, our Smart Crowd entities can be controlled in
our stories as simply as if they where a single character, and are ca-
pable of participating in interactions with other characters or Smart
Crowds. They can be controlled to play a significant narrative role
in an authored story, or individual members can be removed from
the crowd at will to be featured as more principal characters with
no loss in fidelity.

Contributions. This paper contributes an authoring tool with broad
freedom in designing narratives that take place in sophisticated and

populous virtual environments full of actors and objects. Our sim-
ulation system enables the control of over 100 entities, all of which
are capable of being either featured as principal characters in an
authored plot or controlled by one of several centrally-managed
crowds using our Smart Crowd system. Events provide an accessi-
ble metaphor for untrained actors to design stories based around a
desired plot, rather than burdening the story creator with the prob-
lem of either designing character behavior (individual or central-
ized) or converting a story into a set of goals for some solver to
achieve. Our entire system operates at interactive rates, and the
process of converting an authored story into an on-screen simula-
tion is instantaneous with no compilation delays – making our sys-
tem ideal for applications in rapid prototyping, pre-visualization,
and storyboarding.

2 Related Work

The maturity in the simulation and animation of virtual charac-
ters [Kallmann and Kapadia 2016; Kapadia et al. 2015b] has
opened the possibilities for authoring complex animations in large
crowds. These methods represent different tradeoffs between the
ease of user specification and the autonomy of behavior generation.

Simulation-centric authoring. Crowds literature is rich with many
proposed solutions that push the boundaries of simulating believ-
able human crowds. These include particle dynamics [Reynolds
1987], social forces [Helbing and Molnár 1995], velocity-based ap-
proaches [Paris et al. 2007; Kapadia et al. 2009], and planning-
based approaches [Singh et al. 2011a; Singh et al. 2011b; Kapadia
et al. 2013]. Commercial software such as Massive and Golaem
are simulation-centric where animators author the responses of an
autonomous agent to external stimuli and tweak simulation param-
eters – molding the emergent crowd behavior to conform the re-
quired specifications. This mode of authoring requires the animator
to work within the limits imposed by simulation framework, which
may be sufficient for generic crowds in the background of a shot
(e.g., stadiums, large processions etc.). However, authoring preci-
sion is particularly important for crowd shots that mandate inter-
actions with principal characters, or when the behavior of a crowd
must be carefully choreographed due to its relevance to the plot.
As a result, animators resort to manual methods that provide pre-
cise control, at the expense of significantly increasing the authoring
burden.

Data-centric authoring. The work in [Kim et al. 2009; Kwon et al.
2008; Kim et al. 2014] synthesizes synchronized multi-character
motions and crowd animations by performing editing and stitching
operations on a library of motion capture data. Using this approach,
the user can interactively manipulate the motions of many charac-
ters, while having precise control over individual trajectories. How-
ever, the approach is limited to the database of pre-recorded clips
as large deformations and time warping may yield unnatural results.
Also, editing an individual motion may change the entire crowd an-
imation, which is undesirable when orchestrating crowd activities
with multiple constraints.

Motion patches [Lee et al. 2006] provide environmental building
blocks that are annotated with motion data, which informs what
actions are available for animated characters within the block. Mo-
tion patches can be edited and connected together [Kim et al. 2012;
Li et al. 2012], or precomputed by expanding a search tree of
single character motions [Shum et al. 2008] to synthesize com-
plex multi-character interactions. This concept is generalized to
crowds [Yersin et al. 2009] that can serve as building blocks for
sophisticated crowd authoring tools [Jordao et al. 2014]. Recent
work [Kapadia et al. 2016; Kapadia et al. 2015a; Kapadia et al.
2015c] has shown the promise of visual storyboard representations
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and computational intelligence to create compelling animated, in-
teractive narratives.

Behavior-centric Authoring. The aforementioned contributions
rely on pre-recorded (or pre-computed) motion building blocks that
can edited and concatenated to synthesize animation of long du-
ration, with many characters in complex environments. In con-
trast, behavior-centric approaches use logical constructs [Shoulson
et al. 2011; Yu 2007] to represent decision-making in individuals
as well as between interacting actors. Automated planning ap-
proaches [Shoulson et al. 2013; Kapadia et al. 2011] can then be
used to synthesize complex narratives between a small number of
principal characters for interactive narrative applications [Riedl and
Bulitko 2013]. These approaches rely on autonomy to generate
emergent stories while sacrificing authorial precision.

Comparison to Prior Work. Our research aims to generalize mo-
tion patches so as to represent logical behavioral constructs that
can be stitched together with precise authorial control, while us-
ing simulation to automatically synthesize interaction instances that
meet author constraints. In particular, we use use Parameterized
Behavior Trees (PBTs) [Shoulson et al. 2011] to author modular
interactions between multiple characters, and present an author-
ing platform that allows untrained users to generate complex nar-
ratives. Our work uses a similar story representation and visual
story-boarding interface to [Kapadia et al. 2016] and extends it to
include crowd-level control, facilitating the seamless transition be-
tween background and foreground characters for storytelling.

3 Preliminaries

3.1 Terminology

Our framework requires domain knowledge specified by experts in
order to use automation for computer-assisted authoring. This in-
cludes annotating semantics that characterize the different ways in
which objects and characters interact (affordances), and how these
affordances are utilized to create interactions of narrative signifi-
cance (events), which serve as the atoms of a story. Our system is
no different from other intelligent systems [Riedl and Bulitko 2013]
in this regard. However, the cost of specifying domain knowledge
is greatly mitigated by the ability to author a variety of compelling
narratives in a fashion that is accessible to story writers, artists, and
casual users, enabling authors to focus only on key plot points while
relying on automation to facilitate the creative process. We describe
our representation of domain knowledge which balances ease of
specification and efficiency of automation. Our representation of
domain knowledge follows an event-centric representation, similar
to [Kapadia et al. 2016].

Smart Objects and Actors. The virtual worldW consists of smart
objects with embedded information about how an actor can use the
object. We define a smart object w ∈ W as w = 〈F, s〉 with a set
of advertised affordances f ∈ F and a state s. Smart actors inherit
all the properties of smart objects and can invoke affordances on
other smart objects or actors in the world.

Smart Crowds. A Smart Crowdwg = 〈F, s, iρ,M, E〉 is a special
kind of Smart Actor that also contains its own Affordances, State,
ID and Routine. In addition, a Smart Crowd contains a mutable set
of Smart Object Members M ⊂ W (wg 6∈M), and an Event Lex-
icon E – a set of authored Events that it uses to control its Smart
Object Members M during Affordance activations f ∈ F (or when
the Smart Crowd is instructed to activate another Smart Object’s
advertised Affordance). A Smart Crowd’s job is to coordinate and
conduct its member objects’ behavior by dispatching commands
and Events from its lexicon. Like a Smart Actor, a Smart Crowd

has its own Routine to maintain the baseline activity of its mem-
bers. Rather than using PBTs, however, a Smart Crowd Routine’s
decision process is distribution-based. The Routine continuously
dispatches low priority Events chosen from a set of possible Events.

Affordances. An affordance f(wo, wu) ∈ F is an advertised ca-
pability offered by a smart object that takes the owner of that af-
fordance wo and another smart object user (usually a smart actor)
wu, and manipulates their states. Reflexive affordances f(wo, wo)
can be invoked by the smart object owner. For example, a chair can
advertise a “Sit” affordance that controls an actor to sit on the chair.

State. The state s = 〈θ,R〉 of a smart object w comprises a
set of attribute mappings θ, and a collection of pairwise relation-
ships R with all other smart objects in W . An attribute θ(i, j) is
a bit that denotes the value of the jth attribute for wi. Attributes
are used to identify immutable properties of a smart object such
as its role (e.g., a chair or an actor) which never changes, or dy-
namic properties (e.g., IsLocked, IsIncapacitated) which
may change during the story. A specific relationship Ra(·, ·) is
a sparse matrix of |W| × |W|, where Ra(i, j) is a bit that de-
notes the current value of the ath relationship between wi and
wj . For example, an IsFriendOf relationship indicates that wi
is a friend of wj . Note that relationships may not be symmetric,
Ra(i, j) 6= Ra(j, i) ∀ (i, j) ∈ |W| × |W|. Each smart object’s
state is stored as a bit vector encoding both attributes and relation-
ships. The overall state of the worldW is defined as the compound
state s = {s1, s2 · · · s|W|} of all smart objects w ∈ W . sw de-
notes the compound state of a set of of smart objects w ⊆ W . The
compound state of all smart objects in the world is encoded as a
matrix of bit vectors.

Events. Events are pre-defined context-specific interactions be-
tween any number of participating smart objects where each in-
stance of an event can have a vastly different outcome depending
on the participating smart objects and their current state. Events
serve as the building blocks for authoring complex narratives. An
event is formally defined as e = 〈t, r,Φ,Ω, c〉 where t is a Pa-
rameterized Behavior Tree (PBT) [Shoulson et al. 2011] definition,
and is an effective model for representing coordinated behaviors
between multiple actors. t takes any number of participating smart
objects as parameters where r = {ri} define the desired roles for
each participant. ri is a logical formula specifying the desired value
of the immutable attributes θ(·, j) forwj to be considered as a valid
candidate for that particular role in the event.

A precondition Φ : sw ← {TRUE,FALSE} is a CNF expres-
sion on the compound state sw of a particular set of smart objects
w : {w1, w2, · · ·w|r|} that checks the validity of the states of each
smart object. The literals in the CNF expression include desired
attributes of each smart object, relationships, as well as rules be-
tween pairs of participants. A precondition is fulfilled by w ⊆ W
if Φe(w) = TRUE. The event postcondition Ω : s → s ′ trans-
forms the current state of all event participants s to s ′ by executing
the effects of the event. When an event fails, s ′ = s . The event
cost c determines the cost of executing an event and can be author-
specified or automatically derived based on its postconditions.

While most event parameters are explicitly set by the author or au-
tomation system, some can be implicitly inferred from explicit pa-
rameters (e.g. a character can only sit on one chair at a time, so
involving the chair that character is sitting on in an event can be
done implicitly). Functionally, both types of parameters are equal
– Φe evaluates their state and Ωe modifies their state. However,
implicit parameters are hidden from the author and are only needed
for automation.

Event Instances. An event instance I = 〈e,w〉 is an event e pop-
ulated with an ordered list of smart object participants w. I is: (1)
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complete iff ri(wj) = TRUE ∃ wj ∈ w, ∀ ri ∈ ri, and (2) valid
iff Φe(w) = TRUE.

Beats and Story Arcs. A Beat B = {I1, . . . , In} is a collection
of Event Instances for Events happening simultaneously at a partic-
ular point in the story. A Story Arc α = (B1,B2, . . . ,Bm) is an
ordered sequence of Beats representing a story, where Events can
occur both sequentially and simultaneously throughout that story’s
execution. We refer to the set of all Event Instances across all beats
as I = B1 ∪ B2 ∪ . . . ∪ Bm. For the Beat Bi to start, it must
either be the first beat in the Story Arc, or the Beat Bi−1 must have
already terminated. A Beat is said to have terminated once all its
Event Instances have terminated.

3.2 Character Control Hierarchy

To ensure realistic animation, every character within the scene
should be kept busy even when not actively involved in a story.
Principal characters that contribute to the narrative are simulated
individually, while non-focal background characters are grouped
together and managed by Smart Crowds that are capable of their
own collective autonomy. To control these characters with varying
degrees of importance, we designed a priority system with three
levels of control where each character can seamlessly transition be-
tween levels in the hierarchy. This hierarchy is illustrated in Figure
2.

Individual Routines. As a Smart Actor, each individual character
has a default Routine that runs continuously when the character is
involved in neither the narrative nor a Smart Crowd. This is the
behavior with the lowest priority and simply keeps the character
active and moving. Individual character routines are not aware of
other characters and are thus incapable of causing interactions be-
tween characters at will. Examples of these types of behavior are
wandering and looking around.

Crowd Routines and Crowd Events. If a character is part of a
Smart Crowd, the Smart Crowd object determines his or her ac-
tions by dispatching Events within the crowd. Events dispatched
by the Smart Crowd have a higher priority than the default indi-
vidual Routines of its members, and are capable of dictating more
sophisticated behavior such as interactions between characters of
the same crowd. Just as a Smart Actor will act autonomously if not
involved in the story, a Smart Crowd will execute its own Routine
when acting independently – autonomously picking Events from
its lexicon and dispatching them to its member Smart Objects. Ex-
amples of Smart Crowd interactions are crowd members talking to
each other or buying goods from a marketplace.

Story Events. Arc-specific Story Events are the events dictated by
the authored Story Arc’s Beats. When dispatched, these events have
the highest priority and are used to control the actions of the princi-
pal characters and relevant crowds in order to further the storyline.
They are authored in the Story Arc interface, and every Smart Ob-
ject (including Smart Crowds) in the world can be controlled with
Story Events.

3.3 Priority Conflicts and Event Scheduling.

Story Events can control both crowds and characters directly in ser-
vice to the plot. However, inter-event conflicts can arise within even
a single Story Event. If a Smart Crowd is authored to do something
(i.e., if it has one of its Affordances activated, or the Story Event
commands the Smart Crowd to activate some other Smart Object’s
Affordance), it will dispatch Crowd Events to its member Smart
Objects to direct them through some activity. However, members
of the crowd can also be selected individually to participate in the
Story Event directly as principal characters. For example, the Story

Figure 2: The priority hierarchy of control structures illustrating
how commands are translated from Routines and Events until fi-
nally reaching each individual character in the scene in the form of
Affordance activations.

Event could tell the Smart Crowd to have all of its members turn
and watch a central stage area, while the Story Event also tells two
members of that same Smart Crowd to approach the stage and be-
gin performing. This creates a conflict for these characters between
the Crowd Events dispatched by their controller Smart Crowd, and
the Story Event that also wants to control them directly. In order
to solve this conflict, the events that are dispatched by the Smart
Crowd have a lower priority. This means Smart Crowds can be
controlled by Story Events, but members of that Smart Crowd can
be taken away at any point to participate in a higher priority Story
Event. As a result, minor narrative elements of the crowd do not
conflict with the performance of principal characters even if they
were previously members of that Smart Crowd.

Since Events can pre-empt one another according to priority, it is
possible for one Event to abruptly terminate another lower priority
Event when it needs some or all of that low-priority Event’s par-
ticipants. As such, we construct our Events in a way so that they
may be terminated at any time. When a higher-priority Event is
scheduled for a Smart Object that is already part of a lower priority
Event (or is acting according to its own autonomous Routine), the
lower priority Event is terminated in a clean fashion before the new
Event can start. This is handled by the PBT structure of the Event
itself, which can send special termination signals to clean up the
current set of actions and reach a safe termination state. One spe-
cial case is with Smart Crowd Events, which are explained in more
detail in Section 4. With Crowd Events, if a participating Smart
Object receives a new Event, the Crowd Event can relinquish con-
trol over that single Smart Object instead of terminating entirely.
Those Smart Objects are then excluded from any subsequent lower-
priority Events until their high-priority Event terminates (despite
still being members of that Smart Crowd). This ensures we do not
have to terminate a Crowd Event with a high number of participants
due to a single or few participating Smart Objects being promoted
to a higher priority Event.

3.4 Expertise of Authoring Tasks

Creating an entirely new story setting is split into three main task
families, each requiring their own level of expertise.

World Engineering. At the lowest level, a new scenario requires
the programming and scripting of each Smart Object and its Af-
fordances. This currently has no authoring tool and still requires
the direct writing of code, as well as the management of model,
texture, and animation assets for the objects and the world environ-
ment itself. We expect the world engineer to be an expert author
with programming experience.

Behavior Authoring. The middle level of the scenario revolves
around the construction of PBTs. A trained, but not expert user
should be capable of authoring PBTs for individual character Rou-
tines, as well as designing both Crowd and Story events using Smart
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Object Affordances. PBT authoring is currently also done in code,
but with a greatly simplified and more accessible syntax and struc-
ture compared to open-ended software development.

Story Design. The top level of the scenario accessible to end-users
is the story authoring itself. The story author places actors, crowds,
and objects in the world and then uses a simple drag-and-drop au-
thoring GUI to create Story Arcs using these world elements. We
have designed this aspect of the story specification to be as acces-
sible as possible. It is also possible that an advanced story designer
would be able to author some Story Events or other PBTs directly
after gaining experience with the system. The story author can also
set the distribution and decision process for the Routines used by
Smart Crowds to dispatch Crowd Events autonomously.

4 Smart Crowds

Recall that we define a Smart Crowd wg = 〈F, s,i, ρ,M, E〉.

Affordances F: Like any Smart Object, a Smart Crowd advertises
Affordances to be used by other objects. These represent capabil-
ities of the crowd collectively as a whole. When invoked, Smart
Crowd Affordances can dispatch Crowd Events that invoke the Af-
fordances of the Smart Crowd’s Members M. Similarly, when a
Smart Crowd is told to activate another Smart Object’s Affordance,
it dispatches Crowd Events instructing all of its members to do the
same. For example, when the Smart Crowd is instructed to acti-
vate another Smart Object’s “LookAt” Affordance, it dispatches a
Crowd Event to all of its members to look at the target object (i.e.
each member of the Smart Crowd uses the target Smart Object’s
“LookAt” Affordance individually during the Crowd Event).

State s and ID i: Just as any other Smart Object, a Smart Crowd
also contains a State and has its own unique ID. The Crowd’s State
refers to itself, and does not consider the State of any of its Members
M.

Routine ρ: When acting autonomously, the Smart Crowd sched-
ules its own internal Crowd Events using an authored distribution
of desired activity. In this situation, the goal of the Smart Crowd is
to maintain a baseline of interesting actions and interactions for its
members to perform. The Smart Crowd’s Routine is discussed in
more detail in Section 4.2.

Smart Object Members M: A Smart Crowd contains many Smart
Objects of varying types (a Smart Crowd can contain, for exam-
ple, both a number of actors and a number of tables and chairs).
A Smart Crowd can not contain other Smart Crowds. Thanks to
the hierarchy of Smart Objects, Affordances, and Events, design-
ing an interface for Smart Crowds that encapsulate groups of other
Smart Objects is rather straightforward – Events can activate Af-
fordances on Smart Crowds (or command Smart Crowds to activate
other Affordances), and in turn the Smart Crowd dispatches Events
that activate Affordances on the crowd’s members.

Event Lexicon E : Each Smart Crowd has an authored set of Events
with which it can control its members. These Events are linked to
Affordances, and will be dispatched when certain Affordances are
activated (either by or on the Smart Crowd). Crowd Events are
flexible so as to accommodate the different types of Smart Objects
that can be can be contained in a particular Smart Crowd, and the
Smart Crowd will automatically filter through the Roles of its avail-
able members (i.e. those not currently involved in another Event
of equal or higher priority) for valid participant candidates when
picking a Crowd Event to dispatch. As a Smart Object contained
in a Smart Crowd could be promoted to a higher priority event at
any given time, there are certain limitations on the Events included
within the Event Lexicon. These Events may not change the state of

its participating Smart Objects in any way, so that any Smart Object
temporarily dropped off into a Crowd can be used again later with-
out having its state changed in the meantime. Note however, that
such an Event may change state in an intermediate step, however
when being terminated it must make sure to undo any changes to
the state of the participating Smart Objects to be considered for the
Event Lexicon. Examples of Crowd Events include conversations
between two (or more) characters, characters temporarily sitting on
benches and chairs, and characters haggling with a vendor to pur-
chase items from a stall.

4.1 Extending PBTs for Crowds

Our work with Smart Crowds exposed a limitation of the PBT for-
malism that made it difficult to manage large malleable groups of
characters. A key quality of traditional PBTs is that they require a
fixed set of individually specified participants in order to function.
As a result, a conversation designed for two actors (for example)
could not be trivially reused with three, or with two actors and a
bench. Additionally, traditional PBT Events co-opt the control of
their participants for the entire duration of the Event, even if one
participant is no longer needed. If a higher priority Event requests
control of a character currently involved in another low-priority tra-
ditional Event, the low-priority Event must be terminated entirely
to release that character even if the character is not essential to the
low-priority Event’s execution. This was not amenable to creating
large Events controlling potentially dozens of characters at a time,
where characters might enter and leave the Smart Crowd at arbitrary
points.

To enable this new kind of functionality, we extended our PBT sys-
tem with the ForEach node. The ForEach node handles Event be-
havior for a dynamically changing set of Smart Objects. A ForEach
node starts with a given set of Smart Objects which it may control.
Over the course of the Event, the ForEach node can release any
of these Smart Objects without terminating the whole node itself.
With this new type of node, we can cleanly resolve issues occurring
when a character must leave the Smart Crowd in the midst of an
Event because it has been promoted to a higher priority Event. For
example, a Smart Crowd can perform some macroscopic activity
while one of its members is selected individually to leave and play
a principal role in some Story Event. This character extraction does
not interfere with the execution of the Crowd Event itself (unless
that removed member was the only remaining member capable of
performing the Crowd Event overall). The following algorithms il-
lustrate the initial setup of a ForEach node as well as a single tick
of the node. Note that the algorithm for a single tick of the ForE-
ach node is slightly simplified here, as terminating a node can take
more than one tick.

Input: Initial object list I
Input: Function to create nodes F
Result: Mapping of objects to nodes M
foreach i ∈ I do

M [i ] = F (i) ;
end

Algorithm 1: Initialization of a ForEach node.
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Input: New object list N ⊆C

Data: Current object list C
Data: Mapping of objects to nodes M
Result: Current object list for next tick C’
foreach c ∈ C \N do

terminate M [c ] ;
end
foreach n ∈ N do

tick M [n ] ;
end
C’ = N

Algorithm 2: A single tick of a ForEach node.

Figure 3: A simple Crowd Event that uses a ForEach node.

Figure 3 illustrates a simple use of the ForEach node in a Crowd
Event. Recall that just as a chair advertises a “Sit” Affordance that
instructs a user to sit on the chair, most Smart Objects advertise
a “LookAt” Affordance that instructs a user to look at that object.
When a Smart Crowd activates another object’s “LookAt” Affor-
dance, however, it internally dispatches this Crowd Event that gath-
ers all of the Smart Crowd’s valid members m (a special parameter
type) and instructs them to individually activate that target object
t’s “LookAt” Affordance.

Figure 4 shows an example of a more complicated use of the ForE-
ach node. In this case we have a Smart Crowd of bystanders c,
a victim v, and two thieves t1 and t2. These two events, when
executed sequentially in the story, will create a scenario where t1
distracts the crowd while t2 steals from the victim v. Note, how-
ever, that v is initially part of the Smart Crowd c. In the first event,
t1 activates an Affordance on the Smart Crowd to stand in the cen-
ter of the group (this does not dispatch a Crowd Event as the Smart
Crowd itself takes no action – it merely instructs t1 to approach
its center point). Then t1 begins dancing, and the Smart Crowd
is instructed to look at t1 by activating t1’s “LookAt” Affordance
(node highlighted in red). This Affordance activation causes c to
dispatch a Crowd Event to its members (the same one illustrated in
Figure 3). Importantly, since v is a member of c, v is included in
the Crowd Event’s ForEach node, and also looks at t1 with the rest
of the crowd. Afterwards, while Distract is still running, we acti-
vate the Steal event, which uses v as an individual character. In this
case, v is seamlessly removed from the ForEach node, and used in
the Steal event, where t1 approaches v, steals an item (by activat-
ing v’s “StealFrom” Affordance), and reflexively activates its own
“Flee” Affordance to escape. In traditional PBT events, v would
have been locked in the Distract Crowd Event, and could not have
been extracted for use in the Steal event without terminating Dis-

Figure 4: Two Story Events demonstrating interactions between
individuals and crowds.

tract (causing t1 to stop dancing, and the crowd to potentially stop
watching).

4.2 Defining Smart Crowds and their Activity

The members of a crowd are selected by selecting a spatial region
in the world. All Smart Objects contained within that spatial region
(apart from other Smart Crowds) will then be part of the crowd.
It is possible to make the crowd’s members static or not. If the
members are static, then the Smart Crowd’s members are evaluated
only once and will stay a part of that crowd for the whole narra-
tive. If the crowd’s members are not statically determined, char-
acters can both enter and leave the crowd at any time by entering
or exiting the Smart Crowd’s defined spatial region. An individual
character may wander into a Smart Crowd’s zone while running its
individual Routine, at which point it will suspend its own Routine
and begin receiving Crowd Events from the Smart Crowd (unless
involved in a Story Event). Similarly, members leaving the zone
will restart their individual Routine and act autonomously with no
Crowd Events. It is also possible for these spatial regions to over-
lap, so any Smart Object can potentially be a member of arbitrarily
many Smart Crowds. All the Smart Crowds that contain the mem-
ber can then try and use that Smart Object for Crowd Events.

When running its own Routine, a Smart Crowd schedules events
among its members that satisfy an author-specified distribution
based on Group Coordination [Shoulson and Badler 2011]. The
lexicon of events and its distribution may differ within a crowd de-
pending on the types of (Smart) actors and objects it encompasses.
For example, one Smart Crowd might have benches, allowing the
characters to sit down, while another one does not, and so Events
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requiring the “Bench” role would be invalid for the latter crowd.
The Smart Crowd’s Event scheduler Routine uses an authored dis-
tribution of a given set of events, and tries to find available matches
from within the crowd’s objects while also making sure not to in-
terrupt any objects participating in equal or higher priority Events.
To dispatch a new Event, the Smart Crowd first selects an authored
event from its Lexicon, and then greedily populates the Event’s par-
ticipant list with its members, filtering according to the following
two criteria: (1) Do the objects have the correct role and state, and
(2) are all the objects currently available to participate in an event
of the given priority. If both of these criteria are satisfied, then an
event instance is dispatched with the selected participants.

5 User Interface

Story Arcs are authored using Story Sequence Diagrams specified
in our graphical authoring tool. A Story Sequence Diagram is a di-
rected acyclic graphQ = 〈V,E〉. The vertices V = VS∪VI consist
of Smart Objects VS ≈ {w1, . . . , wn} ⊆ W , and Event Instances
VI ≈ {I1, . . . , Im} ⊆ I. The edges E = Eπ ∪ Eσ ∪ Eϕ indicate
three relationship types. Participation Edges Eπ ⊆ VS × VI de-
note a “participates in” relationship between a Smart Object and an
Event Instance (to populate a Role in the Event Instance that is sat-
isfied by the Smart Object). Sequence Edges Eσ ⊆ VI ×VI denote
a “comes after” relationship between two Event Instances that spec-
ify temporal restrictions. Termination Edges Eϕ ⊆ VI ×VI denote
a termination dependency, where (Ii, Ij) ∈ VI×VI denotes that Ij
is terminated as soon as Ii has terminated. Note that Ii and Ij must
be in the same Story Beat, as otherwise they will never be running
at the same time. Sequence Edges can be manually added by the
author to define separate story Beats, or are automatically inserted
into the Story Sequence Diagram when a Smart Object participat-
ing in the Event Instance is already involved in another Event at
the same time. Each horizontal row of Event Instances delineates a
Beat (two or more Event Instances that can occur simultaneously),
and the ordered sequence of Beats represents the resulting Story
Arc. A diagram of a simple Story Arc represented in the GUI can
be seen in Figure 5.

Figure 5: A simple Story Arc displayed in the GUI showing dif-
ferent edge and vertex types. Note that Termination Edges are not
explicitly displayed.

Story Arc Authoring. Once the author has added Smart Objects,
Actors, and Crowds to the environment, authoring a Story Arc from
a library of Events requires a few simple steps.

1. Add as many Story Events as needed by dragging them into the
main window from the sidebar. Story Events can be added to the
window at any time.

2. Add as many Smart Objects as needed by dragging them into the
main window from the sidebar. Smart Objects can be added to
the window at any time.

3. Drag the Story Events into the position within the Story Arc
where they should be executed.

4. Connect the participating Smart Objects to their respective Story
Events by clicking and dragging to create connection lines.

5. Optionally, instead of manually creating the connections from
the Smart Objects to the Story Events, the automation capabili-
ties can be used to automatically fill in any gaps left by the au-
thor.

Once a Story Arc has been completed, it can be executed immedi-
ately in simulation. There is no expensive compilation, serializa-
tion, or build step.

Validity Constraints. The Story Arc interface enforces a number
of restrictions on Story Event sequences and their participants in
order to guarantee the arc’s validity and prevent errors. First, the
interface ensures that the Smart Object participants of an Event are
valid, meaning their Roles correspond to the required Roles of the
Event. Invalid Smart Objects can not be added to an Event. Sec-
ondly, the interface ensures that a Smart Object can not participate
in two Events within the same Story Beat, unless it is specifically
marked as a Non-Participant in one of the Events, meaning that its
role within that Event is entirely passive (for example ”being looked
at”). If a Smart Object is linked to multiple Events in the same
Beat, one of those events is automatically moved to the next Beat.
While the GUI itself only makes sure the Smart Objects satisfy the
necessary roles, but not any dynamic state or relationships, the in-
tegration of planning and validity checking in the GUI allows us to
also check whether Smart Objects satisfy their dynamic state and
relationship preconditions, as well as injecting new Story Events
into the Story Arc where necessary.

Smart Crowd Selection. The GUI also offers a way of selecting
Smart Crowds using a spatial area selection. Crowd selection is
done in two steps. In a first step, a spatial zone within the world
space is selected. Also, the author can select whether the Crowd
he is authoring should select its members on a static basis or not.
In a second step, the Smart Crowd’s Event Lexicon is configured.
As mentioned before, the Event Lexicon consists of a selection of
Events and a probability distribution assigning a probability to each
Event within the Lexicon to be selected by the Crowd’s event sched-
uler, as well as a fixed time step to indicate the frequency of Crowd
Events being dispatched. The author can manually select the Events
to be considered in the Lexicon and assign a probability to each of
them, as well as select the update time step. The Events listed in
this window are a subset of all available Events consisting of ex-
actly those Events that do not change the state or relations of any of
their participants, i.e. do not have a postcondition.

6 Authored Narrative

6.1 World

We used the following Smart Objects in our example narratives:

Smart Chair. A chair or a bench where characters can sit down.
Smart Chairs have the “chair” Role and the following Affordances:
(1) Sit: The user (an Actor) is directed to sit on the chair. (2) Stand:
The user stands up from the chair.

Smart Vendor Stand. A vendor stand with fruit and a vendor that
sells them. Smart Vendor Stands have the “VendorStand” Role and
the following Affordance: (1) Haggle: The user approaches the
stand and haggles with the vendor. This Affordance is special in
that it takes an argument that determines whether or not the vendor
successfully sells an item to the user.

Smart Character (i.e. Smart Actor). Each mobile character of
the scene is a Smart Character. Smart Characters have the “Actor”
Role, and some individuals have more specific roles like “Thief”
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and “Hero” (with their own specialized Affordances). The generic
Smart Character has the following Affordances (as well as a few
not listed here):

• Give: The user gives this character an object.
• Steal: The user approaches this character and steals an object.
• CallOut: The user calls out to this character to get its attention.
• TalkHappily: The user talks happily to this character.
• TalkSecretive: A conversation Affordance that uses more subtle

gestures so as to be less noticeable.
• Approach: The user approaches this character.
• Chase: The user runs towards this character.
• Depart: The user walks away from this character.
• LookAt: The user looks at this character.
• BackAwayFrom: The user backs away from this character if

close enough.
• LookAround: A reflexive Affordance where the character looks

around the scene.
• Eat: A reflexive Affordance that lets the character eat what it is

holding.

Smart Crowd. Smart Crowd objects have the “Crowd” Role and
represent a special case of Affordance activations compared to sin-
gle objects. When a Smart Crowd activates an Affordance on a
single object (as opposed to another Smart Crowd), it internally
dispatches a Crowd Event to its members instructing them to all in-
dividually activate that same Affordance on the target object (see
Figure 3 for example of one of these Events. This trivially en-
ables some group behaviors such as “Gather Around” (where the
crowd’s members all activate an object’s “Approach” Affordance),
or “React To” (where they activate an object’s “BackAwayFrom”
Affordance).

6.2 Story Events

We used the following Story Events in our Story Arcs (among oth-
ers):

Browse(Actor, VendorStand): Instructs an actor to inspect a vendor
stand, haggle with the vendor, purchase an apple, and eat it while
looking around.

DropAndReturn(Actor, Actor): The first actor drops its wallet
while walking. The second actor approaches the first and returns
the wallet. Figure 6 illustrates this Event in more detail.

DropAndReturn(h: Actor, v: Actor)

Depart h

v

LookAt v

h

Give v

h

TalkHappily h

v

DropWallet *

v

Wait

Wait PickUpWallet *

h

CallOut v

h

Figure 6: The PBT of the DropAndReturn Event with a hero h and
victim v. Note that DropWallet and PickUpWallet are special Af-
fordances that manage a Wallet prop (which is not a SmartObject).

Converse(Actor, Actor, . . . *): Two actors converse with each
other. There are many variations of a default conversation
(ConverseWhileSitting, ConverseSecretive, etc.). Certain con-
versations can take more actors or more specific actor types.

CallAndConverse (Actor, Actor): The first actor sees the second
and calls out, whereupon the second actor approaches the first and
they engage in a conversation. Figure 7 illustrates this Event in
more detail.

CallAndConverse(a: Actor, b: Actor)

LookAt b

a

WaitCallOut b

a

Approach b

a

LookAt a

b

Converse (a, b)

����������	
�

Figure 7: The PBT of the CallAndConverse Event with two charac-
ters a and b. This uses a lookup node to insert a reusable sub-tree
for the actual conversation gestures.

GetAttention(Actor): The actor shouts and tries to get the attention
of the people around it.

Gather(Crowd, Any): The crowd looks at and gathers around a
particular Smart Object (using that object’s Approach Affordance).

Perform(Actor): The actor starts to break-dance for a certain time.

LookAt(Actor, Any): The Actor looks at the object of interest.

Steal(Thief, Actor): The thief approaches target the from behind
and steals an item.

React(Crowd, Actor): The crowd looks at the target and backs
away if too close.

Chase(Actor, Actor, Thief): The thief runs away while the first ac-
tor chases. The second actor approaches from another angle and the
two actors corner the thief. The thief surrenders. Figure 8 illustrates
this Event in more detail.

6.3 Crowds

Our example scene had four distinct Smart Crowds, each defined
according to control zones as illustrated in Figure 9. Actors enter-
ing or leaving these regions would automatically join or leave their
respective crowds. In addition, each crowd contained static objects
like vendor stands and benches that it could use in its Events. All
four crowds were of the same type with the same Routine for de-
fault behavior. Our crowds’ Routines automatically dispatched the
following types of activities for ambient behavior:

• Nearby characters meet and talk. They sometimes wander to-
gether while talking.

• Wander around within the region of the crowd.
• Sit down on bench, look around.
• Look around while standing still.
• Go to a vendor stand and haggle with a vendor.
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Chase(h: Actor, f: Actor, t: Thief)

CallOut t

h

Chase t

h

CutOff t

f

Flee t

t

Surrender t

t

Wait

TalkAngrily t

h

Figure 8: The PBT of the Chase Event with a hero h, friend f ,
and thief t. Note that CutOff is a special Affordance that acquires a
position for the character to stand to block the escaping thief.

Figure 9: The spatial regions determining the smart crowds

• If character is sitting, either look around or talk to character sit-
ting nearby.

6.4 Story Arcs

Story Arc 1: Thief gets away. In the first story arc, the business-
man loses his wallet without any other characters noticing. He later
finds it again, before it is stolen from a thief. However, no other
characters notice the theft. For each story beat, we include the rel-
evant in-engine event names in parenthesis.

• The hero walks into the scene, walks around a bit in the plaza
and haggles with a vendor (Browse).

• A businessman is seen walking around and dropping his wallet,
without anybody noticing (Drop). As soon as he notices it to be
missing, he starts looking for it (Search).

• A friend of the hero spots him (the hero) and calls him over
(CallAndConverse, see Figure 7). They converse for a bit be-
fore deciding to go to a bench to have a more quiet place to talk
(Sit, SitAndConverse).

• After their conversation, two suspicious men secretively con-
verse without anyone noticing them (TalkSecretive).

• One of the suspicious men walks to the center of the plaza
and gets everyone’s attention. Soon, many people have gath-
ered around him, including the businessman (GetAttention,
Gather).

• While the first suspicious man starts break-dancing in order to
keep everyone’s attention, the second one goes over to the busi-
nessman and steals his wallet. (Perform, LookAt, Steal).

• Nobody notices the theft, and once the performance is over, life
in the plaza goes back to normal.

Story Arc 2: Thief gets caught. In the second story arc, we will
introduce the hero to the victim, so he will be aware of the victim
carrying his wallet around and notice the theft. This significant
change in story only required minor changes to the event beats in
our authoring tool, as follows:

• The story begins as it did in Story Arc 1, until the businessman
drops his wallet.

• The hero sees the businessman dropping his wallet. He im-
mediately returns it and the businessman shows his gratitude
(DropAndReturn, see Figure 6).

• The hero’s friend approaches him and the two take their con-
versation to a park bench as before (CallAndConverse, Sit, Si-
tAndConverse).

• This time, as the two suspicious characters talk secretively
(ConverseSecretively), the hero watches them. Due to the secre-
tive manner of their conversation, he grows suspicious of them
(LookAt).

• The two thieves once again gather the crowd’s attention and
steal from the businessman (GetAttention, GatherAroundPer-
former, Perform, LookAt, Steal).

• As the thief steals the victim’s wallet, the hero notices it. He
immediately signals his friend, and they both stand up and start
chasing the thief (Chase, see Figure 8). The people in the plaza
are shocked and do their best to stay out of the way of the chase.
Eventually, the hero and his friend corner the thief and he sur-
renders (React).

7 Conclusions and Future Work

We have developed a behavior authoring framework and graphical
tool that allows untrained designers to easily create complex nar-
rative sequences incorporating both principal individual characters
as well as the macroscopic behavior of crowds. Our system pro-
vides a simple and manageable semi-centralized control structure
that allows large groups of ambient background characters to play
active participatory roles in the story as if they were a single char-
acter with simple interface commands. As such, environments with
any amount of virtual characters are accessible for use in interest-
ing narratives. The use of default Routines on both individuals and
crowds level allows our characters to perform meaningful activities
without any top-level authoring, reducing the burden for a story de-
signer to constantly ensure baseline activity in the scene. Crowds
and characters carry out reasonable sets of actions on their own and,
due to our priority resolution system, seamlessly transition to more
principal components of a story when recruited for specific events.

Integral to our system is our graphical interface for authoring sto-
ries, which allows drag-and-drop authoring of events by drawing
the appropriate connections between events and their participants,
and gives feedback on the order in which events will be executed.
Our authoring system is a powerful tool, but it does have a few
limitations:

• The story authoring interface is currently unaware of state and
prerequisites, though they do exist in our system. For example,
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the “SitAndConverse” Event requires both participants to be sit-
ting in proximity to one another, and will fail if this is not the
case. This is checked during simulation, and implied to the au-
thor by the Event names, but the tool does not explicitly convey
requirements like this to the story author yet.

• Event construction itself is not integrated into our story authoring
tool, though it could be certainly be done. Numerous graphical
interfaces for editing behavior trees exist, and could be modified
into a system for authoring Story and Crowd Events. We have
already begun work on such a system.

• Position selection for events continues to be a frustration for our
work. Smart Objects implicitly encode relative positions for their
Affordances (e.g. where a character should stand to converse
with me), but open ended Events like our Chase required some
manually authored positions (such as where the friend character
should run to cut off the thief as he flees). Some of our stories
also required manually authored “GoTo” commands to ensure
that Events happened in the areas we intended for them to occur.
Our story interface prompts the story author to select positions
from the world to serve as parameters to these kinds of Events,
but we aim to investigate more comprehensive solutions.

In addition to addressing these limitations, our immediate future
work revolves around deeper integration of state, preconditions, and
effects into the authoring process. This system introduces a tool for
authoring stories entirely by hand, but sometimes requires the au-
thor to insert mundane Events such as instructing characters to sit
or look at a particular point or object. We aim to introduce a sys-
tem that makes authoring a semi-automated process, reducing the
amount of labor involved and enabling an author to focus solely
on Events of narrative significance while offloading the burden of
Event selection and parameter population for less important anima-
tion sequences.
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2012. Cloning crowd motions. In ACM SIGGRAPH/EG SCA,
EG, SCA ’12, 201–210.

PARIS, S., PETTR, J., AND DONIKIAN, S. 2007. Pedestrian re-
active navigation for crowd simulation: a predictive approach.
Comput. Graph. Forum 26, 3, 665–674.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In ACM SIGGRAPH, 25–34.

RIEDL, M. O., AND BULITKO, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34, 1, 67–77.

SHOULSON, A., AND BADLER, N. I. 2011. Event-centric control
for background agents. In ICIDS, 193–198.

SHOULSON, A., GARCIA, F. M., JONES, M., MEAD, R., AND
BADLER, N. I. 2011. Parameterizing behavior trees. In Motion
in Games, 144–155.

SHOULSON, A., GILBERT, M. L., KAPADIA, M., AND BADLER,
N. I. 2013. An event-centric planning approach for dynamic
real-time narrative. In Proceedings of Motion on Games, ACM,
New York, NY, USA, MIG ’13, 99:121–99:130.

SHUM, H. P. H., KOMURA, T., SHIRAISHI, M., AND YAMAZAKI,
S. 2008. Interaction patches for multi-character animation. In
ACM SIGGRAPH Asia, 114:1–114:8.

SINGH, S., KAPADIA, M., HEWLETT, B., REINMAN, G., AND
FALOUTSOS, P. 2011. A modular framework for adaptive agent-
based steering. In ACM SIGGRAPH I3D, 141–150 PAGE@9.

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151–158.
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