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Abstract— This paper presents an efficient algorithm for
computing a distance measure between two compact convex
sets Q and A, defined as the minimum scale factor such that
the scaled Q is not disjoint from A. An important application
of this algorithm in robotics is the computation of the minimum
distance between two objects, which can be performed by taking
A as the Minkowski difference of the objects and Q as a
set containing the origin in its interior. In this generalized
definition, the traditional Euclidean distance is a special case
where Q is the unit ball. While this distance measure was
proposed almost a decade ago, there has been no efficient
algorithm to compute it in general cases. Our algorithm fills
this void and we demonstrate its superior efficiency compared
to approaches based on general-purpose optimization.

I. INTRODUCTION

Computing the minimum distance between two point sets
is a fundamental problem in many research fields, such as
robot motion planning, computer-aided design, and physics
simulation. The minimum distance between two separated
sets is equivalent to the minimum distance from the origin
to all points in their Minkowski difference. Traditionally,
the distance is defined in terms of the 2-norm and can
be interpreted as the minimum scale factor of the origin-
centered unit ball such that the scaled ball and the Minkowski
difference are not disjoint. Gilbert et al. [1], [2] first proposed
an algorithm to compute this distance (GJK algorithm),
which generates a sequence of simplices in the Minkowski
difference such that their minimum distances to the ori-
gin converge to the globally minimum distance. Lin and
Canny [3] developed another efficient algorithm to calculate
the distance between polyhedra by finding their closest
features (LC algorithm). For the past two decades, these algo-
rithms have been improved by Cameron [4], Mirtich [5], and
Ong and Gilbert [6], and have been widely used in motion
planning, physics simulation, and computer animation.

More recently, Zhu et al. [7], [8] gave a more general
distance measure: the minimum scale factor of a compact
convex set Q such that the scaled Q is not disjoint from
the other compact convex set A. When A is the Minkowski
difference of two objects and Q is a set containing the
origin in its interior, the distance measure gives a generalized
distance between the objects in a metric defined by Q.
For example, the traditional Euclidean distance is given
by taking Q as the origin-centered unit ball. This distance
measure has been successfully applied in grasping research
to evaluating how far a grasp is from being stable and capable
of generating required forces to fulfill a grasping task [7].
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Fig. 1. Illustration in 2-dimensional (2-D) space of the distance defined in
(a) the 2-norm and (b) a general metric. The distance d between the origin
and a set A is equal to the minimum scale factor of (a) the origin-centered
unit ball B or (b) a general compact convex set Q such that the scaled set
dB or dQ is not disjoint from A.

However, there has been no efficient algorithm to calculate
it for general convex sets A and Q. The algorithm used
in [7], [8] reduced the computation to a linear program by
approximating A and Q by polytopes and applying Simplex
method. The only method applicable to general convex sets
has been general-purpose numerical optimization, which is
computationally expensive.

Another possible method for distance computation is sup-
port vector machines (SVMs). Given two sets of training data
points, SVM training algorithms determine a hyperplane that
separates the two sets as well as their minimum distance.
If each of the two sets consist of the vertices of a convex
polytope, an SVM that separates the sets gives the minimum
distance between the polytopes. One prominent method for
training SVMs is sequential minimal optimization [9], [10].
However, it works only for polytopes.

In this paper, we present a novel algorithm for computing
the generalized distance proposed in [7], [8]. The algorithm is
geometry-based and works for general compact convex sets
represented as polytopes and parametric surfaces. Through
a number of numerical examples in spaces with different
dimensions, we demonstrate that the algorithm is several to
tens of times faster than the optimization-based method to
achieve the result at the same level of accuracy.

The rest of this paper is organized as follows. Section II
introduces the distance definition and other mathematical
concepts. Section III describes our distance algorithm, fol-
lowed by numerical examples in Section IV that verify its
performance quality. Conclusions and future work are given
in Section V.
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Fig. 2. Equivalence of (a) the distance between two separated compact
convex sets A1 and A2 to (b) the distance between the origin 0 and their
Minkowski difference A2 −A1.

II. DEFINITIONS

A. A Generalized Distance Measure

Let A be a compact convex set with nonempty interior in
Rn that does not contain the origin of Rn. The traditional
minimum distance between the origin and A is defined in
terms of the 2-norm as [1]

d(A) , min
a∈A

∥a∥2 (1)

where ∥ · ∥2 denotes the 2-norm of a vector. More generally,
the distance can also be defined using by the p-norm given
as

∥a∥p ,
(

n∑
i=1

|ai|p
) 1

p

(2)

where p ≥ 1 is a real number. We can define unit balls
centered at the origin in different norms as

B , {a ∈ Rn | ∥a∥p = 1} . (3)

For p ≥ 1, unit ball B is convex and centrally symmetric.
Fig. 1a shows the case of using the traditional 2-norm. Using
B, the minimum distance between the origin and A in terms
of the p-norm can be rewritten as

dB(A) = min
A∩λB ̸=∅,λ≥0

λ. (4)

We can define even more general distance measures by
replacing replace B with general compact convex set Q with
nonempty interior containing the origin of Rn, as depicted
in Fig. 1b. Then, the distance dQ(A) between the origin and
A with respect to Q is defined by [7], [8]

dQ(A) , min
A∩λQ̸=∅,λ≥0

λ = min
x∈A,x∈λQ,λ≥0

λ. (5)

In other words, dQ(A) is the minimum nonnegative scale
factor λ such that A and λQ are not disjoint, and therefore
generalizes the traditional Euclidean distance.

This distance definition can be easily extended to the
distance between two separated compact convex sets A1 and
A2, as illustrated in Fig. 2. Since A1 and A2 are separated,
the interior of their Minkowski difference A2 − A1 does
not contain the origin and the distance between them with
respect to Q is equal to dQ(A2 − A1). Therefore, dQ(A)
can also give a distance measure for separated sets in the

metric represented by Q. Without loss of generality, this
paper focuses on the distance dQ(A) between the origin and
a single set A in following discussion.

We can also interpret dQ(A) from another perspective.
Instead of using Q to define a general metric, Q can also
represent an object like A. Then, dQ(A) is the minimum
scale factor of one object with respect to one of its interior
points such that the scaled model is not disjoint from the
other object. The two objects are separated if dQ(A) > 1,
in contact if dQ(A) = 1, and penetrating if dQ(A) < 1.
In this sense, dQ(A) provides a distance measure for not
only separated but also penetrating objects. Also, dQ(A) is
the maximum scale factor of Q such that dQ(A)Q does not
penetrate A. This could be useful in some design or planning
tasks that require a certain margin from contact. Basically,
dQ(A) tells how big an object can be to fit into a given
environment without interfering with other existing objects.

Since both A and Q are assumed to be convex and the
interior of A does not contain the origin, the definition
(5) of dQ(A) is a convex programming problem, which
can be solved by general-purpose numerical optimization
techniques. Zhu et al. [7], [8], for example, applied Sim-
plex method by approximating A and Q by polytopes and
formulating a linear program. In general, however, methods
based on general-purpose optimization techniques are com-
putationally expensive. The contribution of this paper is an
efficient algorithm that can be applied to general convex sets
A and Q without approximating them as polytopes.

B. Other Concepts

Before addressing our algorithm to compute dQ(A), we
would like to briefly introduce some mathematical concepts
to help readers understand the derivation of our algorithm.
First, a hyperplane H with normal n passing through a point
p in Rn is a set of points given by H = {a ∈ Rn|nT (a−
p) = 0}. A supporting hyperplane of a set A at a point p ∈ A
is a hyperplane that passes through p and bounds A to one
side of it, i.e., nT (a−p) ≤ 0 or nT (a−p) ≥ 0 for ∀a ∈ A
depending on the direction of n. Two sets A1 and A2 are said
to be separated if there exists a hyperplane that bounds A1

and A2 to different sides, i.e., nT (a− p) ≤ 0 for ∀a ∈ A1

and nT (a−p) ≥ 0 for ∀a ∈ A2, and the hyperplane is called
a separating hyperplane. If both inequalities hold strictly, A1

and A2 are strictly separated or disjoint.
From [11] the support function hA and the support map-

ping sA of a set A are defined as

hA(u) = max
a∈A

uTa, sA(u) = argmax
a∈A

uTa (6)

where u is an arbitrary vector in Rn. Readers are referred
to [2], [11] for more detailed description on the properties of
hA and sA. Closed-form expressions of hA and sA can often
be derived from those properties depending on the expression
of A. In addition, if u is nonzero, then the hyperplane with
normal u passing through the point sA(u) is a supporting
hyperplane of A at sA(u) and its Euclidean distance from
the origin is hA(u)/∥u∥.
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Fig. 3. Illustration in 2-D space of our algorithm for computing the generalized distance. (a) The sets A and Qk are scaled by the same factor σk with
respect to the point ac and the origin, respectively, such that A(σk) and σkQk touches at pk . Hyperplane Hk with normal nk passing through pk

separates A(σk) from σkQk . Hyperplane H′
k with the same normal nk passes through and supports A at sA(nk). A scale factor of σkQk is chosen

such that Qk+1, equal to the scaled σkQk , touches H′
k and is separated from A by H′

k . (b) Scale factor σk can be obtained by first computing the
farthest intersection point zk between set A− ac −Qk and the ray pointing −ac from the origin, and then computing σk = ∥ac∥/∥zk∥. Point zk can
be computed by an existing algorithm [12], which iteratively changes a finite subset of points (marked with green squares) in A− ac −Qk such that the
intersection between its convex hull and the ray (marked with purple triangles) converges to zk . The algorithm also gives the normal nk of the supporting
hyperplane of A− ac −Qk at zk , which can then be used as nk in (a). Moreover, a set of points in A− ac −Qk that contain zk in its convex hull is
computed. Those points can be used as the initial points for the algorithm [12] to speed up the computation of σk+1 and nk+1 in the next iteration of
our distance algorithm, as shown in (c).

III. AN ALGORITHM FOR THE GENERALIZED DISTANCE

A. Iteration of the Algorithm

Figure 3 and Algorithm 1 summarizes the algorithm for
computing dQ(A). This subsection gives a detailed descrip-
tion of the iteration process.

We denote by k the iteration number starting from 0. Let
ac be an arbitrary point in the interior of A and A(σ) the
set obtained by scaling A by a factor σ ≥ 0 with respect to
ac, i.e.,

A(σ) , ac + σ(A− ac). (7)

Also let ηk (η0 = 1) be another scaling factor for Q with
respect to the origin, and define Qk = ηkQ. We then define

σk , min
A(σ)∩σQk ̸=∅,σ≥0

σ (8)

where σQk is the set obtained by scaling Qk by the factor
σ or scaling Q by the factor σηk with respect to the origin.
Equation (8) implies that σk is the minimum scale factor
such that A(σk) and σkQk are not disjoint from each other,
which means that A(σk) and σkQk share some boundary
points but their interiors do not intersect, as depicted in Fig.
3a. If A and Qk are separated from each other, then σk ≥ 1;
otherwise, σk < 1.

Since A(σk) ∩ σkQk ̸= ∅, let pk be a point in A(σk) ∩
σkQk. Then, there exists a hyperplane Hk, passing through
pk, that separates A(σk) from σkQk [11]. Let nk denote the
normal of the separating hyperplane pointing to the side that
σkQk lies on. Then, hσkQk

(−nk) = −nT
k pk. With the same

normal nk, we have a supporting hyperplane H ′
k of A at

sA(nk), as shown in Fig. 3a. There could be a gap between
Hk and H ′

k, which implies that σkQk can be further scaled
by hA(nk)

nT
k pk

and the scaled set is separated by H ′
k from A,

where hA(nk)

nT
k pk

is the ratio of the Euclidean distance of H ′
k

to that of Hk from the origin. Then, we set Qk+1 = ηk+1Q
with

ηk+1 =
hA(nk)

nT
k pk

σkηk. (9)

Since hσkQk
(−nk) = −nT

k pk and hσkQk
(−nk) =

σkηkhQ(−nk), (9) can be rewritten as

ηk+1 = − hA(nk)

hQ(−nk)
. (10)

At k = 0, we can have σ0 ≥ 1 or σ0 < 1 because A
and Q0 = Q may or may not be separated from each other.
After the first iteration, however, A and Qk+1 will always
be separated from each other from the above arguments.
As a consequence, we have σk+1 ≥ 1 and hA(nk+1) ≤
nT

k+1pk+1 < 0. Hence, from (9) we can deduce that ηk+2 ≥
ηk+1 and the equal sign holds only if A∩Qk+1 ̸= ∅, which
only occurs when ηk+1 is exactly the distance dQ(A) we
are computing. If A and Qk+1 are strictly separated, then
σk+1 > 1 and ηk+2 > ηk+1. In this case, Qk+2 contains
Qk+1 in its interior, which implies σk+2 < σk+1 from (8).
If A and Qk+1 are always strictly separated in the iteration
described by (8) and (9), then σk+1 is strictly monotonically
decreasing, while σk+1 is bounded below by 1. By the
monotone-convergence principle [13], therefore, σk+1 must
converge to 1 and ηk+1 to dQ(A), and we can stop the
iteration by the criterion σk+1 − 1 < ϵ, where ϵ > 0 is
the termination tolerance.

B. Computation Details
This subsection presents a few implementation details that

affect the efficiency of the algorithm.
We first describe how to compute σk, pk, and nk. Since

A(σ) ∩ σQk ̸= ∅ is equivalent to 0 ∈ A(σ)− σQk, we can
rewrite σk defined by (8) as

σk = min
− 1

σac∈A−ac−Qk,σ≥0
σ. (11)



Algorithm 1 Algorithm for the Generalized Distance Computa-
tion
Input: compact convex sets A and Q
Output: the generalized distance dQ(A)
1: k ← 0 and η0 ← 1
2: compute σ0 and n0 by a ray-shooting algorithm [12]
3: while |σk − 1| > ϵ do
4: set ηk+1 by (10)
5: compute σk+1 and nk+1 by a ray-shooting algorithm [12]
6: k ← k + 1
7: end while
8: return ηk

Equation (11) means that − 1
σk

ac is the farthest intersection
point, denoted by zk, of set A − ac − Qk with the ray
pointing −ac from the origin (see Fig. 3b). The computation
of zk is known as the ray-shooting problem, for which
several algorithms have been developed [14], [15], [12].
As illustrated in Fig. 3b, some of the latest ray-shooting
algorithms start with a finite set of points (green squares)
in A − ac − Qk, whose convex hull (green line segment)
intersects with the ray, and then iteratively change the set
such that the intersection point (purple triangle) converges
to zk. From zk = − 1

σk
ac, it follows σk = ∥ac∥/∥zk∥.

The algorithm also gives a set of affinely independent points,
denoted by s1, s2, . . . , sL, in A−ac −Qk such that zk can
be written as their positive convex combination, i.e.,

− 1

σk
ac =

L∑
l=1

clsl with cl > 0 and

L∑
l=1

cl = 1. (12)

Each point sl is the support mapping of A − ac − Qk for
a certain vector ul, i.e., sl = sA−ac−Qk

(ul). From the
definition (6) of support function and mapping, we can derive

hA−ac−Qk
(ul) = hA−ac(ul) + hQk

(−ul) (13a)
sA−ac−Qk

(ul) = sA−ac(ul)− sQk
(−ul). (13b)

Substituting (13b) into (12), we can deduce

ac + σk

L∑
l=1

clsA−ac(ul) = σk

L∑
l=1

clsQk
(−ul). (14)

From (7) and the convexity of A it follows that the left side
of (14) is a point in A(σk). Similarly, the right side of (14)
gives a point in σkQk. Therefore, (14) implies that the point
pk in A(σk) ∩ σkQk used in (9) can be written as

pk = ac + σk

L∑
l=1

clsA−ac(ul). (15)

Moreover, the ray-shooting algorithm determines the nor-
mal n of the supporting hyperplane of A − ac − Qk at
zk = − 1

σk
ac, as depicted in Fig. 3b, which implies

hA−ac−Qk
(n) ≤ − 1

σk
nTac. (16)

By substituting (13a) with ul replaced by n into (16) and
some mathematical manipulation, we obtain

hA(σk)(n) ≤ −hσkQk
(−n), (17)

which implies that the hyperplane with normal n passing
through pk separates A(σk) from σkQk and n points to
the side of the hyperplane that contains σkQk. Hence, nk

in (9) and (10) is just equal to n. For the details of those
ray-shooting algorithms, we refer readers to [12].

We may speed up the ray-shooting algorithm in the itera-
tion of the proposed distance algorithm. From the discussion
in Section III-A, we know that ηk+1 ≥ ηk for k ≥ 1 and
it may also be true for k = 0, which implies that Qk+1

contains Qk and A− ac −Qk+1 contains A− ac −Qk, as
shown in Fig. 3c. Then, the points in A−ac−Qk, computed
by the ray-shooting algorithm, that contain the point zk in
their convex hull can be used as the initial points for the
ray-shooting algorithm in the next iteration to compute the
farthest intersection point zk+1 of A−ac−Qk+1 with the ray
along −ac. As the iteration proceeds, the increase of ηk+1

from ηk is reducing. Then, the points obtained in the current
iteration can be close to the result in the next iteration and
give a good initialization for the ray-shooting algorithm.

Assume that our distance algorithm requires K iterations
to reach the stopping criterion |σk − 1| < ϵ and in each
iteration the ray-shooting algorithm takes Nk iterations to
compute ηk and nk. In a space with fixed dimension, every
iteration of the ray-shooting algorithm costs an almost con-
stant number of basic operations. Hence, the computational
complexity of our distance algorithm is simply O(Nrs),
where Nrs =

∑K
k=1 Nk is the total number of iterations of

the chosen ray-shooting algorithm in computing dQ(A).

C. Other Results

In some applications, it is also required to determine the
closest points in two sets in addition to their distance. Here
we discuss how to calculate the closest points in terms of
this generalized distance.

Recall that pk in a point in A(σk) ∩ σkηkQ. As σk

converges to 1 by the iteration, ηk converges to dQ(A) and
then pk converges to a point v in A ∩ dQ(A)Q. If Q is
considered as an object like A, then v/dQ(A) and v are
the closest points in Q and A, respectively, in terms of the
distance dQ(A). Particularly, if Q and A contact each other,
then dQ(A) = 1 and v is the contact point between them.

When A is the Minkowski difference A2−A1 between sets
A1 and A2 while Q is just used to define a metric, dQ(A)
gives a distance between A1 and A2 that generalizes the
Euclidean distance, as explained in Section II-A. The closest
points in A1 and A2 in terms of the generalized distance
dQ(A) can be determined as follows. From (15) with A =
A2 − A1 and ac = a2 − a1, where a1 and a2 are interior
points of A1 and A2, respectively, we obtain

pk = a2+σk

L∑
l=1

clsA2−a2(ul)−a1−σk

L∑
l=1

clsA1−a1(−ul).

(18)
Since cl > 0 for ∀l and

∑L
l=1 = 1, a1k , a1 +

σk

∑L
l=1 clsA1−a1(−ul) is a point in the set a1 + σk(A1 −

a1), while a2k , a2 + σk

∑L
l=1 clsA2−a2(ul) is a point

in the set a2 + σk(A2 − a2). As σk converges to 1, pk



TABLE I. RESULTS OF NUMERICAL TESTS

our algorithm active-set
ϵ error t K Nrs error t

10−2 1.79× 10−3 1.81 1.78 15.03 5.78× 10−3 14.01
10−3 1.86× 10−4 2.37 1.95 21.66 3.81× 10−5 14.29
10−4 1.70× 10−5 2.95 2.07 28.63 1.21× 10−6 14.60
10−5 1.75× 10−6 3.55 2.18 35.53 4.24× 10−8 14.69
10−6 1.74× 10−7 4.13 2.26 42.67 6.39× 10−9 14.62
10−7 1.70× 10−8 4.75 2.31 49.96 3.73× 10−10 15.12
10−8 1.64× 10−9 5.41 2.39 57.47 7.77× 10−11 15.38
10−9 1.57× 10−10 6.05 2.45 65.16 1.33× 10−11 15.50
10−10 1.65× 10−11 6.62 2.51 73.02 7.67× 10−12 15.17
t — CPU running time (unit: millisecond);
K — average number of iterations of our distance algorithm;
Nrs — average number of total iterations of the ray-shooting algorithm
[12] used in our algorithm.

converges to the closest point in A2 − A1 to the origin in
terms of the distance dQ(A2−A1), and a1k and a2k converge
respectively to the closest points in A1 and A2 in terms of
the generalized distance between them.

IV. NUMERICAL EXAMPLES

Here we report the results of some numerical tests to verify
the performance of our algorithm. The distance algorithm is
implemented in MATLAB on a laptop with an Intel Core i7
2.67GHz CPU and 3GB RAM.

Example 1. We first test our algorithm in 3-D space with A
taken as a truncated cone and Q as an ellipsoid, as shown in
Fig. 4. Their surfaces are specified by parametric functions
with randomized sizes and relative positions and orientations.
We place them to be in contact with each other (Fig. 4a) and
shrink (Fig. 4b) or enlarge (Fig. 4c) Q by 2 times such that
they become separated or penetrated. Thus, the ground truth
of dQ(A) in the three cases is 1, 2, and 0.5, respectively.
We generate 3000 pairs of ellipsoids and truncated cones for
each case to collect the average error and CPU running time
of our algorithm.

Table I lists the average absolute error between the com-
puted dQ(A) and the ground truth, and the average CPU
running time for different termination tolerance ϵ. Figure 5
plots the average error, the average CPU running time of
our algorithm, and the total number of iterations of the ray-
shooting algorithm for different ϵ. We also swap the models
for A and Q as shown in Fig. 6, and perform the same tests.
The results are summarized in Table II and plotted in Fig. 7.

As a comparison, we write dQ(A) as a convex program
as in (5) with variables λ and x and compute it using the
active-set algorithm provided by the Optimization Toolbox
of MATLAB. To obtain a value of dQ(A) having compa-
rable accuracy with our algorithm, we take the objective
function value tolerance to be the same as the termination
tolerance ϵ in our algorithm. To guarantee the satisfaction
of the constraints, the tolerance on the constraint violation
is set to 10−12. Also, to save the computation cost of the
active-set algorithm, we provide a closed-form expression
of the gradient for the objective function, which is simply
[1 0 · · · 0]T . The results of the active-set algorithm are
also include in Tables I and II.

TABLE II. RESULTS OF NUMERICAL TESTS

our algorithm active-set
ϵ error t K Nrs error t

10−2 1.72× 10−3 1.84 1.78 15.18 2.10× 10−3 16.72
10−3 1.67× 10−4 2.40 1.94 21.64 4.37× 10−4 17.61
10−4 1.56× 10−5 2.99 2.06 28.57 1.75× 10−4 19.03
10−5 1.52× 10−6 3.59 2.17 35.48 2.53× 10−4 20.20
10−6 1.53× 10−7 4.20 2.25 42.65 1.47× 10−4 21.21
10−7 1.52× 10−8 4.78 2.32 49.64 3.54× 10−5 22.48
10−8 1.49× 10−9 5.40 2.38 57.05 3.78× 10−6 24.25
10−9 1.44× 10−10 6.03 2.43 64.43 6.77× 10−7 24.95
10−10 1.46× 10−11 6.76 2.49 72.40 5.93× 10−8 25.76
t — CPU running time (unit: millisecond);
K — average number of iterations of our distance algorithm;
Nrs — average number of total iterations of the ray-shooting algorithm
[12] used in our algorithm.

From the results shown in Tables I and II it can be seen
that our algorithm is several times faster than the active-set
algorithm in MATLAB for computing dQ(A). The number
K of iterations of our algorithm is small and increases
slowly as ϵ decreases. Figs. 5 and 7 clearly show that the
CPU running time of our algorithm is proportional to the
total number Nrs of iterations required by the ray-shooting
algorithm. Although the number Nrs is big, each iteration
of the ray-shooting algorithm is straightforward and takes
only a few basic operations, so that the overall efficiency of
our algorithm is still high. In every iteration of the active-
set algorithm, however, it is required to solve an optimization
problem with equality constraints (i.e., active constraints) and
update the active constraint set. Thus, the computation cost
of its iteration depends on the complexity and the number of
constraints. Here, some constraints are nonlinear due to the
nonlinear surfaces of models. Therefore, the iteration of the
active-set algorithm is much more time-consuming, which
induces its relatively lower efficiency.

Note that, however, it is not straightforward to compare
the computational cost because the errors of the active-
set algorithm do not necessarily match the corresponding
ϵ we give. In some cases, particularly in Table I, Active-set
algorithm often takes more iterations to bring the constraint
violation within the constraint tolerance, resulting in smaller
objective function values. In other cases, on the other hand,
the errors of the active-set algorithm can be larger than ϵ
because the tolerance ϵ intended for the objective function is
also used for other termination criteria, such as the predicted
change in the objective function (i.e., the absolute value
of the step length multiplied by the direction derivative
of the objective function along a certain direction). Some
termination criteria cannot guarantee that the error in the
computed dQ(A) is less than ϵ. By contrast, it is easier to
control the accuracy of our algorithm.

Example 2. We also test our algorithm in higher-
dimensional spaces, where sets A and Q consist of N
randomized points on two separated unit balls in n-D space,
respectively. Figure 8 shows a 3-D example. Then, dQ(A)
can be formulated as a linear program with lower bound
constraints on 2N variables and n+1 equality constraints [7],
which can be solved by the Simplex method provided by



(a) (b) (c)

Fig. 4. 3-D models used in the tests. The red, blue, and green models represent the set A, Q, and the scaled set dQ(A)Q, respectively. The black dot
denotes the contact point between A and dQ(A)Q. (a) A contacts Q so that the ground truth of dQ(A) is 1. (b) A and Q are separated and the ground
truth of dQ(A) is 2. (c) A and Q penetrate each other and the ground truth of dQ(A) is 0.5.
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Fig. 5. Graphs showing (a) the error, (b) the CPU running time, and (c) the total number of iterations required by the ray-shooting algorithm with respect
to the termination tolerance ϵ, where A is a truncated cone and Q is an ellipsoid, as shown in Fig. 4. The values are the average for 9000 random tests.

(a) (b) (c)

Fig. 6. 3-D models used in the tests. The red and blue models represent the sets A and Q, respectively, which can be (a) in contact with, (b) separated
from, or (c) penetrating each other. The green model represents dQ(A)Q and the black dot indicates the contact point between A and dQ(A)Q. In the
three cases, the ground truth of dQ(A) is 1, 2, and 0.5, respectively.
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Fig. 7. Graphs showing (a) the error, (b) the CPU running time, and (c) the total number of iterations required by the ray-shooting algorithm with respect
to the termination tolerance ϵ, where A is an ellipsoid and Q is an truncated cone, as shown in Fig. 6. The values are the average for 9000 random tests.



TABLE III. CPU RUNNING TIME OF OUR ALGORITHM AND COMPARISON WITH THE SIMPLEX METHOD (unit: millisecond)

N = 200 400 600 800 1000 1200 1400 1600 1800 2000
n = 3 1.36 (0.19) 1.52 (0.15) 1.70 (0.12) 1.83 (0.11) 1.96 (0.09) 2.11 (0.08) 2.27 (0.08) 2.36 (0.07) 2.51 (0.07) 2.66 (0.06)

4 2.21 (0.27) 2.49 (0.20) 2.73 (0.16) 2.99 (0.14) 3.17 (0.12) 3.44 (0.11) 3.64 (0.11) 3.87 (0.10) 3.96 (0.09) 4.30 (0.09)
5 3.44 (0.37) 3.79 (0.27) 4.29 (0.22) 4.51 (0.18) 4.78 (0.16) 5.13 (0.15) 5.46 (0.14) 5.78 (0.13) 6.00 (0.12) 6.32 (0.11)
6 5.20 (0.48) 5.68 (0.34) 6.26 (0.28) 6.58 (0.23) 7.10 (0.20) 7.65 (0.19) 7.91 (0.17) 8.40 (0.16) 8.61 (0.15) 9.16 (0.14)
7 7.04 (0.59) 8.19 (0.42) 8.91 (0.34) 9.50 (0.29) 10.05 (0.25) 10.90 (0.23) 11.56 (0.21) 11.64 (0.19) 12.34 (0.18) 13.17 (0.17)
8 9.54 (0.69) 10.89 (0.50) 11.67 (0.40) 12.68 (0.34) 13.48 (0.29) 14.36 (0.27) 15.12 (0.24) 15.64 (0.22) 16.71 (0.22) 17.39 (0.20)
9 13.35 (0.87) 15.21 (0.62) 16.78 (0.50) 17.95 (0.43) 18.67 (0.36) 20.13 (0.33) 20.62 (0.30) 21.74 (0.28) 22.92 (0.25) 23.57 (0.24)

10 17.48 (0.99) 19.92 (0.72) 22.10 (0.59) 22.78 (0.48) 24.46 (0.42) 25.73 (0.37) 26.34 (0.33) 27.86 (0.31) 28.93 (0.29) 30.04 (0.27)
N — number of points in A (Q consists of the same number of points);
n — dimension of space;
The values between parentheses are the ratios of the CPU running time of our algorithm to that of the Simplex method.

(a) (b)

Fig. 8. A 3-D illustration of polytopes with vertices randomly picked from
two separated unit balls. The red and blue polytopes are taken as A and
Q, respectively. The green polytope depicts dQ(A)Q and the black dot
indicates the contact point between A and dQ(A)Q. The more vertices, the
closer the polytopes are to the balls. (a) 200 vertices for each polytope. (b)
1000 vertices for each polytope.

MATLAB. Here, we set the same termination tolerance ϵ =
10−6 for our algorithm and the Simplex method and take the
Simplex method as a reference to verify the performance of
our algorithm for different N and n. The results are listed
in Table III, where we can see that the running time of our
algorithm is more sensitive to the space dimension n than
the Simplex method but much less to the number of points in
A and Q. Especially in low-dimensional (e.g., 3-D or 4-D)
space with a large number (e.g., thousands) of points, our
algorithm is much faster than the Simplex method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel geometry-based algo-
rithm for computing general distance measure between two
compact convex sets. The measure was proposed almost a
decade ago but no efficient algorithm has been known for
its computation. Through numerical examples with models
given by parametric functions or discrete points in spaces
with 3 or more dimensions, we verified that our algorithm is
faster than approaches based on general-purpose optimiza-
tion techniques. Its efficiency can be further enhanced in
a dynamic situation where the locations of sets are time-
varying by using the frame-coherence property as some
distance algorithms do [3]–[6]. Applications of the distance
algorithm in robotics include motion planning and physics
simulation. We would like to explore these applications and
possibly improve the efficiency of the algorithm in a specific
application in our future work.
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