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Abstract

Engagement is an essential factor towards successful game de-
sign and effective human-computer interaction. We analyze the
prosodic patterns of child-child and child-robot pairs playing
a language-based computer game. Acoustic features include
speech loudness and fundamental frequency. We use a linear
mixed-effects model to capture the coordination of acoustic pat-
terns between interactors as well as its relation to annotated en-
gagement levels. Our results indicate that the considered acous-
tic features are related to engagement levels for both the child-
child and child-robot interaction. They further suggest signifi-
cant association of the prosodic patterns during the child-child
scenario, which is moderated by the co-occurring engagement.
This acoustic coordination is not present in the child-robot in-
teraction, since the robot’s behavior was not automatically ad-
justed to the child. These findings are discussed in relation to
automatic robot adaptation and provide a foundation for pro-
moting engagement and enhancing rapport during the consid-
ered game-based interactions.

Index Terms: Human-robot interaction, engagement, acoustic
analysis, linear mixed effects model

1. Introduction

Engagement is essential to building rapport and enhancing the
game experience during child-robot interactions. It refers to the
“process of starting, maintaining, and ending the perceived con-
nection between interactors” [1] and is related to enjoyment [2],
learning success [3], and social rapport [1]. In order to make
human-computer interaction more natural and effective, it is im-
portant to efficiently recognize and model engagement, as well
as to identify the factors that are able to promote it.

Automatic recognition of engagement involves the use of
vocal [4, 5], visual [4, 6], and physiological cues [7], such as
prosodic patterns, backchannels, gait, posture, smiles, and elec-
trodermal activity data. Fusing this multimodal information and
taking the context of interaction into account can yield person-
dependent models able to efficiently recognize and promote en-
gagement [6]. Behavioral coordination has been further asso-
ciated with increased engagement [4, 8], through the synchro-
nization of a multifaceted set of gestures, gaze, language and
vocal expressions between the human and the robot.

Previous studies have explored a variety of social, devel-
opmental and cognitive benefits arising from human-human co-
ordination. Parent-infant synchrony has been related to self-
control [9], attachment [10], pro-social behavior [11] and lan-
guage outcomes [12]. In a context similar to that reported
here, increased vocal and lexical coordination between chil-
dren was found to be positively associated with engagement

levels [13]. The work in the present paper is a validation
of this earlier pilot study, which was performed on a small
corpus of game-based interactions between children, and for
which the child-robot case had not been analyzed. Evidence of
mutual coordination has also been investigated during human-
robot interaction in terms of affect exchange [8], body move-
ments and language use [14]. Traditionally in social science,
researchers have used statistical models of bivariate time se-
ries [15] or cross-correlation [9] to quantify the degree of behav-
ioral coordination. Recent methods have expanded to dynam-
ical systems [16] and cross-recurrence analysis [17]. Speech
and language-related studies have examined vocal proximity in-
dices [18] and signal-derived similarity measures of acoustic
spaces [19].

We explore the association between engagement and the
behavioral coordination of two children as well as a child and
a robot during a game-based interaction. While engagement
is a multimodal process that combines visual, verbal and non-
verbal cues, due to the speech-based nature of the game, we
focus on the way acoustic patterns of interlocutors are associ-
ated with engagement. Acoustic features include speech loud-
ness and fundamental frequency (FO0), selected in a knowledge-
driven way. In order to preserve the interpretability of our anal-
ysis, we use a linear mixed effects (LME) model for exploring
the interplay between the speakers’ prosodic patterns and the
degree to which this is moderated by engagement. Our results
indicate the existence of a significant association between the
considered prosodic features and the annotated engagement lev-
els in both child-child and child-robot interactions. They further
suggest significant positive association between the children’s
acoustic patterns indicating the presence of acoustic coordina-
tion between the two. The later is not apparent in the child-robot
scenario due to the random behavior of the robot. This acoustic
coordination is further moderated by engagement, i.e. higher
coordination is related to higher engagement levels in the child-
child case. These findings are discussed in relation to automatic
adaptation of the robot’s behavior to the child’s vocal patterns
and provide a foundation for robot/computer-assistive games by
promoting children’s engagement during such interactions.

2. Data Description

“Mole Madness” (MM) is a language-based, speech-controlled
interactive game played by two children, or a child and a
robot [20]. It is a computer-based game built to explore
language-use, turn-taking and engagement during a fast-paced,
speech-based task. Similar to Super Mario Bros® games, MM
includes a mole character moving horizontally or vertically
through obstacles and rewards using the keywords “go” and



Figure 1: Snapshots of a child-child, child-robot game-based
interaction and a screenshot from the game.

“jump”, respectively. Each player is assigned to one of the key-
words at a time and this role alternates between rounds.

Our data contain 62 children (48.4% girls) playing MM in
pairs (referred as “child-child interaction”) with mean duration
of 391sec. Their ages ranged between 5-10 years old and each
pair had an average age difference of 5.6 months.

Besides playing together, 61 of the children also played
one-on-one with Sammy, a back-projected robot head devel-
oped by Furhat Robotics [21] (referred as “child-robot interac-
tion”). Sammy’s vocal behavior consists of a set of prerecorded
utterances from a female human voice, including a variety of
“go” and “jump” expressions with varying prosody, prolonga-
tion, and frequency. When Sammy had to play a move corre-
sponding to “go” or “jump”, one of these prerecorded versions
was randomly selected. The mean duration of the child-robot
interactions was 330sec.

Data were recorded with two high-definition cameras and
two high-precision omni-directional microphones. Snapshots of
the child-child and child-robot interactions as well as a screen
shot of the game are shown in Fig. 1.

3. Methods
3.1. Engagement Annotation

Engagement annotation was performed by three female coders
who have experience with children. Coders were asked to rate
the “willingness” of the child to continue with the current ac-
tivity or move to something else. The original video was split
to show either the right or the left participant, so each engage-
ment score (ES) was assigned based on the audiovisual record-

ing from a 10sec segment of the interaction that presented one
child alone. This resulted in 2384 and 1981 video segments
for the child-child and child-robot interaction, respectively. Be-
cause of the rapid nature of the game, we are able to observe
enough variability in terms of the children’s behavior and vocal
expression within 10 sec. More details on the coding procedure
can be found in [22].

3.2. Acoustic Feature Extraction

The keywords (“go” and “jump”) were manually segmented
from the audio file. Loudness and fundamental frequency (FO),
were computed by openSMILE [23] over each keyword. FO is
measured in Hz, while loudness is computed as the normalized
speech intensity raised to the power of 0.3. These are averaged
over each 10sec segment that corresponds to an engagement an-
notation interval. Similar features have been used in previous
studies to quantify prosodic patterns [5, 13, 18].

3.3. Linear Mixed Effects Model

Due the multilevel nature of our data, we employ a linear mixed
effects (LME) model to quantify the relation between the chil-
dren’s acoustic measures and the annotated engagement levels.
LME is extensively used in social sciences and addresses the
problem of violating independence assumptions arising from
nested data structures, which is not handled appropriately by
traditional ANOVA and multiple regression methods.

We first describe the LME formulation for the two-child
game interaction. Let Y;; be a child’s acoustic measure (i.e.
loudness or pitch) from the " pair during the j** time segment
and X;; be the corresponding measure from the other child of
the pair. We also denote E'S;; the annotated mean engagement
score averaged over the two children for the same time segment.
The association between these quantities can be written using
the LME formulation as follows

Yij = Boi + BriXij + PoiESij + 1ij (D
Boi = Yoo + os 2)

Bii = vio + 711 ESi; 3)

B2i = Y20 €y

Combining (1)-(4) results in
Yi; = vyoo+uo0i+v10Xij +B20ESij +7v11 X5 ESij+ri; (5)

Based on (5), a child’s acoustic score Y;; over a time seg-
ment is expressed as the sum of a grand-mean acoustic score
Yoo and a pair-specific mean uo;. Moreover, it depends on
the other child’s acoustic score X;; and the mean engagement
value ES;;. The coefficient 1o captures the association be-
tween the children’s acoustic features, while (20 the relation
between acoustic measures and engagement levels. Finally, 11
quantifies the effect of engagement score on the association be-
tween those two acoustic measures, i.e. positive value of v11
suggests that higher acoustic synchrony is related to increased
engagement. The residual term is denoted by 7;;.

The same equations hold for the robot-child interaction
with the following modification: Y;; and X;; are the acoustic
features from the child and the robot, respectively, while ES;;
represents the child’s engagement. All LME models include the
10sec segments during which there exists at least one keyword
from both interacting partners. The input data of the model were
normalized to have a zero-mean.
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Figure 2: Histograms of engagement scores. Higher values cor-
respond to higher perceived engagement by the annotators.
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Figure 3: Histogram of the absolute difference of engagement
scores (ES) between the two children of the same pair over each
10sec segment during the child-child interaction.

4. Results

Patterns of annotated engagement vary between the three coders
(Fig. 2). While the average ES value is around 4 for all annota-
tors, the second one depicts the most balanced use of the scale.
In contrast, the distribution from the first annotator shifts left
and from the third one is skewed to the right. These differences
appear more pronounced during the child-child interaction case.
Due to these differences, we examine three separate LME mod-
els, one per annotator. We further explore the absolute differ-
ence of engagement levels between two children over the same
10sec segment (Fig. 3). The corresponding histograms indicate
a significant portion of segments over which the two children
depict different engagement levels. Taking this into account, we
run the LME models for the child-child interaction in two ways:
first we consider all segments (referred as “All Segments”) and
then we only include the segments for which the absolute ES
difference does not exceed a unit (referred as “Similar ES Seg-
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Figure 4: Predicted values of loudness and fundamental fre-
quency (FO) based on the linear mixed effects (LME) model
for low/medium/high engagement score (ES), corresponding to
the 5%/50t"/95%" percentile of ES values, respectively. Results
concern the child-child interaction case including the segments
over which the absolute ES difference between peers is not more
than a unit (“Similar ES Segments”).

ments”, Fig. 3). The later allows us to examine cases where the
two children appear similarly engaged or disengaged, providing
further insights on how to apply the findings to the child-robot
interaction scenario.

LME results indicate a significant positive association be-
tween the acoustic features of two children playing together
(710) for the child-child interaction, as well as between a
child’s acoustic measure and the corresponding engagement
level (720), as shown in Table 1a. We further observe a signif-
icant effect of engagement to the association between the chil-
dren’s acoustic measures (y11), i.e. higher engagement corre-
sponds to stronger relation of the acoustic scores. The afore-
mentioned effect appears more significant for the “Similar ES
Segments” compared to the “All Segments” case. This finding
indicates higher acoustic synchrony when both children are en-
gaged (Fig. 4).

A significant association between a child’s acoustic mea-
sure and his/her engagement levels (7y20) is found during child-
robot interactions (Table 1b). However, the relation between the
child’s and robot’s acoustic features (y10) is not always signif-
icant, since the robot was not designed to adapt to the player’s
behavior. This is further supported by the non-significant effect
of engagement to the child-robot acoustic score association. Fu-
ture work will involve appropriately adapting the robot’s vocal
characteristics to the child in order to promote engagement dur-
ing the interaction.



Table 1: Linear mixed effects (LME) model estimates for predicting the acoustic features of one speaker (Spkl) based on the cor-
responding features from the second speaker (Spk2) and the annotated engagement score (ES). “All Segments” refers to all 10sec
segments during which there exists at least one keyword from both interacting partners. “Similar ES Segments” includes only the ones
over which the absolute ES difference between interactors was not more than a unit.

(a) Child-Child Interaction

. All Segments Similar ES Segments
Feature LME Estimate Annotator 1  Annotator 2  Annotator 3 | Annotator 1  Annotator 2  Annotator 3
[ #Segments [ 1686 1686 1686 [ 1664 1634 1670 ]
Intercept (Y00) .01 (.04) .01 (.04) .00 (.04) .01 (.04) .01 (.04) .00 (.04)
Loudness Spk2 (v10) 21%% (03) 21%% (.03) 16%% (.03) 20%* (.03) 16%% (.03) 125 (L03)
Loudness Spkl ES (v20) 1% (01) 09%% (01) 1155 (01) 12%% (01) 10%% (01) 12%% (01)
Loudness Spk2 : ES (v11) .06* (.02) .03 (.02) .06%* (.02) .08%* (.03) .06%* (.02) .08** (.02)
Intercept (y00) .82 (6.23) .58 (6.36) .64 (6.06) -41(6.13) .07 (5.97) -.71 (6.08)
FO Spkl FO Spk2 (y10) 37 (.02) 36%# (.02) 35%% (.02) 38%% (.02) 37%% (.02) 35%% (.02)
P ES (v20) 18.26%* (2.45) 13.89** (1.82) 20.44%** (2.10) | 19.86** (2.82) 15.58%* (2.23) 20.47** (2.37)
FO Spk2 : ES (v11) .05% (.02) .03 (.02) .02 (.02) .04 (.02) .07%% (.02) .03 (.02)

*p < .05, ¥*p < .01, parenthesis denotes standard deviation

(b) Child-Robot Interaction

[ Feature [ LME Estimate [ Annotator 1 Annotator 2 Annotator 3|
[ #Samples [ 1376 1376 1376 |
Intercept (y00) .68(.03)** .68(.03)** .69(.03)**
Loudness Spk2 (y10) .01(.05) .02(.05) .01(.05)
Loudness Spk1 ES (720) 05(.01)* 08(.01)** 12(.01)%*
Loudness Spk2 : ES (v11) -.02(.04) -.09 (.04)* -.07(.05)
Intercept (v00) 229.87(7.18)**  229.58(7.26)**  230.04(6.73)**
FO Spk1 FO Spk2 (v10) 13(.03)** 13(.03)** 13(.03)**
p ES (v20) 10.63(1.67)** 10.87(2.03)** 19.92(2.54)**
FO Spk2 : ES (v11) .04(.03) .05(.03) .06(.03)

*p < .05, *#*p < .01, parenthesis denotes standard deviation

5. Discussion

In this paper we modeled the interaction between acoustic
patterns of children while playing a language-based computer
game and its relation to the annotated engagement levels. We
further extended our analysis to the child-robot interaction sce-
nario, where each child played the same game with a robotic
partner instead of a peer. Our results indicate significant as-
sociations between the acoustic measures of the two children,
which appears stronger for the high engagement segments. Sim-
ilar findings in the literature suggest that child-adult synchrony
can be related to positive affect [24], attachment [10], and so-
cial behavior [9, 11]. These results are not as prominent for the
child-robot interaction, since the robot’s behavior was not de-
signed to follow the child’s acoustic patterns. Future work will
attempt automatic robot adaptation to address this challenge.

A potential way to make the child-robot interaction more
engaging would be to automatically synthesize the robot’s voice
in order to achieve the desired prosodic patterns of loudness
and pitch. For example, our results (Section 4) indicate that in-
creased loudness from one child is related to increased engage-
ment, which is further associated to increased loudness from the
interacting peer. Therefore we will attempt to build a system
that measures the children’s vocal patterns and synthesizes the
robot’s voice in order to match those. A variety of prosody syn-
thesis studies [25, 26] suggest the feasibility of this approach,
which might be able to enhance rapport and promote engage-
ment between the child and the robot [8, 14]. This can be useful
in rendering robots social partners and peer tutors for children,
as well as home companions [27, 28, 29].

6. Conclusions

We explored the acoustic patterns of children during a speech-
based computer game and their relation to engagement. Our

results indicate a significant association between the two chil-
dren with respect to loudness and fundamental frequency, which
is further moderated by the annotated engagement levels. This
moderation effect appears larger if we only include instances
over which both children have similar engagemeent levels.
Such significant moderation was not apparent in the child-robot
interaction, which can be justified by the fact that the robot’s
behavior was random and not adapted to the human peer. These
results provide a foundation for ways to build engagement and
social rapport to enhance child-robot interactions.

Future work will expand the aforementioned analysis to vi-
sual cues and explore time-based models for predicting engage-
ment and quantifying synchrony during such interactions.
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