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(a) Ours, 16 spp

rMSE 0.00541

(b) MC input, 16 spp

rMSE 0.68832

(c) Ours, 16 spp

rMSE 0.00541

(d) Reference, 32K spp

Figure 1: Our adaptive rendering result for the Hotel Lobby scene. Given a noisy input image using a small number of samples per
pixel (spp) (b), our method (a) and (c) effectively removes MC noise while avoiding excessive blurring by performing a novel reconstruction
using adaptively chosen polynomials. In addition, our method drastically reduces the relative mean squared error (rMSE) of the input (b).

Abstract

In this paper, we propose a new adaptive rendering method to
improve the performance of Monte Carlo ray tracing, by reduc-
ing noise contained in rendered images while preserving high-
frequency edges. Our method locally approximates an image with
polynomial functions and the optimal order of each polynomial
function is estimated so that our reconstruction error can be min-
imized. To robustly estimate the optimal order, we propose a multi-
stage error estimation process that iteratively estimates our recon-
struction error. In addition, we present an energy-preserving outlier
removal technique to remove spike noise without causing notice-
able energy loss in our reconstruction result. Also, we adaptively
allocate additional ray samples to high error regions guided by our
error estimation. We demonstrate that our approach outperforms
state-of-the-art methods by controlling the tradeoff between recon-
struction bias and variance through locally defining our polynomial
order, even without need for filtering bandwidth optimization, the
common approach of other recent methods.

Keywords: Adaptive rendering, image-space reconstruction,
Monte Carlo ray tracing

Concepts: •Computing methodologies → Ray tracing;

1 Introduction

Monte Carlo (MC) ray tracing [Kajiya 1986] has been recognized
as a powerful rendering algorithm to synthesize photo-realistic im-
ages from 3D models, and its popularity comes mainly from the
generality that it simulates a variety of rendering effects through a
unified framework, i.e., ray tracing. The rendering time of MC ray
tracing, however, is often unacceptable for practical purposes, since
converged rendered images are typically generated by integrating a
huge number of ray samples, e.g., more than 10K ray samples per
pixel ((d) in Fig. 1).

To tackle the performance problem of MC ray tracing, adaptive
rendering techniques (e.g., [Overbeck et al. 2009; Hachisuka et al.
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2008]) have been actively studied, and the main components are lo-
cally controlled sampling rate and adaptively adjusted reconstruc-
tion. Adaptive sampling utilizes the heterogeneous noise property
of rendered images to guide irregular sampling density rather than
a uniform sampling, and adaptive reconstruction locally controls
smoothing by considering MC noise so that high-frequency edges
are properly preserved.

Adaptive rendering has a long history (e.g., [Kajiya 1986]), and
the seminal paper [Kajiya 1986] presented a general idea that high-
dimensional MC samples can be allocated adaptively in a hierar-
chical structure by using the variances of the samples and these
samples can be integrated to generate rendered images. These ap-
proaches typically show high-quality rendering results for a mod-
erate dimension (e.g., 2 to 5), but they typically suffer from the
curse-of-dimensionality as the dimension of MC samples can be
high (e.g., more than 10) when global illumination is simulated.

The image-space adaptive methods (e.g., [Overbeck et al. 2009])
have addressed the dimensionality issue by analyzing MC errors
(e.g., variance) in 2D image space and denoising the errors through
an established image filter, guided by estimated errors. This ap-
proach has received attention due to its intrinsic generality and sim-
plicity compared to the high-dimensional adaptive methods. These
methods utilize different image filters, but the common high-level
behavior is to control filtering bandwidths at each pixel to minimize
a numerical error [Sen and Darabi 2012]. Especially, the recent
adaptive methods [Li et al. 2012; Rousselle et al. 2013; Moon et al.
2014; Moon et al. 2015] proposed optimization algorithms to esti-
mate optimal filtering bandwidths per pixel to minimize the mean
squared error (MSE) of reconstruction results, which can be mathe-
matically decomposed into bias squared and variance. Technically
speaking, these attempts can be considered optimization processes
that compute an optimal balance between bias and variance, caused
by over- and under-blurring, respectively.

These state-of-the-art methods demonstrated that optimizing band-
widths can be an effective approach for high-quality reconstruc-
tion, but the approximation function used in their methods is fixed
(typically as a low-order function) despite its importance. Espe-
cially, high-order functions can have better approximation quality
than low-order ones for the image area where unknown image func-
tions have high curvature. Increasing the order of functions used for
reconstruction allows for better approximation of larger areas when
compared to fixed, low-order functions. This property leads to our
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novel approach of controlling the bias-variance tradeoff by locally
changing polynomial function order in place of the typical band-
width adaptation filtering. To the best of our knowledge, this is the
first approach to use adaptively chosen polynomials in the adaptive
rendering framework. Our main technical contributions are listed
as follows:

• We locally approximate a rendered image with polynomial
functions and each polynomial is constructed with an esti-
mated optimal order so that our reconstruction error can be
minimized.

• A multi-stage error estimation process is presented to robustly
estimate our reconstruction error and the optimal polynomial
order for each polynomial function.

• A new energy-preserving outlier removal is presented in or-
der to remove spike noise, which has excessive intensity, in
rendered images while minimizing a noticeable energy loss
caused by outlier removal.

• Sampling rate is locally controlled across image space based
on estimated reconstruction errors.

We have demonstrated that our new approach outperforms state-
of-the-art methods that optimize filtering bandwidth locally, even
without performing any bandwidth selection process, due to our
bias-variance control through adaptive polynomial selection.

2 Related Work

In this section, we briefly discuss previous techniques related to
our work. We refer to a recent survey [Zwicker et al. 2015] for a
comprehensive review.

Multi-dimensional Adaptive Methods. The seminal paper [Ka-
jiya 1986] introduced the general idea of utilizing hierarchical
structures where each high-dimensional MC sample is stored and
generated, and rendered images are generated by summing stored
samples via a Riemann sum. Hachisuka et al. [2008] demonstrated
that the high-level idea can drastically improve MC performance
for distributed rendering effects such as motion blur and depth-of-
field. In theory, the general idea can be applied to simultaneously
address all rendering effects including soft shadows and global il-
lumination, but the sample density in the hierarchy, e.g., kd-tree,
becomes exponentially sparse as the dimension increases. As a
result, it is still a fundamental problem to efficiently and robustly
perform adaptive sampling and reconstruction in order to avoid the
curse-of-dimensionality.

Frequency Analysis based Techniques. Frequency analysis based
reconstruction for MC ray tracing has been actively studied since
it can provide high-quality reconstruction results guided by the
well-established principle that analyzes light transport in frequency
space [Durand et al. 2005]. Sophisticated anisotropic reconstruc-
tion methods using the theory have been proposed for specific ren-
dering effects such as depth-of-field [Soler et al. 2009], motion
blur [Egan et al. 2009], soft shadows [Egan et al. 2011b], ambient
occlusions [Egan et al. 2011a], distributed effects [Lehtinen et al.
2011], and indirect illumination [Lehtinen et al. 2012]. Recently,
the idea of simplifying the frequency based anisotropic filters with
a rectangle-shaped filter was presented to design an efficient axis-
aligned filter for interactively reconstructing soft shadows [Mehta
et al. 2012], indirect lighting components caused by diffuse (and
moderately glossy) bounces [Mehta et al. 2013], and distribution
effects [Mehta et al. 2014]. More recently, Yan et al. [2015] pro-
posed a novel optimization technique that achieves an interactive
frame rate even while maintaining the shape of sheared filters.

These methods demonstrated outstanding rendering results even for
noisy images, rendered by a small number of samples, but these ap-
proaches often supported only a subset of rendering effects.

Image-space Adaptive Approaches. Image-space methods in-
cluding our technique have proven a popular approach as they are
simple to implement and are not limited to specific rendering ef-
fects. The main challenge for this class of methods is the funda-
mental difficultly in discerning image features, i.e., edges, from
high-frequency noise. The common adaptation of existing image
filters for tackling this challenge is to fully utilize rendering-specific
information such as variances, textures, normals, and depths. As
an early work, McCool [1999] proposed a modified anisotropic
diffusion process using textures, normals, depths, and the respec-
tive variances in order to reduce MC noise while preserving high-
frequency edges.

Recently, Overbeck et al. [2009] presented a multi-resolution anal-
ysis of image variances using wavelet basis functions to adaptively
control sample counts and smoothing via wavelet thresholding. In a
similar multi-resolution framework, a robust noise estimation using
the median absolute deviation was introduced [Kalantari and Sen
2013]. Rouselle et al. [2011; 2012] estimated a reconstruction error
(e.g., MSE) for Gaussian and non-local means filters, respectively,
and estimated optimal filtering bandwidths at each pixel. For non-
local means filters, a new similarity measure between two patches
was defined, which computes a distance between histograms of ray
samples [Delbracio et al. 2014]. These approaches are relatively
simple to implement and generate high-quality reconstruction re-
sults, but a common disadvantage of these methods is in the diffi-
culty to preserve geometric edges introduced by discontinuities in
texture, normal, and depth buffers, since these buffers are not uti-
lized.

Sen and Darabi [2012] designed a new technique to robustly utilize
geometric information by estimating optimal filtering bandwidths
used in a cross-bilateral filter through mutual information. A gen-
eral estimator, Stein’s unbiased risk estimator (SURE), was intro-
duced by Li et al. [2012], and the filtering bandwidths of non-linear
filters such as non-local means and cross-bilateral filter were op-
timized using the estimator. Rousselle et al. [2013] demonstrated
that a wider set of rendering features such as visibility and caus-
tics can be utilized thanks to the generality of SURE. Kalantari et
al. [2015] introduced a machine learning approach to robustly esti-
mate filtering bandwidths especially for small numbers of samples
(e.g., 8) given a cross-bilateral or cross non-local means framework.
Moon et al. [2014] proposed a linear function based reconstruction
using weighted local regression, and locally estimated optimal fil-
tering bandwidths for different types of features. The computation
overhead of the local regression framework was recently improved
by applying an approximation technique that performs expensive
optimization at only a sparse number of pixels [Moon et al. 2015].

These techniques use various reconstruction frameworks, but the
high-level approach is to control filtering bandwidths locally to in-
crease numerical accuracy. Our work takes a completely different
approach to improve the numerical accuracy by adaptively adjust-
ing a polynomial order to better adapt image signals in a data-driven
way. For example, we choose a high-order (e.g., cubic) function
to accurately reconstruct high curvature regions locally rather than
shrinking filtering bandwidths, and a low order function (e.g., lin-
ear) is selected for smooth areas.

3 Our Reconstruction Framework

In this section, we present a general optimization framework from
an optimization point of view. Given an input image function y(i)
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(a) Input 

512 spp

(b) Inset of (a) (c) Result 

using order 0

(d) Result

using order 2

(e) Result 

using order 4

(f) Input 

32 spp

(g) Inset of (f) (h) Result 

using order 0

(i) Result

using order 2

(j) Result 

using order 4

Figure 2: Results with polynomials using differing orders, given
the input images rendered with different sample counts. Higher
order polynomials (e.g., fourth order) preserve the discontinuous
edge better, but show higher noise compared to lower order poly-
nomials (e.g., zero and second order). This tradeoff motivates our
adaptive control between the bias and variance of our reconstruc-
tion result. We achieve this by changing the polynomial order in a
data-driven way.

at 2D pixel position i ∈ R
2, we assume the following statistical

model:

y(i) = µ(i) + ǫ(i), (1)

where µ(i) is the ground truth intensity that can only be computed
with an infinite number of samples. The ǫ(i) models the MC noise,
i.e., variance, which has zero mean, i.e., E(ǫ(i)) = 0, where E is
the expectation operator. The ultimate goal of any reconstruction
method, including ours, is to estimate the unknown µ(i) from the
observed noisy input y(i). We suppose y(i) to be a 1D function
since we can apply our reconstruction to each color channel inde-
pendently.

Given the statistical model, we decompose the unknown image
function into two functions g(fi) and p(i) such that µ(i) ≡ g(fi)+
p(i), where g(fi) is a linear function that takes a feature vector
fi ∈ R

8, e.g., normals (3D), textures (3D), depths (1D), and visi-
bility (1D) as inputs, which can easily be computed at the intersec-
tion points between rays and scenes during the rendering process.
On the other hand, the second function p(i) is defined as a 2D func-
tion that takes pixel position i as input. The rationale behind this
decomposition is that we approximate the unknown µ(i) with the
feature function g(fi) using correlation between rendering-specific
features fi and the unknown image function µ(i). When the fea-
tures are not helpful, e.g., glossy reflections, we can approximate
the residuals µ(i) − g(fi) using the 2D polynomial function p(i)
since the residuals are intrinsically 2D image functions.

Specifically, we locally approximate the unknown function using
Taylor polynomials:

µ(i) ≈ ∇g(fc)(fi−fc)
T+p(c)+

∑

1≤a≤k

∇ap(c)

a!
((i−c)a)T , (2)

where ∇ and k are the differentiation operator and the Taylor poly-
nomial order that we use, respectively. Note that this polynomial
model does not need to use g(fc), since the model already in-
cludes a constant term, i.e., p(c). For simplicity’s sake, we treat
the 2D image index i as a 1D value, but one can easily find the
high-dimensional Taylor series (2D in our case) in the literature
(e.g., [Ruppert and Wand 1994]). Given a specific order k, the co-

efficients of two functions can be optimally estimated within a local
window Ωc in the least-square sense:

∑

i∈Ωc



y(i)− α(fi − fc)
T − β0 −

∑

1≤a≤k

βa((i− c)a)T





2

Kh(i).

(3)

This least-squares optimization provides estimated coefficients α̂

and β̂ for the two functions g(fi) and p(i) given a specific order
k, respectively. The kernel function Kh(i) is a weighting function
(e.g., Gaussian) that assigns a weight on pixel i, and the param-
eter h, used by the function, is known as the filtering bandwidth
that controls the bias-variance tradeoff of this reconstruction pro-
cess. The least-squares formula has a closed-from solution, normal

equation, (α̂, β̂) = (XT
k WXk)X

T
k Wy. Each row of the design

matrix Xk is set as [1, fi, (i − c)1, ..., (i − c)k]T , and W is a di-
agonal matrix that has Kh(i) as its elements. Note that the size of
the design matrix Xk becomes larger as the polynomial order k in-
creases. The vector y has MC input intensities y(i) as its elements.

Given the normal equation, reconstructed values within the window
Ωc can be computed in a pixel-wise manner [Moon et al. 2014]:

ŷk(c) = e1(X
T
k WXk)X

T
k Wy, (4)

where e1 is a vector that has one as its first element, i.e., e1 =
[1, 0, ..., 0]T . Alternatively, we can compute multiple reconstructed
values simultaneously [Moon et al. 2015]:

ŷk = Xk(X
T
k WXk)X

T
k Wy = H(k)y, (5)

where the matrix H(k) = Xk(X
T
k WXk)X

T
k W is known as the

hat matrix that defines a projection from the input values y to pro-
jected values ŷk. After computing the reconstructed values at each
center pixel, we combine the output vector ŷk from each polyno-
mial model at center pixel c since the reconstructed pixels in two
regions, e.g., Ωc1 and Ωc2 from two center pixels c1 and c2, may
overlap. Hence, a weighted average using Kh(i) is utilized to com-
pute our final reconstruction output ŷ(i) at each pixel i as follows:

ŷ(i) =
∑

j∈Ωi

Kj
h(i)ŷ

j
k(i)/

∑

j∈Ωi

Kj
h(i), (6)

where Kj
h(i) and ŷj

k(i) are the weight and reconstruction result for
pixel i computed from center pixel j. We employ this block-based
reconstruction instead of point-wise (Eq. 4) as our polynomials can
adapt well to large regions, i.e., Ωc, by increasing the polynomial
order k. This forms one of the crucial advantages of using higher-
order polynomials for this task. It also leads to a robust error anal-
ysis that estimates reconstruction errors in a region (Sec. 4).

Classification of Existing Methods. It is worth noting that exist-
ing filters such as Gaussian, cross-bilateral, non-local means, and
weighted local regression can be explained with this general opti-
mization (Eq. 3). For example, when we set g(fi) and p(i) as a
null and zero-order function, the optimization framework is con-
verted to a simpler form such as Gaussian (e.g., [Rousselle et al.
2011]), cross-bilateral (e.g., [Li et al. 2012]), and non-local means
filter (e.g., [Rousselle et al. 2012]) depending on the kernel func-
tion Kh(i). Also, if we use g(fi) and set p(i) as a linear func-
tion, the formulation is equivalent to the weighted local regression
framework [Moon et al. 2014]. One can easily verify this through
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the pixel-wise equation (Eq. 4). As a result, these previous meth-
ods use fixed functions g(fi) and p(i) with a typically low-order
(e.g., zero or linear), and then optimize the kernel function Kh(i)
in terms of the filtering bandwidth h. Our method, however, con-
trols the polynomial order of p(i) to adjust the bias-variance trade-
off instead of optimizing the kernel function Kh(i). This general
framework allows a comprehensive optimization of both polyno-
mial order and kernel bandwidth, however in this work we limit
our scope to polynomial order optimization, in order to clearly ver-
ify that our adaptively selected polynomials independently provide
a valuable approach enabling high-quality adaptive rendering. To
this end, we set the kernel function as a simple Gaussian function,

i.e., Kh(i) ≡ e−||i−c||2/(2h2) and h as a large constant, e.g., half-
width of the local window size Ωc.

Higher Order Polynomials. Our key motivation is that high-order
polynomials (e.g., quadratic, cubic, and higher order) are able to
provide improved approximations of non-linear functions (e.g., dis-
continuous signals). This can be considered counter-intuitive since
we are using smooth functions (i.e., Taylor polynomials). One may
think that increasing the polynomial order can decrease the approx-
imation quality, i.e., Runge’s phenomenon, but note that the un-
known function µ(i) is defined on a discretized space i, i.e., pixel
position, instead of a continuous space. As we increase the poly-
nomial order, our method approaches an interpolation method that
passes the input value y(i) (i.e., zero bias), since the degree of free-
dom, i.e., number of unknown parameters of our optimization, also
goes to the number of pixels within the filtering window.

Fig. 2 illustrates reconstruction results using different polynomi-
als for a non-linear edge. For this test, we are using only the im-
age polynomial function p(i) to clearly verify our motivation. One
can clearly see the result using a high order (i.e., fourth) preserves
the non-linear edge well even when we use a smooth polynomial.
Technically speaking, they decrease the magnitude of our recon-
struction bias, |E(ŷ(i) − µ(i))|, since the bias function is repre-
sented by the remainder terms of the Taylor series (Eq. 2). How-
ever, high-order functions tend to produce noisier reconstruction
results than low-order as they typically increase the variance of re-
construction (see [Ruppert and Wand 1994] for a formal derivation
of the errors). These properties motivate our design of adaptive
polynomial selection, that afford a novel method for controlling the
bias-variance tradeoff by adjusting the polynomial order instead of
the well-known approach of tweaking the filtering bandwidth term
h in Kh(i).

4 Adaptive Polynomial Reconstruction

In this section, we propose a principled method to locally optimize
the polynomial order k. Our method is a block-based reconstruc-
tion (Eq. 6), and thus our optimization goal is also defined in a
block-based manner rather than pixel-wise. Specifically, we define
the reconstruction error of a polynomial at center pixel c as the L2
error:

ξc(k) ≡
1

∑

i∈Ωc
Kh(i)

∑

i∈Ωc

Kh(i) (ŷk(i)− µ(i))2 . (7)

Given this definition of our reconstruction error, we can choose an
optimal order kopt that has a minimal error ξc(kopt). Unfortunately,
this optimization cannot be directly solved because it is based on the

actual L2 error (ŷk(i)− µ(i))2 that uses the unknown image val-
ues µ(i). Hence, we should estimate the actual error term ξc(k) and
thus the unknown optimal order kopt. To this end, we mathemat-
ically express our reconstruction bias and variance (Sec. 4.1), and

propose a robust estimation process for the error terms (Sec. 4.2). In
addition, we present an energy-preserving outlier removal to effec-
tively remove spike noise without noticeable energy loss (Sec. 4.3).

4.1 Bias and Variance Expression

To estimate the optimal order kopt of the polynomial function p(i),

the crucial step involves estimating the actual error (ŷk(i)− µ(i))2

(in Eq. 7). To this end, we decompose the error into bias and vari-
ance components by taking the expectation operator E, similarly to
Rousselle et al. [2011]:

E (ŷk(i)− µ(i))2 = bias2(ŷk(i)) + σ2(ŷk(i)). (8)

The bias function, bias(ŷk(i)), can be computed using the hat ma-
trix (in Eq. 5):

E(ŷk(i)− µ(i)) =
∑

j∈Ωc

Hij(k)E(y(j))− µ(i)

≈
∑

j∈Ωc

Hij(k)µ(j)− µ(i), (9)

where Hij(k) is the element at the i-th row and j-th column in the
hat matrix H(k). The second line is exact for unbiased MC ray
tracing methods (e.g., path tracing), i.e., E(y(j)) = µ(j), but it
is an approximated value for biased methods, such as photon map-
ping. In the remaining sections of this work we assume our input
image is an unbiased rendering result since the bias correction of an
input image is beyond the scope of this paper.

Intuitively, the i-th row entries in the hat matrix can be thought of
as reconstruction weights, allocated to neighboring pixels within
the reconstruction window Ωc. As a result the bias of our recon-
struction depends on the hat matrix H(k) (in Eq. 5) and the matrix
can vary as we change the polynomial order k.

The variance of our reconstruction can be computed analogously:

σ2(ŷk(i)) ≈
∑

j∈Ωc

(Hij(k))
2 σ2(y(j)), (10)

where the σ2(y(j)) is the variance of the pixel intensity y(j). The
equation is exactly true only when each pixel intensity is indepen-
dent from other pixels (e.g., path tracing) as we ignore the covari-
ance terms between intensities. As a result, we can compute our
optimal polynomial order kopt using the bias and variance func-
tions:

kopt = argmin
k

∑

i∈Ωc

Kh(i)
(

(E (ŷk(i)− µ(i)))2 + σ2(ŷk(i))
)

.

(11)

Note that we drop the normalization term
(

∑

i∈Ωc
Kh(i)

)−1

in

Eq. 7 since this value is a constant. The optimal order kopt is still an
unknown term since the computation (Eq. 11) is using the bias and
variance equations which utilize unknown quantities µ and σ2 that
can be obtained only using an infinite number of samples. Hence,
we propose an estimation process to estimate the unknown terms in
the next section.
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Figure 3: Compares our estimated optimal orders with a reference order, which is computed using a reference image generated by 32K spp
(g). Given the input image (a) and (b), our method iteratively estimates an optimal polynomial order at each pixel in order to minimize
our reconstruction errors, by performing our multi-stage error estimation process. Our estimation results ((d) and (e)) using the multi-stage
estimation show a similar pattern to the reference order (f) thanks to our robust error estimation.

4.2 Multi-Stage Error Estimation

Given the bias and variance equations (Eq. 9 and 10), the straight-
forward way to estimate the unknown intensities (i.e., µ(j) and
µ(i)) and variance σ2(y(j)) (in Eq. 9 and 10) is to use the input
intensities (i.e., y(j) and y(i)) and sample variance s2(y(j)), re-
spectively.

This approach can be an unbiased estimation, but it is typically too
noisy and can lead to a noisy selection for polynomial order. To
mitigate this problem, we propose a multi-state error estimation that
iteratively estimates the unknown terms, µ(j) and µ(i), as follows:

Et(ŷk(i)− µ(i)) ≈
∑

j∈Ωc

Hij(k)ŷt−1(j)− ŷt−1(i), (12)

where t is an iteration number. As the initial iteration, i.e., t = 1,
we set ŷ0(j) and ŷ0(i) as the Monte Carlo inputs y(j) and y(i).
For the second iteration, we replace the unknown intensities µ(j)
and µ(i) (in Eq. 9) with our reconstruction results ŷ1(j) and ŷ1(i),
which are computed from the first iteration.

Our reconstruction results can have much lower errors than MC
input values, and thus our estimation error introduced by |µ(j) −
ŷ1(j)| and |µ(i) − ŷ1(i)| can also be much lower than the error in
the previous step. This process can be repeated until we obtain a
stable output.

Analogously, we estimate the variance terms:

σ2
t (ŷk(i)) ≈

∑

j∈Ωc

(Hij(k))
2 σ̂2

t−1(y(j)), (13)

where σ̂2
t−1(y(j)) is an estimated variance from the previous itera-

tion. For the first iteration, we use the MC input variance s2(y(j)).
For the next iteration, we estimate the variance term when our re-
construction image from the first iteration is generated. Specifi-
cally, our estimated standard deviations σ̂t(y) are computed using

the hat matrix H(k̂opt), i.e., σ̂t(y) = H(k̂opt)s(y), where the k̂opt
is the estimated optimal order for our reconstruction results.

This process is essentially an estimation process for unknown vari-
ances and it also requires an additional method that computes the
optimal polynomial order for the variance term. It is a cascading
problem as we need to estimate the variances of σ2

t (y) to decide
the optimal order. To avoid the recursive problem, we simply use
the optimal order computed for our reconstruction result so that the
hat matrix with the order can be reused. Fortunately, the standard
deviation term σt(y) locally can have a high correlation with the

unknown intensity image µ since the variance is not an actual error
but variation of the intensity for our rendering problem.

For example, we locally compute the correlation between the stan-
dard deviation term σ(y) and µ for the Kitchen scene (Fig. 3) given
our filtering window Ωc. Specifically, we compute σ(y) and µ us-
ing a reference image and its variance, generated by 8K samples
per pixel. The correlation, 0.716, is a high number for the scene
and thus our variance estimation can be a high-quality approxima-
tion even though it does not require additional processing.

We plug our multi-stage bias and variance estimation into the equa-
tion for selecting polynomial order (Eq. 11), and iteratively update
the estimated optimal polynomial order. Specifically, we test a set
of candidates for the optimal order kopt from 0 to M and then select

the estimated optimal order k̂opt that minimizes our reconstruction
error. This process is performed at each center pixel c, and produces
an optimal polynomial at each pixel.

We validate our error estimation in Fig. 3. To compute the refer-
ence order, we directly compute the unknown error ξc(k) (Eq. 7)
by plugging a reference image generated by 32K samples per pixel,
into the unknown image term µ(i). Note that this oracle is using the
actual L2 error that cannot be computed in practice. As shown in
the figure, our result in the first iteration shows a noisy estimation
for the optimal order since these are based on the input intensity and
variance. In the second and third iterations, however, our estima-
tion shows a pattern similar in comparison to the reference order.
In addition, the third iteration is slightly less noisy than the second,
but the respective patterns are visually similar. This observation is
useful since an additional iteration requires a reconstruction process
with non-negligible overhead. We find that two iterations offer an
attractive balance in terms of computational overhead and estima-
tion quality for the tested scenarios.

4.3 Energy-Preserving Outlier Removal

The spike noise, i.e., outlier, is a common phenomenon when a
MC renderer renders a scene that includes glossy materials, and the
outlier pixels exhibit an excessive intensity (e.g., two order of mag-
nitude higher than the intensities of other pixels). The well-known
approach is to reject [Kalantari et al. 2015] or down-weight [Moon
et al. 2014] those pixels so that an optimization process for recon-
struction can be performed robustly. If we remove outliers as a
pre-process, reconstruction can reduce splotch artifacts introduced
by spike noise. The disadvantage of the outlier removal is that no-
ticeable energy loss can be introduced in the reconstructed image,
since the excessive energy is not true error, but an important signal
as mentioned in McCool [1999].

To alleviate this problem, we propose an energy-preserving outlier
removal technique, inspired by a non-linear filter that introduced
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(a) MC input, 24 spp

rMSE 0.52105

(b) Inset of (a)

rMSE 0.52105

(c) Result w/o outlier removal

rMSE 0.01262

(d) Result w/o energy restoring

rMSE 0.00937

(e) Our method

rMSE 0.00505

(f) Reference, 32K spp

Figure 4: Validation of our energy-preserving spike noise removal.
Given a uniformly generated input image (a) and its inset (b), the
result without our outlier removal (c) shows splotch artifacts be-
cause it is hard to distribute the excessive energy of outliers. The
result using the outlier removal but without our energy restoring (d)
is visually pleasing as we can remove the spike noise before our re-
construction, but produces a noticeable energy loss. However, our
energy-preserving outlier removal technique (e) reduces the spike
noise well and avoids the energy loss problem.

the high-level idea of spreading excessive noise into neighboring
pixels [Rushmeier and Ward 1994]. We first detect whether the
intensity of a center pixel c is an outlier by computing the stan-
dard deviation of pixel intensity y(i) within our filtering window
Ωc. Specifically, if the difference between the intensity of the cen-
ter pixel and the average intensity of all neighboring pixels is three
times higher than the computed standard deviation, we replace the
center pixel intensity and variance with the pixel that has median in-
tensity and its variance, respectively. We perform this pre-removal
step before conducting our reconstruction process. Note that this
process is similar to previous methods (e.g., [Kalantari et al. 2015]),
but energy loss introduced by the difference between outliers and
the median intensity may be noticeable when a rendered input im-
age contains significant spike noise.

Our idea is to restore the energy loss by performing a post-process
after our reconstruction. During the outlier removal process, we
store the energy loss, i.e., difference eo between the intensity of the
outlier pixel o and median intensity. After our reconstruction, we
redistribute this lost energy to our reconstruction output ŷ(i) within
a large window Ωo (e.g., 87 × 87) from the outlier pixel o as the
following:

ŷ(i) = ŷ(i) + ρoŷ(i), (14)

where ρo > 0 is a compensation factor to distribute the lost en-
ergy from the o pixel. We compute the factor by considering our
reconstruction output:

eo =
∑

i∈Ωo

ρoŷ(i). (15)

We plug the computed factor into the equation (Eq. 14) for restoring
the energy loss. Note that the ratio ŷ(i)/ŷ(j) between the recon-
structed intensities at two pixels i and j within the outlier window
Ωo is maintained after this process is performed.
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(a) MC input, 32 spp

rMSE 0.56781

(f) Ref. result 

48 spp, rMSE 0.00831

(d) Our result using (b)

48 spp, rMSE 0.00966

(b) Our sampling map (c) Reference 

sampling map

(e) Our result using (c)

48 spp, rMSE 0.00906

Figure 5: Comparison between our estimated sampling map (b)
and a reference sampling map (c) given an input image (a). We
visualize allocated sample counts until a target sample count (e.g.,
48 spp) is reached from the given number of samples, i.e., 32 spp.
Our sampling map (b) shows a similar pattern compared to the ref-
erence sampling map (c), computed using a reference image gener-
ated by 32K spp, thanks to our high-quality error estimation. Our
result (d) using our sampling map shows a very close result (7%
higher error) to the result (e) using the reference sampling map.
Also, our error is only 16% higher than the error of the reference
method (f) that performs both adaptive sampling and reconstruction
based on the actual L2 error computed using the reference image,
which cannot be achieved in practice.

Fig. 4 shows our method using the proposed technique. When we
do not use any outlier removal and restore techniques, the recon-
structed image shows the splotch noise. In addition, when the re-
moval technique is used without our energy restoring technique, it
reduces the splotch noise well but shows noticeable energy loss.
Our proposed technique produces a numerically accurate result
compared to the tested simple techniques ((c) and (d) in Fig. 4).

5 Adaptive Polynomial Sampling

In this section, we describe how we further reduce our reconstruc-
tion error by adaptively allocating additional ray samples over im-
age regions with high errors. We choose an iterative approach
commonly adopted in adaptive rendering methods [Overbeck et al.
2009]. Specifically, we use a uniform sampling at the first iteration
given a small number of samples (e.g., 4 or 8 samples per pixel).
Then we apply our reconstruction and compute reconstruction error

ξ̂c(k̂opt) using our bias and variance estimation. Our final recon-
struction output is computed by a local average using the weighting
function K(·) (in Eq. 6), and thus we also blend the error using

the weighting function K(·) in order to compute the error ξ̂i of
our final output ŷ(i) at each pixel i. Given the estimated error per
each pixel, we allocate additional samples to further reduce our er-
ror. This process is repeated until a user-specified sample budget is
reached.

Specifically, we compute the MSE reduction rate ∆(ξ̂i) that is an
error reduction when allocating an additional sample. To com-
pute this reduction, we use the previously derived reduction rate

n
−4/(d+4)
i [Moon et al. 2014] given a local dimensionality d and

allocated sample count ni at pixel i. In our framework, we can
compute the local dimensionality, i.e., number of independent pa-
rameters, using the property of the hat matrix H . Technically,
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the local dimension can be computed by adding diagonal terms of

the hat matrix H(k̂opt) that are computed given an estimated op-
timal polynomial order as the local dimension is the rank of the
hat matrix. As a result, our error reduction can be computed as

∆(ξ̂i) = ξ̂i × n
−4/(d+4)
i based on our estimated error ξ̂i. Fur-

thermore, we adopt the relative MSE [Rousselle et al. 2011] that
allocates more samples on dark regions, previously used in recent
methods (e.g., [Li et al. 2012; Moon et al. 2015]), and thus our rela-

tive MSE reduction is computed as ∆rel(ξ̂i) = ∆(ξ̂i)/(ŷ(i)
2 + ǫ).

The epsilon is set to a small value (e.g., 0.001) to avoid dividing

by zero. Given the estimated error reduction ∆rel(ξ̂i) and a to-
tal sample budget, N , for the next iteration, a new sample count at

pixel i is calculated as ∆ni = N×∆rel(ξ̂i)/(
∑

j ∆rel(ξ̂j)) where
∑

j(∆rel(ξ̂j)) is a normalization factor that accumulates our rela-

tive error over all pixels.

This approach constitutes a well-known iterative approach that pre-
vious methods (e.g., [Rousselle et al. 2013]) also use, but the key

component is in the robustness of the error estimation ξ̂i. Our
multi-state process provides a robust error estimation and our re-
sulting computed sampling patterns are robust. In Fig. 5, we com-
pare our computed sampling map ∆ni with a reference sampling
map which computes the sampling count using a reference error
∆rel(ξi) = ∆(ξi)/(µ(i)

2 + ǫ). We compute the reference error
term ξi as an averaged value (similarly in Eq. 6) of the actual L2
error term ξc(kopt) (in Eq. 7) using a reference image generated by
32K samples per pixel. Our estimated sampling map in the figure
shows a similar pattern compared to the reference map and our re-
sult using our sampling map shows a very close error (7% higher) to
the result using the reference map. In addition, we test a reference
method that uses the reference sampling map and also performs an
ideal reconstruction that uses a reference order kopt instead of our

estimated order k̂opt ((f) in Fig. 5). Our error (0.00966) is slightly
higher, i.e., 16%, than the error (0.00831) of the reference result.
It indicates that our multi-stage error estimation can provide an ef-
fective scheme to adaptively control sampling and reconstruction
simultaneously so that we generate high-quality rendering results
closed to the reference results that use reference images, which can-
not be achieved in practice.

6 Temporal Extension

Our method can be naturally extended to utilize temporal coherence
between consecutive frames, by extending the 2D filtering window
Ωc into a 3D window that considers neighboring pixels in adjacent
frames. Specifically, we generate noisy input MC images per frame
through our adaptive sampling until a user-specified sampling count
is reached (Sec. 5), and stack these images to form noisy volume
data. We then perform our reconstruction (Sec. 4) on the 3D vol-
ume data. In this process, our 2D filtering window (e.g., 29 × 29
window for Ωc) is extended to 3D (e.g., 29 × 29 × 5 window for
Ωc). In our accompanying video, we compare the MC input gener-
ated by our sampling and our final output for the San Miguel and
Hotel Lobby scene. One can still notice some flickering on our tem-
poral results, but our method drastically reduces the flickering of
the input sequences while preserving high-frequency edges by per-
forming our polynomial based reconstruction. To further reduce the
existing flickering, one interesting direction for future work would
adaptively distribute additional samples both spatially and tempo-
rally over the 3D volume space. Specifically, our multi-stage error
analysis has potential to guide the additional sampling so that new
samples can be adaptively allocated to regions containing high er-
ror.

7 Implementation Details

We have plugged our adaptive techniques into the general rendering
framework, pbrt [Pharr and Humphreys 2010] so that our sampling
and reconstruction can performed within the framework, and im-
plemented our reconstruction by using CUDA for parallelizing our
optimization for optimal polynomial orders. For the filtering win-
dow, Ωc, we have used a 29 × 29 window, and tested (0, 1, 2, 3)
as the candidates of the optimal order kopt. Given the filtering
window, we include statistically equivalent pixels as neighboring
pixels, which is commonly used in previous methods (e.g., [Sen
and Darabi 2012]). Specifically, we utilize the confidence inter-
val for two independent samples [Hayter 2007] based on the nor-
mality assumption of the distribution of each pixel intensity, i.e.,

(y(i)− y(c)) ± 3.0
√

s2(y(i)) + s2(y(c)). We reject the pixels
when the difference between their intensities and the intensity of a
center pixel, (y(i)− y(c)), is outside of the interval. Note that this
interval goes to zero as the number of samples goes to an infinite
number, and thus it provides the consistency property of a recon-
struction method, as described in Moon et al. [2013].

Optimization using Sparse Polynomials. Our reconstruction can
be applied to only a small number of center pixels instead of all
pixels individually in order to reduce the computational burden of
our reconstruction. This is similar to the process utilized previously
when performing reconstruction using sparse linear models [Moon
et al. 2015]. Our optimization is quite straight-forward since we do
not change the size of reconstruction window. Note that our method
only changes the polynomial order. As a result, we can apply a
regular sampling process to select the center pixels. Specifically,
we regularly choose center pixels that have x and y positions that
are multiples of the half size of our filtering window (e.g., 14 for our
29× 29 window). This greatly reduces computational burden since
we can perform our reconstruction at only a small number of center
pixels; an analysis is included in our supplementary material.

Pre-filtering Features. Our reconstruction uses the geometric
function g(fi) that utilizes texture, normal, and depth information
and thus this function can be noisy when a depth of field or motion
blur are simulated. Our reconstruction framework (Sec. 3) can nat-
urally pre-filter this function using our image polynomial function
p(i). Specifically, we run our reconstruction for each feature type
using the feature buffer and its variance, instead of the MC input
y(i) and its variance σ2(y(i)). In addition, we set g(fi) as a null
function since we do not have an additional edge function for the
feature function itself. However, we can provide a high-quality pre-
filtering through our adaptive image polynomial function p(i) in a
data-driven way. In practice, the noise contained in the feature vec-
tor can be much smaller than the noise in MC input images. Hence,
we set the filtering window size Ωc to be small, 5 × 5, in order
to reduce computational overhead. This process can be performed
efficiently since the hat matrix H can be precomputed and shared
among all pixels during our optimization. Technically, the matrix is
identical across pixels since we do not use the geometric function
g(fi) for this pre-filtering.

8 Results and Discussions

We have tested our method on a Windows machine with a i7-3770
CPU and GTX 780 graphics card. We have compared our ap-
proach with the state-of-the-art rendering methods using learning-
based filtering (LBF) [Kalantari et al. 2015], weighted local re-
gression (WLR) [Moon et al. 2014], and adaptive linear predic-
tion (ALP) based method [Moon et al. 2015], which demonstrated
outstanding rendering results through the bandwidth optimization
process. To test the previous methods, we have used the implemen-
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Ours, 30 spp (65.8 s)

rMSE 0.00029

LD, 48 spp (66.6 s)

rMSE 0.06301

Reference, 64K sppWLR, 30 spp (66.3 s)

rMSE 0.00055

LBF, 32 spp (67.5 s)

rMSE 0.00110

Ours, 30 spp (65.8 s)

rMSE 0.00029

Ours, 31 spp (197.2 s)

rMSE 0.00437

LD, 36 spp (199.9 s)

rMSE 0.32402

Reference, 32K sppWLR, 30 spp (199.2 s)

rMSE 0.00952

LBF, 32 spp (200.3 s)

rMSE 0.00727

Ours, 31 spp (197.2 s)

rMSE 0.00437

Ours, 31 spp (155.3 s)

rMSE 0.00768

LD, 39 spp (158.3 s)

rMSE 0.21818

Reference, 16K sppWLR, 32 spp (159.2 s)

rMSE 0.00935

LBF, 32 spp (158.8 s)

rMSE 0.01047

Ours, 31 spp (155.3 s)

rMSE 0.00768

Ours, 64 spp (419.8 s)

rMSE 0.00943

(a)

LD, 69 spp (425.2 s)

rMSE 0.15754

(b)

Reference, 32K spp

(g) 

WLR, 61 spp (427.1 s)

rMSE 0.01385

(d) 

LBF, 64 spp (424.2 s)

rMSE 0.03766

(c)

Ours, 64 spp (419.8 s)

rMSE 0.00943

(f) 

ALP, 34 spp (200.2 s)

rMSE 0.00817

ALP, 35 spp (159.5 s)

rMSE 0.01079

ALP, 36 spp (67.0 s)

rMSE 0.00047

ALP, 68 spp (425.2 s)

rMSE 0.01848

(e)

Figure 6: Equal-time comparisons of adaptive rendering methods. The test scenes are challenging in nature, containing diverse charac-
teristics. Our method produces visually and numerically better results in comparison to state-of-the-art methods LBF, WLR, and ALP. Our
performance improvements are achieved by performing a new adaptive sampling and reconstruction using adaptive polynomial functions,
even without filtering bandwidth optimization that previous methods employ. Our supplementary report includes full-resolution images of the
tested methods and an additional test for a bump-mapped scene.

tation provided by the authors. In addition, we have tested the low
discrepancy (LD) sampling that uses a uniform sampling and does
not perform any filtering process. As a numerical measure, we have
tested the relative MSE [Rousselle et al. 2011] which is widely used
to evaluate numerical accuracy of previous methods.

Benchmarks. We have validated our method for challenging
scenes: 1) Hotel Lobby 2) San Miguel 3) Pool 4) Kitchen. For im-
age resolutions, we use 1K × 1K images. The Hotel Lobby scene
(top row in Fig. 6) consists of complex geometries, and the ob-
jects with gold materials (in the ceiling) introduce large quantities
of spike noise in the rendered images. This is challenging as han-
dling spike noise without energy loss can be a crucial performance
factor for this scene. The San Miguel (second row in Fig. 6) is a
widely tested scene for recent adaptive methods due to its geometric
complexity. In addition, we simulate a strong depth-of-field effect
that introduces a severe noise in the feature vector such as normal,
texture, and depth, which tested methods including our technique
utilize. For the Pool scene (third row in Fig. 6), we simulate a
strong motion blur effect on the noisy textured floor. This motion
blur effect introduces noise in feature buffers such as normal, tex-
ture, and depth. Lastly, the Kitchen (bottom row in Fig. 6) is a
glossy-dominant scene that generates many high-frequency edges

introduced by strong glossy reflections. The tested methods, in-
cluding our own, utilize geometries as features, but we cannot easily
identify the reflected edges on glossy materials using only geome-
tries.

Equal-time Comparisons. In Fig. 6, we test equal-time compar-
isons for the compared adaptive rendering methods. For a fair com-
parison, we use 32 or 64 samples per pixel for LBF since the pre-
vious method pre-computes their training sets using a power of two
sample counts, as described in the previous paper [Kalantari et al.
2015]. Given the Hotel Lobby scene (top row), LBF and WLR
show splotch artifacts and ALP does not preserve the energy, since
these methods cannot distribute the excessive energy of spike noise
well. However, our method removes the spike noise well with-
out energy loss thanks to our energy-preserving removal (Sec. 4.3).
LBF shows a smooth result for the San Miguel scene (second row)
compared to WLR and ALP, since the estimated optimal parame-
ters of LBF use a training set with reference images that can prove
more robust than the direct estimation of MSE using only a MC
input image. Our proposed block-based error estimation improves
the robustness of the optimal order selection, and leads to a visu-
ally pleasing image as well as numerically better results when com-
pared to other methods. For the Pool scene (third row), LBF tends
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Figure 7: MSE convergence graph. We measure the numerical er-
ror of our method and compare with the state-of-the-art methods.
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Figure 8: Comparisons of the tested methods with varying sam-
ple counts, given the clock face in the Hotel scene. Our method
shows consistently better results compared to other methods, while
decreasing reconstruction errors, e.g., low-frequency noise.

to produce noisy results on the motion blurred area, while WLR
and ALP show over-blurred results. Our method, however, pre-
serves the detailed edges introduced by the motion blurring thanks
to our adaptive polynomial based pre-filtering for features such as
texture. Given the glossy dominant scene (bottom row), LBF shows
a high numerical error due to over-blurred edges (e.g., glossy high-
lights) as it can be difficult to train for these complex edges through
a learning based pre-processing step. As a result of our novel bias-
variance compensation, through adaptive polynomial selection, our
method produces numerically better results even though we do not
make use of any processing for learning or optimization of filtering
bandwidths.

MSE Convergence. We compute the rMSE of each method while
varying the average number of samples per pixel for all tested
scenes in Fig. 7. The machine learning based method, LBF, pro-
duces high-quality results for small numbers of samples compared
to WLR and ALP as error estimation with small sample counts can
be fundamentally difficult (e.g., for Hotel Lobby and San Miguel).
However, our method and linear regression techniques (i.e., WLR
and ALP) show a faster convergence than LBF as we increase the
number of samples, because MSE estimation process using MC

(a) LD, 48 spp (66.6 s)

rMSE 0.06301

(d) ALP, 36 spp (67.0 s)

rMSE 0.00047

(b) LBF, 32 spp (67.5 s)

rMSE 0.00110

(c) WLR, 30 spp (66.3 s)

rMSE 0.00055

(e) Ours, 30 spp (65.8 s)

rMSE 0.00029

(f) Reference, 64K spp

Figure 9: Failure case of our method involving motion blur (from
the Pool scene). The tested methods, including our technique, do
not capture the detailed edges introduced by moving highlights on
a glossy object, since MC input images do not contain enough in-
formation to allow reconstruction techniques to preserve the edges
(see (a)).

input images is able to become more accurate when a number of
samples increases. In the Fig. 8, we also compare the visual qual-
ity of all tested methods that use a different number of samples for
the Hotel scene. Given our tested scenes and sampling counts, our
results show consistently better results over the previous methods
even without the optimal bandwidth selection, and this indicates
that our key idea, adaptive polynomial selection, can be a new com-
plementary approach for a high-quality adaptive method.

Limitations. Our adaptive sampling is an image-space method that
adaptively controls sampling rate over pixels. For higher dimen-
sions such as lens, time, and second bounces, our method, like
other image-space methods, uses a random (or low-discrepancy)
sampling. Our approach is intrinsically simple, but adaptively con-
trolling other spaces can be important. For example, the moving
highlights in the Pool scene (Fig. 9) clearly demonstrate the limi-
tation of image-space methods, including our method. None of the
tested methods preserve moving highlights properly. It is funda-
mentally challenging to reconstruct high-frequency edges when the
input images do not have enough information ((a) of Fig. 9). Note
that even the reference image, with the exhaustive sampling count,
has noise in this case. For this example, adaptively controlling sam-
pling counts in space time can be important when attempting to cap-
ture the edges. Increasing the sampling dimension of our method,
whilst minimizing accounting for the curse-of-dimensionality ef-
fect, will prove a challenging and important future work.

9 Conclusions

In this paper, we propose a new adaptive technique for estimat-
ing the optimal balance between the bias and variance of recon-
struction methods and demonstrate that high-quality rendering re-
sults can be achieved even without the need for an optimal band-
width selection process, a common strategy for recent methods. We
present a block-based optimization process and multi-stage estima-
tion for robustly computing optimal polynomials locally for denois-
ing very noisy input images appropriately. In addition, an energy-
preserving denoising technique for spike noise is introduced so that
outliers can be removed without causing noticeable energy loss.
Our method shows a novel error control process for image-space
adaptive methods, but we believe that our method through adap-
tive order selection can be further optimized by combining previous
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bandwidth optimization techniques. We would like to investigate
this direction as a future work.
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